
Computing Answer Sets of a Logic Program

via enumeration of SAT certificates

Yuliya Lierler � and Marco Maratea �

yuliya@cs.utexas.edu

marco@dist.unige.it

� University of Texas at Austin

� MRG-LAB DIST, Università di Genova

UT at Austin - TAG 26-29 September 2003 1

CMODELS - ASP tool

CMODELS is an answer set programming system, which computes answer sets of a

logic program using SAT solver.

CMODELS first finds the completion of a program and then applies SAT solver for

finding the models of completion.

Depending on tightness property of a program the completion may be extended and

SAT solver may be invoked several times into the computation.

Earlier work:

� SMODELS

� LPARSE

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 2

Accepted syntax

CMODELS accepts programs that include the following rules:

Basic rules � � � � ��� � � � � � � not � � 	 � �� � � � not �

Choice rules � � �� � � � � � � � � 	 � �� � � � �
 � not �
 	 � �� � � � not � �

Weight constraint rules � � � � � ��� � � ��� � � � �
 � �
 �

not �
 	 �� �
 	 � �� � � � not � � � � � ��

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 3

Basic nested rules

A basic nested rule is an expression of the form:

� � � � ��� � � � � � � not � � 	 � �� � � � not �
 � not not �
 	 � ��� � � � not not � � .

A basic nested program is a finite set of basic nested rules.

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 4

Translating an input program into a basic nested program

Choice rules are translated into basic nested rules.

Weight constraint rules are eliminated by introducing auxiliary atoms, Ferraris and

Lifschitz (2003).

The concept of completion for nested programs is defined by Lloyd and Topor

(1984).

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 5

Translating a logic program: Examples (1)

The logic program:

�� ��
� � �

� � �
is translated into the following program with nested expressions:

� � not not�

� � not not�

� � �
� � �

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 6

Translating a logic program: Examples (2)

The rule:

� � � � � � � � � � � ��� � �

is first replaced by four rules:

� � ��� �

��� � � � � � � � ��� � �

� � � � �� � �

��� � � � � � � � ��� � �

(note that the last expression is identically true). And recursively till:

� � ��� �

�� � � � � � ��� �

�� � � � �

� � �

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 7

Agenda

� Completion

� Tight and nontight logic programs

� Loop formulas

� ASSAT

� CMODELS-2

� Conclusions and future work

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 8

Completion

Given a basic nested program � , for every atom � make the list of all rules in �

with the head � :

� � !" #$

and form the equivalence:
�%

$
 !" # $ (1)

and, for every constraint & � !" # in � form the negation of its body:

' !" # (2)

The completion Comp(�) of � consists of all formulas (1) and (2).

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 9

Completion: Examples

The completion of the program:

� � not�

� � not�
� � �

� � �
is the set of propositional formulas: �� % ' � ,� % ' � , �% � (� ,

and the completion of:

� � � � �

� � not �

is: �� % �) � ,� % ' � , �% & .

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 10

Tight logic programs

Tightness is a syntactic condition on a logic program.

To verify tightness of a program � we build the positive dependency graph * which

corresponds to � . Each atom of � is a vertex of * and for each rule

� � � � � ��+ �� � � in � there is an edge between � and+ in * .

The program � is absolutely tight iff there are no cycles in the graph of � .

Before checking the tightness, CMODELS applies two transformations to the program

that can modify the property:

� drop the rule � � � � � � � �� � �

� replace all occurrences of � with not not � in the positive parts of the bodies of

all rules if the program contain � � not not �

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 11

Nontigth logic programs

Nontigth logic programs are programs in which there are cycles in the

correspondent graphs.

Cycles (or loops) cause the difference between answer sets of a program and

models of program’s completion.

Example:

� � � is not tight; it has two model of completion , and � p and only one answer

set , .

Lin and Zhao proposed in 2002, with their solver ASSAT, a method for using SAT

solvers to find answer sets of nontight logic programs.

The main idea is: adding “loop formulas” to the completion eliminates “bad” models

of completion.

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 12

Loop formulas

If � is a loop in a program then the loop formula is build from the subset -/. (�) of

program’s rules define by Lin and Zhao (2002) as:

-. 0 � 1� �� � * 2� 3 � � ' 054 � 1� � 3 *) � 3 �

Let� � * $ belong to -. (�), than the loop formula associated with � has the

form:

' 0 6 $ * $ 187 9 :;< ' �

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 13

Extended definition of loop formulas

So far, loop formulas have been defined for programs with rules of the form:

� � � � �� � � � � � � not � � 	 � ��� � � � not �
 .

