
Apr 26 2005 Dagstuhl’05

On the Relation Between ASP and SAT procedures

Enrico Giunchiglia DIST, Univ. Genova

Marco Maratea DIST, Univ. Genova

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Motivation

� The relation between Answer Set Programming (ASP) and propositional

satisfiability (SAT) has been at the center of several papers, expecially in the last

years.

� Despite state-of-the art ASP solvers are apparently quite different,

� the main search procedures used by ASP solvers (i.e., “native” and SAT-based)

have been advocated “similar” in many works. But this has never been formally

stated before.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Goal

In this work we study the computational properties of ASP systems, in order to

formally characterize under which condictions different systems have same

behaviour.

We begin our study with SMODELS and CMODELS, and then we see how the results

extend to other systems like DLV, SMODELS-CC and ASSAT.

The main focus of this work is on tight programs (Fages 1994; Babovich, Erdem and

Lifschitz 2000; Erdem and Lifschitz 2003), where we will establish a strong relation

between SMODELS and CMODELS procedures.

We will use the result both on the theoretical side (in order to show new complexity

results for SMODELS) and on the experimental side (for evaluating efficient strategies

and heuristics coming from SAT, in ASP systems).

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Basic preliminaries

� is a set of atoms. A (logic) program � is a finite set of rules � of the form:

�� � �� �
	 	 	 � �� � � � � � �
	 	 	 � � (1)

where �� � � � ��� � , and � �� �
	 	 	 � �� � .

head � � ��� � � , body � � � � � �� �
	 	 	 � �� � �� � � �
	 	 	 � � � .

If � is a an atom, � is the negation of � .

Atoms, their negations, and the symbols� ,� form the set of literals.

A clause is a finite set of literals different from� �� .

A propositional formula is a finite set of clauses.

We say that a program � is tight if there exists a function � from atoms to ordinals

such that, for every rule (1) in � whose head is not� , � � � � ��� � � �� �

for each i = 1 . . . m.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

What is an answer set?

Consider a program � , and let � be a set of atoms. In order to give the definition of

an answer set we consider first the special case in which the body of each rule in �

contains only atoms. Under these assumptions, we say that

� � is closed under � if for every rule (1) in � , � � � � whenever

� �� �
	 	 	 � �� �� � , and that

� � is an answer set for � if � is the smallest set closed under � .

Now we consider the case in which � is an arbitrary program. The reduct � � of �

relative to � is the set of rules

�� � �� � 	 	 	 � ��

for all rules (1) in � such that � ! � � � � � �
	 	 	 � � � � " . � is an answer set for

� if � is an answer set for �� .

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Agenda

� SMODELS and CMODELS algorithms

� Relation between SMODELS and CMODELS

� New complexity results for SMODELS

� Experimental analysis on CMODELS

� Conclusions

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

SMODELS procedure (I)

function SMODELS(#) return SMODELS-REC(# , $&% ');

function SMODELS-REC(# , ()

) # * (+ := expand , # * (- ;
if ($/. *. '0 () return FALSE;

if ($132 14 5 * $1 *1 '76 (8:9 ; ' 9 5) return TRUE;

1 := ChooseAtom , (- ;
return SMODELS-REC , p-assign ,1 * # - - * (< $1 ' - or

SMODELS-REC , p-assign ,1 * # - - * (< $1 ' - ;
function expand(# , ()(>= := (;(:= AtLeast , # * (- ;# := p-assign , (* # - ;(:= (< $1 2 14 5 *1 84 AtMost , #@? * (- ' ;# := p-assign , (* # - ;

if ((8:9 (>=) return expand(# , ();

return) # * (+ ;

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

SMODELS procedure (II)

function AtLeast(A , B)

if (C D A and body E C FHG I and head E C FJ D B)

return AtLeast E p-assign E head E C FK A F K BL M head E C FN F ;
if (MO K O NQP B G I andJ&R C D AS head E C FHG O)

return AtLeast E p-assign EO K A F K BL MO N F ;
if (C D A and head E C F D B and body E C FJG I and

