
Evaluating Search Strategies and Heuristics for
Efficient Answer Set Programming

E. Giunchiglia and M. Maratea

STAR-Lab

University of Genova, Italy

Milano, AI*IA 2005

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Answer Set Programming

Answer Set (stable model) Programming is a new programming
paradigm proposed by Marek, Truszczynski and Niemela in 1999.

It is a form of declarative programming. It is based on logic rules
and on the answer set semantic of Prolog proposed by Gelfond and
Lifschitz in 1988.

In answer set programming (ASP) we obtain the answers by
declaring the properties of the answers, by the mean of logic rules.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



ASP: Logic rules for 3-colorability problem

% Simple graph containing 3 nodes and 3 edges:

% edges between nodes 1 and 2, 2 and 3, 3 and 1.

node(1). node(2). node(3).

edge(1,2). edge(2,3). edge(3,1).

% Declaration of three colors

col(red). col(green). col(blue).

% A node has some color

color(X,red) v color(X,green) v color(X,blue) :- node(X).

% Neighboring nodes should not have the same color

:- edge(X,Y), color(X,C), color(Y,C), col(C).

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Logic programs

A (logic) program Π is a finite set of rules of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An (1)

where P is the set of atoms in Π, A0 ∈ P ∪ {⊥},
{A1, . . . ,An} ⊆ P.
A0 is the head of the rule. {A1, . . . ,Am, not Am+1, . . . , not An} is
the body of the rule. not is the “negation as failure” operator, and
⊥ stands for False.
Comp(Π) consists of formulas of the type

A0 ≡
∨

(A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

for each symbol in P ∪ {⊥}. In the equation, the disjunction
extends over all rules (1) in Π with head A0.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



What is an answer set?

Consider first Π in which m = n, when rules does not have “not”
operator.
Let X be a set of atoms.
We say that X is closed under Π if for every rule in Π, A0 ∈ X
whenever {A1, . . . ,Am} ⊆ X .
We say that X is an answer set for Π if X is the smallest set closed
under Π.
Consider now the general case n > m.
The reduct ΠX of Π related to X is the set of rules

A0 ← A1, . . . ,Am

such that X ∩ {Am+1, . . . ,An} = ∅.
We say that X is an answer set for Π if X is an answer set for ΠX .
Given a (logic) program Π, to find if it has a solution is an
NP-complete problem.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



ASP: Examples

Given the atoms p, q and r

1. Be Π1: p ← not q
q ← not r

The only AS is {q}

2. Be Π2: p ← not q
q ← not p

The ASs are {p} and {q}

3. Be Π3: p ← not p
Π3 does not have AS.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Applications of ASP

So far, answer set programming has been used in the following
fields:

I planning

I commonsense reasoning

I (bounded) model checking

I VLSI (wire routing)

I Semantic Web

I Information Extraction

I . . .

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Solving methods

I “native” methods that work directly on the (grounded) logic
program, namely smodels and dlv

I methods based on compilation into a SAT theory (SAT-based
ASP), namely Cmodels2 and assat

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Relation between ASP and SAT procedure

In some recent work (Giunchiglia and Maratea, ICLP 2005), we
have shown that, on a wide and well studied set of logic programs
called “tight” (where there is a 1 to 1 correspondence between the
AS of Π and the solutions of Comp(Π)), the main search
procedures used by “native” and SAT-based systems for ASP are
equivalent, i.e., that they explore search trees with the same
branching nodes.

The result has been proved for Cmodels2 and smodels, and
extends to assat and to dlv (work in progress).

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Contribution of the work

In this work, we focus on the experimental evaluation of different
search strategies, heuristics and their combinations that have been
shown to be effective in the SAT community, in ASP systems.
Previous work (Faber, Leone and Pfeifer, IJCAI 2001; Faber and
Ricca, LPNMR 2005), mostly considered and evaluated only one
technique (the heuristic).
We used Cmodels2 as common reasoning platform, because it is
SAT-based, strengthening in this way the relation between ASP
and SAT, its back end SAT solver simo already incorporates
various strategies and heuristics, and because it has a number of
advantage w.r.t. assat (Giunchiglia, Lierler and Maratea, AAAI
2004).
Results would extend (at least for the tight programs) to assat

and smodels (and dlv) if enhanced with corresponding
techniques.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Agenda

I Review of the SAT-based algorithm

I Experimental analysis with several search strategies and
heuristics

I Conclusions

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Cmodels2 decision procedure

function Cmodels2(Π) return dll(CNF(Comp(Π)), ∅);

function dll(Γ, S)
if Γ = ∅ then return test(S , Π);

if ∅ ∈ Γ then return False;
if {l} ∈ Γ then return dll(assign(l , Γ), S ∪ {l});
A := Heuristic(ϕ);
return dll(assign(A, Γ), S ∪ {A}) or

dll(assign(¬A, Γ), S ∪ {¬A})

test(S , Π) returns True if S ∩ P is an answer set of Π, and False,
otherwise.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Cmodels2: Discussion

1. Cmodels2(Π) returns True iff Π has an answer set

2. Cmodels2(Π) can be easily modified in order to compute all
the answer sets of a program Π

3. test(S , Π) can fail because of “loops” in the logic program.
Ex. Π: p ← p, Comp(Π) is p ≡ p

4. Cmodels2 works in polynomial-space

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Search strategies and heuristics

Look-ahead: unit-propagation, based on lazy data structures;
(denoted with “u”);

Look-ahead: unit-propagation+failed-literal detection. (denoted
with “f”).

