TSAT<++: SAT-Based Solver for Separation Logic

Marco Maratea (STAR-Lab)

j.w.w. A. Armando (Al-Lab)
C. Castellini (Al-Lab)
E. Giunchiglia (STAR-Lab)

Mechanised Reasoning G{Pn?\%rsité di Genova

Dipartimento di InformasjcSistemisticd € Telematie

Motivation

Decision procedures able to decide quantifier-free first-order theories are becoming
increasingly important in Artificial Intelligence (Al) and Formal Verification (FV)
areas.

Several properties of hardware, timed automata, and software can be modeled in
quantifier-free first-order theories as well as planning and scheduling problems.

Separation Logic (SL) is one of such decidable quantifier-free first-order theories
that allows boolean combination of difference constraints.

Due to the boost that SAT solvers had in the last years, the SAT-Based approach
to decide these formulas has become a suitable and efficient way.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Why Separation Logic?

SL seems to be a good compromise between efficiency and expressivity.

It combines propositional atoms with a restricted form of linear arithmetic via the
standard boolean connectives.

Many available benchmarks, both random, hand-made and real-life (following the
usual SAT Competition division in categories) are in SL and a lot of properties
of systems and planning/scheduling constraints can be encoded in this logic; i.e.,
bounded reachability of timed automata, existence of path in digital circuits with
bounded delay and feasibility of scheduling problems.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

SL: Definitions (1)

Fix a domain of interpretation D for the arithmetic variables (the set of real or
the set of integer numbers).

An Sl-atom is either a propositional variable or an SL-expression x - y < ¢
(<,>,>,=, 7 can be (easily) recast in <), where x and y range on D and c is a
numeric constant.

An Sl -expression is also called difference constraint.

An Sl-literal is an SL-atom or its negation.
An Sl-clause is a finite disjunction of SL-literals.
An SL-formula is a finite conjunction of SL-clauses.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

SL: Definitions (2)

We are restricting our attention on SL-formula in Conjunctive Normal Form
(CNF): This is not a big Problem as long as there are efficient algorithms for
transforming a non-CNF in a CNF formula.

Deciding the satisfiability of an SL-formula (Is there an SL-assighment to
propositional atoms and arithmetic variables such that the SL-formula is true?)
is an NP-complete problem.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

+

TSAT++: Yet another SAT-Based solver for SL?

Even TSAT++ follows the well-known (SAT-Based) lazy approach , it introduces
(some of them new) ideas/optimization techniques like:

1. formula preprocessing

2. SAT solver partial assighments check (early pruning)
3. detection of the “best” witness of inconsistency

4. propositional assighment reduction (via prime implicants generation)

Using these techniques and combining them, TSAT-++ can reach state-of-the-art
results in a very wide range of domains of benchmarks arising from the Al and
FV communities.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Agenda

e TSAT++'s overview

e TSAT++'s optimization techniques

e Experimental analysis

e Conclusions and future work

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

TSAT++4's architecture

—>

parsing + abstraction

w.n

main module

preprocessing

look—ahead

look—back

|INTERFACE | |INTERFACE |

E/ enumerator
o

~— ———~ satisfiability
ves /no (& checker

SAT+model / UNSAT

Figure 1: High-level view of TSAT++.

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

TSAT++’s approach
TSAT++ is implemented under the ACR (abstract-check-refine) paradigm:

1. first the SL-formula ¢ is abstracted to a boolean formula ;
2. the boolean models us are checked for arithmetic consistency;

3. the boolean formula is refined using & in case of arithmetic inconsistency (and
back to step. 2).

TSAT++ employs SIMO for the propositional part (ENUMERATOR), and a
modified version of the Bellman-Ford (BF) algorithm for the arithmetic part

(SATISFIABILITY CHECKER).