JR CUT D A K CUT JG CS head E CUT FG head E C F)
return AtLeast E p-assign E body E C FK A FK BL body E C F F ;

if (C D A and head E C F D B and body E C FG MWV N)

return AtLeast E p-assign EV K A F FK BL M V N F ;
return B ;

function AtMost(A , B)

if (C D A and body E C FHG I and head E C FJ D B)

return AtMost E p-assign E head E C FK A FK BL M head E C FN F ;
return B ;

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

CMODELS procedure

function CMODELS(�) return DLL-REC(lp2sat � � � , " , �);

function DLL-REC(X , Y , �)

Z X � Y [:= unit-propagate � X � Y � ;
if (" � X) return FALSE;

if (X � ") return test(Y , �);

� := ChooseAtom � Y � ;
return DLL-REC � s-assign � � � X � � � Y � � � � � � � or

DLL-REC � s-assign � � � X � � � Y � � � � � � � ;

function unit-propagate(X , Y)

if (�]\ � � X) return unit-propagate � s-assign �\ � X � � Y � � \ � � ;
return Z X � Y [;

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

From a logic program to a set of clauses

We have defined lp2sat ^:_ ` to be the set of clauses corresponding to the Clark’s completion

(Clark 1978) of_ . More precisely, if ab is an atom, the translation of_ relative to ab ,

denoted with lp2sat ^:_ c ab ` , consists of

1. for each rule d e _ of the form (1) and whose head is a b , the clauses:

f ab cg h i c f g h c a j c&k k k c a l c a l m j c&k k k c an i c

f g h c a j i c&k k k c f g h c a l i c f g h c a l m j i ck k k c f g h c an i c

whereg h is a newly introduced atom, and

2. the clause f ab c7g h o c&k k k cg h p i whereg h o c&k k k cg h p ^qr s ` are the new symbols

introduced in the previous step.

The translation of_ relative to t , denoted with lp2sat ^:_ c t ` , consists of a clause

f a j c k k k c a l c a l m j c&k k k c an i , one for each rule in_ of the form (1) with head t . Finally,

the translation of_ , denoted with lp2sat ^:_ ` , is u vwx y z|{ } lp2sat ^:_ c a ` .

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

From a set of clauses to a logic program

If ~ is a clause �]\ � �
	 	 	 �\ . � �\ ��� � we define sat2tlp � ~ � to be the rule

� � \ � � 	 	 	 �\ . 	

Then, if X is a formula, the translation of X , denoted with sat2tlp � X � , is

� �4 � sat2tlp � ~ � � � 14 5 � � � ��� � � � � � �

where, for each atom � � � , � � is a new atom associated to � .

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Relating SMODELS and CMODELS

Our goal is to prove that the computations of SMODELS and CMODELS are highly

related if � is tight. We establish this comparing the search trees of

SMODELS-REC � � � �� � � and DLL-REC � lp2sat � � � � " � � � .
We say that a set of literals Y is a branching node of SMODELS � � � if there is a call

to SMODELS-REC � � � � Y � , following the invocation of SMODELS � � � . Similar

considerations are made for CMODELS.

If � ��� is SMODELS � � � or CMODELS � � � , we define

Br � � �� � � � � Y ! � � � � ��� Y is a branching node of � ��� � 	

We say that SMODELS � � � and CMODELS � � � are equivalent if

Br � SMODELS � � � � � Br � CMODELS � � � � .
Theorem 1 For each tight program � , SMODELS � � � and CMODELS � � � are

equivalent.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

New results for SMODELS: Pigeonhole principle

The complexity of a procedure a d�� on a program_ is the smallest � such that

� Br ^ a d�� ` �>� � .

Consider the formula �� � ln whereg c7� are two natural numbers, and consisting of the

clauses
f a� � j c a� ��� c k k k c a� �n i ^�� � � ` c

f a� �� c a � �� i ^�� c � � � c7� � g c � �� � `k

The formulas �� � ln are from (Haken 1985) and encode the pigeonhole principle. If

g � � , �� � ln are unsatisfiable and it is well known that any procedure based on

resolution (like DLL) has an exponential behavior on these formulas.