Look-back: basic backtracking; (denoted with “b”);

Look-back: backtracking+backjumping+learning. (denoted with
“l”).

Heur Static: based on the order induced by the appearance in the
SAT formula. (denoted with “s”).

Heur VSIDS: based on the information extracted from the optimized
look-back phase of the search. (denoted with “v”).

Heur Unit: based on the information extracted from the failed-literal
detection technique. (denoted with “u”).

Heur Unit with pool: Unit heuristic restricted to a subset of the
open (not yet assigned) atoms. (denoted with “p”).

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Tight logic programs (I): Static heuristic

PB # VAR uls ubs fls fbs

1 4 300 TIME TIME 230.86 338.05

2 5.5 300 TIME TIME 478.46 TIME

3 6 300 371.28 TIME 120.02 84.16

4 bw-large.d9 9956 0.9 2497.02 2.68 2.62

5 bw-large.e10 13482 1.61 TIME 5.28 19.52

6 queens21 925 0.20 0.23 0.36 0.38

7 queens24 1201 0.46 1.14 0.67 0.74

8 queens50 5101 3.67 TIME 12.41 TIME

9 dp-12.fsa-i-b9 1186 12.51 2651.28 20.30 TIME

10 key-2-i-b29 3199 157.29 TIME 111.61 293.37

11 mmgt-3.fsa-i-b10 1933 TIME TIME 1570.27 3241.45

12 mmgt-4.fsa-s-b8 1586 1004.36 TIME 1054.06 TIME

13 p1000 14955 7.69 TIME 377.02 TIME

14 p3000 44961 178.26 TIME TIME TIME

15 p6000 89951 1275.62 TIME TIME TIME

Table: Problems (1-3) are randomly generated; (4-5) are blocks-world;
(6-8) are queens; (9-12) are bounded model checking; (13-15) are
4-colorability.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Tight logic programs (II)

PB # VAR ulv flv flu fbu ulp ubp

16 4 300 0.41 0.52 0.85 0.66 21.79 3.01

17 4.5 300 TIME TIME 81.92 22.53 TIME 54.7

18 5 300 448.21 485.36 8.27 4.72 452.75 14.35

19 bw-large.d9 9956 1.02 5.84 2.69 2.75 1.01 TIME

20 bw-large.e10 13482 1.29 7.51 5.03 4.95 1.55 TIME

21 queens21 925 786.14 1864.49 384.87 47.33 0.24 0.24

22 queens24 1201 TIME TIME TIME 368.76 0.28 0.29

23 queens50 5101 TIME TIME TIME TIME 347.98 43.16

24 dp-12.fsa-i-b9 1186 223.93 383.66 353.53 TIME 2910.96 1051.17

25 key-2-i-b29 3199 415.54 204.87 44.14 589.45 1329.53 TIME

26 mmgt-3.fsa-i-b10 1933 16.23 32.23 26.71 16.55 6.19 372.54

27 mmgt-4.fsa-s-b8 1586 17.02 27.59 421.30 327.55 13.79 2492.62

28 p1000 14955 0.48 37.86 15.41 15.23 3.69 TIME

29 p3000 44961 8.86 369.27 144.12 142.83 223.62 TIME

30 p6000 89951 99.50 TIME 583.55 578.98 2549.50 TIME

Table: Performances on tight programs. The problems are the same as in
Table 1.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Non-tight logic programs (I): Static heuristic

PB # VAR uls ubs fls fbs

31 3 300 9.75 31.63 4.69 4.4

32 7.5 300 TIME TIME TIME 567.78

33 8 300 544.83 TIME 199.05 178.98

34 bw-basic-P4-i 5301 2.08 43.19 4.07 6.91

35 bw-basic-P4-i-1 4760 1.73 15.55 2.54 2.57

36 bw-basic-P4-i+1 5842 2.29 47.09 5.04 8.17

37 np60c 10742 6.8 TIME 125.83 TIME

38 np70c 14632 12.34 TIME 326.34 TIME

39 np80c 19122 19.89 TIME 745.26 TIME

Table: Problems (31-33), are randomly generated; (34-36) are
blocks-world; (37-39) are Hamiltonian Circuit on complete graphs.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Non-tight logic programs (II)

PB # VAR ulv flv flu fbu ulp ubp

40 4 300 265.43 218.48 41.97 31.05 77.41 123.31

41 5 300 TIME TIME 136.67 99.75 439.71 323.15

42 6 300 TIME TIME 107.34 65.83 591.3 337.45

43 bw-b-P4-i 5301 2.16 15.54 6.07 5.79 2.54 79.64

44 bw-b-P4-i-1 4760 1.64 4.92 2.47 2.44 1.86 13.44

45 bw-b-P4-i+1 5842 2.49 24.27 22.01 19.71 2.41 11.60

46 np60c 10742 2.83 1611.32 44.12 44.12 4.77 597.82

47 np70c 14632 4.69 TIME 97.44 97.89 5.91 TIME

48 np80c 19122 6.91 TIME 192.29 196.32 12.88 TIME

Table: Performances on non-tight programs. The problems presented are
the same as in Table 3.

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP



Conclusions

I Learning is usually effective on real-world programs while
failed-literal is effective on randomly generated programs

I results extend to non-tight programs (at least on the
experimental side)

I an ulp-based solver is, at the moment, the most effective
overall option

I we have shed light on future development: As soon as the
number of variables in the challenges benchmarks will
increase, for real-world problems we expect that ulv-based
solvers, leaders in the SAT community, will become leaders
also in ASP

Marco Maratea Evaluating Search Strategies and Heuristics for Efficient ASP


	