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

TSAT++’s basic algorithm

Given an SlL-formula ¢,

function TSAT+-+-Solve(¢)
< 1,n > = Abstract&Map(¢)
ENUMERATOR.LoadFormula(%))
while ((x = ENUMERATOR.Solve(7)) = NULL)
if ((£¢ = SATISFIABILITYCHECKER.ConsistencyCheck(u, 7)) == NULL)
return SAT
ENUMERATOR.BacktrackWithReason(&)
return UNSAT

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example

% D12, ﬁv_predecodq = IRR}
P12, V' poedecode; = IgR

{ P1a, ﬁV_predecodel — JgR T 1}
{ ~p1a, V predecodey = IR ™ 1}
{ p15, P16)

{ P15, P16, P17}

1 P19, 7€n ror qaqry g en_.ICLASS}
{ =19, en_ ICLASS'+2 =en_ICLASS}

from the desigh of the bounded model checking problem for the memory unit of
the Motorola EIf microprocessor

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

11

Working example: Boolean formula and map

4 7
{Plz, _‘p100}
{ —P12, P100}

{P14, ﬁp101}
{ P14, P101} Pioco V_Pred600d€1 = [pl

{ P15, p16} Pio1 —> V_PfredQCOdel = IRR + 1
{ p15, P16, P17} | Pro2 — en_ICLASS'+2=en_ICLASS

{p19, ﬁpmz}
{ —P19, P102}

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Optimization 1: Preprocessing

One drawback of the generate-and-test approach is that (exponentialy) many

trivialy inconsistent valuations can be generated and then discarded (e.g., with
z —y < 3 assighed to true and z — y <5 to false)

To reduce this drawback, in TSAT++ for each pair ¢y, ¢ of difference constraints
in the same variables and occurring in ¢, the consistency of all possible pairs of
literals built out of them, i.e., {c1,c2}, {—c1,c0}, {c1,7¢o}, and {—=cq, —ea}, is
checked.

Assuming, e.g., {c1,ca} is inconsistent, the clause {—cy, —co} is added to ¢ before
the search starts. (in our ex., we would add the clause {—z —y < 3,z —y < 5}).

This dramaticaly speeds-up the search, especialy on randomly generated

problems. In fact, e. g, as soon as — y < < 3 is assighed to true, z —y < 5 gets
also assighed to true by unit propagation.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

13

TSAT++4's algorithm with opt 1.

Given an SlL-formula ¢,

function TSAT+-+-Solve(¢)
< 1,n > = Abstract&Map(¢)
1= Preprocessing(,)
ENUMERATOR.LoadFormula(1))
while ((x = ENUMERATOR.Solve(7)) = NULL)
if ((¢ = SATISFIABILITYCHECKER.ConsistencyCheck(u, n)) == NULL)
return SAT
ENUMERATOR.BacktrackWithReason(&)
return UNSAT

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example (1)

The technique is not directly applicable in our example

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example (1)

The technique is not directly applicable in our example, but consider the
straightforward translation:

D1, V_Predecode; < IR 4 redecode; > Irp}
—p12, V_predecode; < IRR} P12, V_predecodel > IfR}
pia, V redecode; < IR +1,V predecode; > IRE +1

} P14, }_predecodel < IgRT 1} {pua, V_predecodel > [pR T 1}
P15, P16

{ P15, P16, ﬁp17}

UP1o, €0 101459 + 2 < en_ICLASS, en_ICLASS' +2 > en_ICLASS)
{ —p19, en-ICLASS"+2 < en_ICLASS}
{ —p19, en-ICLASS"+2 > en_ICLASS}

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example (2)

All the arithmetic constraints are “translated” to difference constraints and
the difference constraints involving the same arithmetic variables are tested for
consistency.

r example, V _Predecode; <

_predecode; > IpR T 1 and _predecode; > IpR +
propositional clauses

IR IS Inconsistent with V lff,aedGCOdGl > [pR

and the related

- _Predecode; < Ipf _'V_Predecodel > 1 RR}
1 ﬁV_Pf,«edecodel < IrP ﬁV_Pf,aedecodel > [pR T 1}
- _Predecodey < Igt ﬂv_predecodel > [pR T 1}

are added to v (obviously, each difference constraint must be substituted with
the correspondent propositional atom).

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example (3)

Nevertheless, in the experimental part of the talk, we will see that there are some
well-known benchmarks from the Al community, called DTP, with the following
structure:

r3—2r1 < 68 V 1 —23< =15 A
CL’O—CEgg 42\/330—2131§ 80 A
To—Ta < —42 V z9—24 < 34 A
£L‘3—ZE2§—60\/£I§0—$2§ 15 A
xo—x3 < —60 V 29 —24 < —4

This is also an instance of SL!
(even if not very likely to obtain :-)

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Optimization 2: Early pruning

In CSP, this technique has been shown to be very effective on randomly generated
problems.

The SAT solver must have the feature of returning also partial (but consistent)
boolean model u, (even they do not satisfy yet 1), other than boolean model p
satisfying 1.