Corollary 1 The complexity of SMODELS and CMODELS on sat2tlp ^ �� � nn � j ` is

exponential ing .

The result extends to CMODELS because it is based on DLL. For SMODELS, it relies on the fact

that sat2tlp ^ �� � nn � j ` is tight, and thus SMODELS and CMODELS are equivalent.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

New results for SMODELS: Randomly generated k-cnf formulas

A formula X is a ¡ -cnf if each clause in X consists of ¡ literals.

The random family of ¡ -cnf formulas is a ¡ -cnf whose clauses have been randomly

selected with uniform distribution among all the clauses ~ of ¡ literals and such

that, for each two distinct literals\ and\ � in ~ ,\ ¢� \ � .

Corollary 2 Consider a random ¡ -cnf formula X with £ atoms and ¤ clauses. With

probability tending to one as £ tends to infinity, the complexity of SMODELS and

CMODELS on sat2tlp � X � is exponential in £ if the density ¥ � ¤ ¦ £ ��� 	 §¨ ©«ª .

This result follows from (Chvátal and Szemerédi 1988), and again from the fact that

sat2tlp � X � is tight on the random family, from the fact that CMODELS is based on DLL

and our equivalence result on tight programs.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

New results for SMODELS: Deciding the best literal

We define a literal\ to be optimal for a program � if there exists a minimal search

tree of SMODELS � � � whose root is labeled with\ . The following result echoes the

one by (Liberatore 2000) for DLL.

Corollary 3 In SMODELS, deciding the optimal literal to branch on is both NP-hard

and co-NP hard, and in PSPACE for tight programs.

There are many other results holding for DLL that can be lifted to SMODELS,

including (Monasson 2004) and (Achlioptas et al. 2001) for average complexity of

coloring randomly generated graphs and for exponential lower bounds on random

3-CNF formulas also below the satisfiability threshold.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

SMODELS and CMODELS are not equivalent on non-tight programs

Consider again the pigeonhole formulas. They give us the opportunity to define a

class of formulas that are exponentially hard for CMODELS but easy for SMODELS.

For each formula X , defines sat2nlp � X � to be the program

� �4 � sat2tlp � ~ � � � 14 5 � � � � � .

Corollary 4 The complexity of SMODELS and CMODELS on sat2nlp � �¬ � / � � is

� and exponential in £ respectively.

In this case, sat2nlp � �¬ � / � � is non-tight, and SMODELS can determine the non

existence of answer sets without branching mainly thanks to the procedure AtMost.

The above results can be easily generalized to any formula X which is known to be

exponentially hard for DLL.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Extending the results to other systems

ASSAT is different from CMODELS only on non-tight programs, assuming that X is

computed as lp2sat � � � .
SMODELS-CC is SMODELS enhanced with “clause-learning” look-back strategies.

Results in (Haken 1985) and (Chvátal and Szemerédi 1988) hold for any proof

systems based on resolution. Enhancing SMODELS and CMODELS with “learning”

look-back strategies does not lower the exponential complexity.

Thus, the related corollaries hold also for SMODELS-CC and ASSAT.

DLV core algorithm is similar to the one of SMODELS. In particular, the rules used by

AtLeast to extend the assignment Y are very similar to those used by the DLV

procedure ® ¯° ~ � £± , see (Faber 2002), pagg. 41-44.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Experimental analysis: Assessment (I)

Given the above results, one expects that the combinations of reasoning strategies that

currently dominate in SAT, are also bound to dominate in ASP, at least on tight logic programs.

We show experimentally, on a wide set of currently challenges benchmarks, that this is the

case, and results extend (on the experimental side) to non-tight programs.