If 11, leads to an arithmetic inconsistency, there is no need to go on this branch,
and the procedure can backtrack.

If 11, does not lead to an arithmetic inconsistency, we have to go on this branch;
if 11, was satisfying, we are done.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

19

TSAT++4’s algorithm with opt 2.

Given an SlL-formula ¢,

function TSAT+-+-Solve(¢)
< 1,n > = Abstract&Map(¢)
ENUMERATOR.LoadFormula(%))
while ((¢, = ENUMERATOR.Solve(v)) != NULL)

if ((¢ = SATISFIABILITYCHECKER.ConsistencyCheck(u,, 7)) == NULL)
if (IsSatisfying(u,))
return SAT
else

ENUMERATOR.BacktrackWithReason (&)
return UNSAT

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Working example

{p19, _‘p102}
{ —P19, Ploz}

i 7

{p12, _'p100}

{ P12, Ploo}

{p14, ﬁP101}

{ P14, P101} Pico V _Predecode; = IgF

{ P15, p16} Pio1 V _Predecode; = IRt +1

{ p15, P16, —P17} | Pro2 — en_ICLASS +2=en_ICLASS

Consider u, = {p12, P100, P14, P101}- Clearly, {pP100, P101} is an inconsistent set.

There is no need to go on this branch, we can backtrack.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

Optimization 3: Detecting reason (1)

Slightly modifying the BF algorithm, after the detection of a negative cycle, we
are able to extract the “best” reason & under given condition looking among the
available cycles.

The following three options are currently implemented in TSAT++:

e plain: pick the first reason non-deterministicaly
e shortest: pick the minimal reason under cardinality

e shallowest: pick the minimal reason under the order induced by the
propositional assighment (stack)

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

22

TSAT++4's algorithm with opt 3.

Given an SlL-formula ¢,

function TSAT+-+-Solve(¢)
< 1,n > = Abstract&Map(¢)
ENUMERATOR.LoadFormula(%))
while ((x = ENUMERATOR.Solve(7)) = NULL)
if ((¢ = SATISFIABILITYCHECKER.ConsistencyCheck(u, 7)) == NULL)
return SAT
ENUMERATOR.BacktrackWithReason (&)
return UNSAT

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

23

Working example

{P19, _‘p102}
{ —P19, Ploz}

i 7

{p12, _'p100}

{ P12, Ploo}

{p14, ﬁP101}

{ P14, P101} Pico V _Predecode; = IgF

{ P15, p16} Pio1 V _Predecode; = IRt +1

{ p15, P16, —P17} | Pro2 — en_ICLASS +2=en_ICLASS

Consider the satisfying p := {p12, P100, P14, P101, P15, P16, ~P17, P19, P102}-
This is not a “good” model, because the set {p100, P101} IS inconsistent.

In this case, we will refine the formula with the clause {—p100, "P101}

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

24

Opt. 3: Generalizing reason detection (2.1)

The example before is naive. In general, given an inconsistent assighment
p={l1,...,l,}, and the set of all possible sources of inconsistency {&1,...,&;},

o & € {&1,...,&;} is the shortest reason if f V& € {&1,...,€;},0 <1 <7,
&i] > €k

o & € {&,...,&;}isthe shallowest reason iff is the minimal under lexicographical
order.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Opt. 3: Generalizing reason detection (2.2)

Example
..., 150}, with the index denoting the position the literal has

ggenr?lggsriéﬁe:d iﬂlt’he propositional stack, and &; := {llo,lly,l35}' &2 1= 115, las}
and &3 := {l20, 130, 10}
Clearly, the shortest reason is &3, but the shallowest is £; because 35 < 40 < 45.

Notice that, if we had a further reason &4 := {l7, l10, l12, l35}' it would have been

chosen as shallowest, since the literal in it that' was assigned second-last has a
lower index than that in & (12 versus 17).

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Optimization 3: Detecting reason (3)

In the analysis, we have used the “shortest” option because it seems to lead to
slight better results.

Nevertheless, the differences between reasons are not considerable, because there
are very few availabe negative cycles for each failure.

This is due to the single-source nature of the BF.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Optimization 4: Assighment reduction

Given u propositional satisfying 1), it may be the case that some of the literals in
1t may be not necessary to satisfy 1. This is in particular true when SAT solvers
use lazy data structure like watched literals.

We Compute a prime imp/icant My Of the formUIa w SUCh that My g Jy
We call the above procedure reduction, and it may be useful because

— if u leads to a satisfying SL-assignment ,so is .., and we are done;
_ |f does not lead to a satisfying SL-assignment, it may nevertheleSS be the
case that 1 does, and we can still interrupt the search because we are done;

— if 14 and p, do not lead to a satisfying SL-assignment, checking the consistency
of 7 mstead "of u, can cause exponentially many more consistency checks.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

28

TSAT++4’s algorithm with opt 4.

Given an SlL-formula ¢,

function TSAT+-+-Solve(¢)
< 1,n > = Abstract&Map(¢)
ENUMERATOR.LoadFormula(%))
while ((# = ENUMERATOR.Solve()) = NULL)
i = reduction()
if ((¢ = SATISFIABILITYCHECKER.ConsistencyCheck(u,, 7)) == NULL)
return SAT
ENUMERATOR.BacktrackWithReason(&)
return UNSAT

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

29

Working example

(O U
{p12, _'p100}
{ P12, Ploo}

{ P14, ~P101}
{ —p14, P101} Pioo — V _Predecode; = IRE

{ p15, P16} Pio1 +— V _Predecode; = IgrR + 1
{ p15, P16, P17} | Pro2 — en_ICLASS +2=en_ICLASS

{p19, _‘p102}
{ —P19, Ploz}

Consider the satisfying assignment 1 := {—=p12, "P100, P14, P101, P15, P16, "P17: P19; P

i is reduced to p, := {—p12, 7P100; P14, P101, P15, P19, P1o2} by noting that pie
and p;7 does not contribute to the satisfiability of ¢.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Another example: Degenerate instance

In the case above, the number of binary constraints processed by the satisfiability

checker remains the same, since model reduction has excluded from s propositional
atoms only; but this is not the case in general.

Further, consider the following instance:

{a, 21 —22<4, £3—24>6, ...}
{a, 21 —22>4, £3—24<6, ...}
{a, ...}

{a, ...}
with a can also be a constraint, and there are an exponential number of
inconsistencies among all the constraints but a.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

31

Another example: Degenerate instance (2)

Checking the satisfiability of ;1 without reduction can cause an exponential number
& y Of i
of checks before leading’to the solution.

The reduction of any u containing a (note that most of the SAT heuristic would
assign a := true) willead to p, := {a}, which is immediately satisfialle.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Experimental settings

For all the solvers:
TIME : 1000 sec
MEM : 512MB

—" . segmentation fault

In TSAT++:

— | : preprocessing

— p : prime implicant generation (assignment reduction)
— 2 : shortest reason

SEP-m : SEP with internal conjunction matrix off (suggested by O. Strichman)

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Disjunctive Temporal Problem (DTPs)

These are well-known random prodems from the Al community, with applications
in scheduling and management of temporal databases.

DTPs are randomly generated by fixing the number k of expressions x - y < ¢ per

SlL-clause, the number n of arithmetic variabeS, @ positive integer L such that
all the constants are taken in [—L, L]. Then:

1. the number of clauses m is increased in order to range from satisfiae to
unsatisfiable instances from 2*n to 14*n step n,

D. for each tuple of values of the parameters, 100 instances are generated and
then given to the solvers, and

3. the median of the CPU time is plotted against the m /n ratio.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

DTP instance

#

#k=2,L=100,n=5,m = 10

7

T3 —21 < 68 V 1 —23< =15 A
5130—333§ 42\/330—£E1§ 80 A
To—Ta < —42 V z9—24 < 34 A
£E3—£U2§—60\/330—£E2§ 15 A
$0—$3§—60\/330—5E4§—4 A\
Ta—2T3< 21 V 21 —x24 < =18 A
$2—£U4§ 50\/331—$4§—20/\
$4—$0§—38\/333—£U4§ 50 A
$0—£E1§ 52\/$1—$0§ 27 N
xo—CClS 88\/.’130—$3§ 82

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

TSAT++’s performances (1.1): DTPs

DTP: 35 variables on integer domain DTP: 35 variables on real domain
3 3
10° @ N N & N N g 10 t t t ¥ * ” + t t t Bl
—— TSAT++ |] —>— TSAT++ |]
—— Epilits] —k— MathSAT |]
—-©— SEP -©- CSPi
— — Tsat
—— SEP
10* b E 10° b

]