We have used our solver, CMODELS ver. 2, because it is SAT-based and thus strengths the

relation between SAT and ASP, and also

² its front-end is LPARSE (Simons 2000), a widely used grounder for logic programs;

² its back-end solver already incorporates (lazy) data structures for fast unit propagation as

well as some state-of-the-art strategies and heuristics evaluated in this work; and

² can be also run on non-tight programs.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Experimental analysis: Assessment (II)

We have further extended CMODELS with a variety a look-ahead, look-back strategies and

heuristics coming from the SAT community. We have considered

² Look-ahead: basic unit-propagation (u), unit-propagation+failed-literal (f) (Freeman 1995)

² Look-back: basic backtracking (b), backtracking+backjumping+learning (l) (Sakallah and

Silva 1996; Bayardo and Schrag 1997; Zhang et. al 2001)

² Heuristic: VSIDS (v) (Moskewicz et al. 2001), Unit-based (u and p) (Li and Anbulagan

1997)

We considered 5 combination of strategies built out of them: ulv, flv, flu, fbu and ulp.

Performing the experiment on a unique platform is of fundamental importance, otherwise

results can be biased by implementation issues.

Given the established “equivalence”, results would extend to SMODELS (and to the other

systems, according to the considerations made) if enhanced with corresponding techniques

(at least on tight programs).

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Experimental analysis: Tight logic programs

PB #VAR ulv flv flu fbu ulp

4.5 300 TIME TIME 81.92 22.53 TIME

5 300 448.21 485.36 8.27 4.72 452.75

5.5 300 73 38.61 2.26 1.7 38.48

dp-12.fsa-i-b9 1186 223.93 383.66 353.53 TIME 2910.96

key-2-i-b29 3199 415.54 204.87 44.14 589.45 1329.53

mmgt-3.fsa-i-b10 1933 16.23 32.23 26.71 16.55 6.19

mmgt-4.fsa-s-b8 1586 17.02 27.59 421.30 327.55 13.79

q-1.fsa-i-b17 2201 1539.96 505.15 259.05 816.26 TIME

queens21 925 786.14 1864.49 384.87 47.33 0.24

queens24 1201 TIME TIME TIME 368.76 0.28

queens50 5101 TIME TIME TIME TIME 347.98

bw-large.d9 9956 1.02 5.84 2.69 2.75 1.01

bw-large.e9 12260 0.98 1.91 1.92 1.93 1.03

bw-large.e10 13482 1.29 7.51 5.03 4.95 1.55

p1000 14955 0.48 37.86 15.41 15.23 3.69

p3000 44961 8.86 369.27 144.12 142.83 223.62

p6000 89951 99.50 TIME 583.55 578.98 2549.50

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Experimental analysis: Non-tight logic programs

PB #VAR ulv flv flu fbu ulp

4 300 265.43 218.48 41.97 31.05 77.41

5 300 TIME TIME 136.67 99.75 439.71

6 300 TIME TIME 107.34 65.83 591.3

bw-basic-P4-i 5301 2.16 15.54 6.07 5.79 2.54

bw-basic-P4-i-1 4760 1.64 4.92 2.47 2.44 1.86

bw-basic-P4-i+1 5842 2.49 24.27 22.01 19.71 2.41

np60c 10742 2.83 1611.32 44.12 44.12 4.77

np70c 14632 4.69 TIME 97.44 97.89 5.91

np80c 19122 6.91 TIME 192.29 196.32 12.88

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Conclusions (I)

� We have shown that, on the wide class of tight logic programs, SMODELS and

CMODELS are “equivalent”, i.e., they explore search trees with the same

branching nodes

� Thanks to this “equivalence” results, we have outlined new complexity results on

SMODELS procedure

� We have then extended the results to other systems

� Motivated by the “equivalence” result, we have extended CMODELS with a

variety of strategies and heuristics and run an extensive experimental analysis

� The experimental results suggest directions for future development of efficient

ASP solvers.

STAR-Lab DIST Univ. Genova

Apr 26 2005 Dagstuhl’05

Conclusions (II)

� Our work should be particularly important for AS researchers how are interested

in

- formally establishing the computational behavior of systems

- develop efficient AS solvers, and thus focusing either on random or

real-world problems

- benchmarking systems (the ASPARAGUS initiative)

� we believe that this work is a major step in the direction of closing the gap

between SAT and ASP, as advocated by Mirek Truszczyński in his invited talk at

the last NMR workshop in Whistler, Canada

STAR-Lab DIST Univ. Genova