1

10" ¢ 10
[} Q
£ £
> 3
o o
(5] o
10° b 10°
107 107
1072 I I L I I 1072 v I I | I I
2 4 6 8 10 12 14 2 4 6 8 10 12 14
ratio ratio

Figure 2: Evaluation on the DTP on 35 variales- Integer domain (left) and real
domain (right). Setting: £ = 2, L = 100.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

36 M?RG
TSAT++'s scalability (1.2): DTPs

TSAT++ on hard DTP

10° T i
A —x— TSAT++ on 35 vars |]
/N —— TSAT++ on 40 vars |]
S o~ TSAT++ on 45 vars ||
TR —— TSAT++ on 50 vars ||
10° | Sk

e
.
Sk

10" |

cpu time

10° |

107h

10’2 I I I I I
2 4 6 8 10 12 14
ratio

Figure 3: TSAT++ scalability on 35, 40, 45, 50 varialeS: Real domain. Setting:
k=2 L =100.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

37

Post-office problem: Description

“Consider a post-office with N desks, eaclesk serving a customer every T
seconds. Every new customer chooses the desk with shorter queue and, when
more than one queue has minimal length, the minimal queue with the minimum
index. It is not possible to change a queue after entering it. We want to prove
that, although atlesks have the same serving time T' and customers are “smart”,

one customer can get into the annoying situation of finding himself in queue
after one person, whilst all other queue are empty, and having to wait for a
non-instantaneous period in this situation”

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

TSAT++'s performance (2): Post-office problems

Instance SAT? || TSAT++ jp2 | MathSAT | SEP
P04-6-P04 NO 0.07 0.36 16.02
P04-7-P04 NO 0.11 0.36 134.21
P04-11-P04 | NO 1.01 2.13 TIME
P04-12-P04 | YES 0.58 0.91 TIME
P05-10-P05 | NO 2.41 5.32 —
P05-11-P05 | NO 3.44 0.23 —
P05-12-P05 | NO 4.79 22.06 —
P05-13-P05 | NO 8.88 54.17 -
P05-14-P05 | YES 2.99 11.36 —

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

Diamonds problems

Given a parameter D (number of diamonds), these problems are characterized
by an exponentially large (2P) number of boolean models y, some of which
correspond to satisfying SL-assignments; hard instances with a unique “good”
propositional satisfying assignment can be generated.

A second parameter, S (related to the number of edge in each diamond), is used
to make u larger, further increasing the difficulty.

Variables range over the reals.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

AMRG

Diamond problem graphical representation

Figure 4: Diamond graphical representation.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

TSAT++’s performance (3)

: Diamonds problems

Instance Lazy Eager

D S| u? || TSATH++ p2 | M.SAT ICS | CVC SEP | SEP-m
250 | 5| NO 0.08 5.40 0.05 | MEM 52.20 0.95
250 | 5 | YES 0.21 | TIME | 150.02 | 3.26 0.77 | 288.30
500 | 5| NO 0.29 21.22 0.11 | MEM | 742.99 5.92
500 | 5 | YES 1.05 | TIME | MEM 6.99 4.85 | TIME
1000 | 5 | NO 1.07 — 0.28 | MEM || TIME 27.52
1000 | 5 | YES 6.45 - | MEM | 15.68 22.53 | TIME
2000 | 5 | NO 3.76 — 0.82 | MEM - —
2000 | 5 | YES 29.90 - | MEM | 37.53 - -

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

42

Real-world problems from UCLID: Description

These very same benchmarks are publicly available at the UCLID homepage,
where they are formulated in CLU (Counter arithmetic with Lambda expressions
and Uninterpreted functions) logic.

The benchmarks were kindly translated in SL (as DAG) by Sanjit Seshia.

The instances include problems about cache coherence protocol, load-store unit
and out-of-order execution unit.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

TSAT++’s performance (4): Real-world problems

from UCLID
Instance Lazy Eager
TSAT++ p2 ICS SEP
cache.inv10 0.11 5.29 —
cache.invl2 75.08 | 53.83 —
dixlc TIME | MEM —
elf.rf8 0.74 2.68 | MEM
elf.rf9 13.92 | 39.24 | TIME
000.rf7 7.42 16.26 | MEM
000.rf8 231.80 | 265.16 | TIME
q2.14 230.69 | 479.65 -

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

Conclusions

TSAT++ is a SAT-Based solver for the boolean combination of difference
constraints that follows the lazy approach.

It introduces various ideas/optimization techniques; most of them are theory-
independent.

Using and combining these techniques, TSAT++ is faster (sometimes
significantly) than other state-of-the-art solvers in different domains arising from

Al and FV communities.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

References
The material presented here and information about TSAT++ can be found at:

http://www.ai.dist.unige.it/Tsat/

Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, Marco Maratea
A SAT-based Decision Procedure for the Boolean Combination of Difference
Constraints.

Accepted to SAT 2004. 10-13 May, Vancouver, Canada.

Armando Armando, Claudio Castellini, Enrico Giunchiglia, Massimo Idini, Marco
Maratea
TSAT++4: An Open Reasoning Platform for Satisfiability Modulo Theory.
Accepted to PDPAR 2004. 5 July 2004, Cork, Ireland.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Some recent results on TSAT++4 (1)

More detailed evaluation on SAT heuristics and early pruning periodicity.

SAT heuristics:
e basic Chaff heuristic (VSIDS)

e basic Chaff heuristic with the chosen variables assigned by default to false

e SATZ-like heuristic, more (quadratic) reasoning done at each node (Unit
heuristic)

Early pruning periodicity:

e carly pruning can be too expensive sometimes; the ConsistencyCheck is not
performed at each node, but with a given periodicity n.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

dMRG

Some recent results on TSAT++ (2): DTP

10°

T
-6~ TSAT++ ej2
x- TSAT++ ej2_f
O TSAT++e_2j2_f

10° |

10" b

10° |

107

107

I I I I I
2 4 6 8 10 12 14

Figure 5: TSAT-++ performances on DTPs with 45 vars; further analysis.

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Some recent results on TSAT++4 : Post-office

Instance SAT? | TSAT jp2 | TSAT, | TSAT jp2, | MathSAT | SEP
P04-6-P04 NO 0.07 0.01 0.07 0.36 16.02
P04-7-P04 NO 0.11 0.02 0.09 0.36 134.21
P04-11-P04 | NO 1.01 1.08 0.76 2.13 TIME
P04-12-P04 | YES 0.58 1.71 0.52 0.91 TIME
P05-10-P05 | NO 2.41 0.05 0.71 5.32 =
P05-11-P05 | NO 3.44 0.3 0.8 0.23 —
P05-12-P05 | NO 4.79 2.27 1.62 22.06 —
P05-13-P05 | NO 8.88 6.52 5.65 54.17 —
P05-14-P05 | YES 2.99 11.15 7.01 11.36 —

Combination of DP School

TSAT++: SAT-Based Solver for Separation Logic

STAR-Lab

Recent results . ..

. seem to point out that

- TSAT++ is not optimized for performances in each problem domain, and . . .
- some “basic” settings are far from being obvious and/or optimal,

- tuning other “basic” parameters can probably enhance performances ulteriorly
(SAT heuristic periodicity, SAT solver forgetting clauses policy, . . .)

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Considerations & Events

A considerably amount of time has been devoted to the “translation” among
input formats.

This slide is also a “call” for a common input format. a

The SMT (Satisfiability Modulo Theory) initiative (by Silvio Ranise and Cesare
Tinelli) is pushing in this direction with a proposal for a common language.

The upcoming competition (coordinate by Clark Barrett and Aaron Stump)
hopefully will accelerate this process.

PDPARO5, July 2005 (Program Co-Chairs Alessandro Armando and Alessandro
Cimatti) probably will be held in conjunction with CAV05.

SAT2005 Special Issues on the Journal of Automated Reasoning (JAR) (edited
by Enrico Giunchiglia and Toby Walsh)

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

AMRG
Ongoing work (1)

From the point of view of the basic research, extending TSAT-+-+'s theory with

e (full) linear arithmetic,

® arrays

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

Ongoing work (2)
On the “applications” side, using TSAT++ as an effective back-end solver for:
e Software Model Checking

Alessandro Armando, Claudio Castellini and Jacopo Mantovani
Software Model Checking using Linear Programs.

Accepted to ICFEM 2004

e Planning/Scheduling
“Activity Al lasts for 10 units of time at most”: e; — s1 < 10
“Activity Al should start before activity A2 finishes”: s; < es

“Activity Al should start before activity A2 finishes, otherwise A3 should start
when A2 finishes” : s1 < eV 83 =e9

Combination of DP School TSAT++: SAT-Based Solver for Separation Logic STAR-Lab