Extended loop formulas (due to Lee and Lifschitz 2003) are defined for programs

with nested expressions, in particular to programs with rules of the form:

� � � � ��� � � � � � � not � � 	 � �� � � � not �
 � not not �
 	 � ��� � � � not not � � .

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 14

ASSAT’s algorithm

Given a logic program � :

1. Let T be the Comp(�)

2. Find a model M of T. If there is no such model, then terminate with failure

3. If M is an answer set, then exit with it

4. If M is not an answer set, then find a loop L such that its loop formula =< is not

satisfied by M

5. Let T be T U � =< and go back to step 2

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 15

ASSAT’s disadvantages

The system ASSAT has some disadvantages:

� covers only basic rules

� finds only one answer set

� may explore the same parts of the search tree already explored

� may blow up in the number of propositional clauses

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 16

CMODELS-2

CMODELS-1 (Babovich and Lifschitz 2003), is a system that does not suffer of the

ASSAT’s first and second disadvantages, but is limited to tight programs.

CMODELS-2 (Babovich and Maratea 2003), combines the attractive features of

ASSAT and CMODELS-1.

CMODELS-2’s algorithm is:

1. Let T be Comp(�)

2. Find a model M of T. If there is not such model, then terminate with failure

3. If M is an answer set, add to T the negation of the propositional model and go

back to step 2

4. If M is not an answer set, consider M as failure, then find a loop L such that its

loop formula =< is not satisfied by M , find one reason from =< , backjump in

the search tree with it, and go back to step 2

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 17

Implementing the communication with the SAT solver

function CMODELS-2.Solve(�)

f = Comp(�)

while ((assignment = SATSOLVER.Solve(f)) != NULL)

if ((reason = CMODELS-2.hasCycles(assignment)) == NULL)

return SAT

SATSOLVER.BacktrackWithReason(reason)

return UNSAT

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 18

How can reason be computed from loop formula?

The reason must be only one clause (in CNF), unsatisfied by the current

propositional model. Assume the loop formula (LF) is not satisfied by the current

model of completion. Let LF be:

' 0 6 $ * $ 17 9 > ;< ' �

LF implies the formula:
6 $ * $ (' �

where 6 $ * $ % * � (� � � (* � �� 3 � . Let ? � ��� � � � ? � be one of the literals in

* � �� � � � * � respectively, such that none of these literals is satisfied by the current

propositional model. The reason we pick in the clause:

? � (� � � (? � (' �

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 19

Experiments with CMODELS-2 (1)

Instance CMODELS CMODELS SMODELS CMODELS

name SIMO (-bj) SIMO (-le) SIMO assat alg.

np40c (42) 1.59 (42) 1.56 2.49 (27) 16.52

np60c (115) 9.35 (106) 8.80 21.45 (35) 76.12

np70c (172) 20.75 (217) 26.46 42.86 (41) 139.50

np80c (278) 43.92 (223) 37.87 79.78 (44) 241.55

np100c (406) 103.22 (286) 78.93 200.43 (51) 561.94

np120c @ (698) 314.93 430.98 mem

np150c @ (1074) 841.91 1171.38 mem

Figura 1: Complete graphs CMODELS employing backjumping (and learning) vs.

SMODELS vs. CMODELS employing assat algorithm.

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 20

Experiments with CMODELS-2 (2)

Instance CMODELS CMODELS SMODELS CMODELS

name SIMO (-bj) SIMO (-le) SIMO assat alg.

2xp30 (0) 0.01 (0) 0.01 0.01 (0) 0.01

2xp30.1 timeout timeout 0.12 (90) 57.58

2xp30.2 timeout (155) 3092.13 timeout (152) 24.12

2xp30.4 timeout timeout timeout timeout

4xp20 (0) 0.01 (0) 0.01 0.01 (0) 0.01

4xp20.1 (23) 61.88 (2) 73.26 timeout (1) 2.03

4xp20.3 (43) 89.37 (13) 82.90 0.01 (5) 1.56

Figura 2: Hand-coded graphs CMODELS employing backjumping (and learning) vs.

SMODELS vs. CMODELS employing assat algorithm.

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 21

Experiments with CMODELS-2 (3)

Instance CMODELS CMODELS CMODELS SMODELS

Name MCHAFF SIMO (-bj) SIMO (-le)

dp 6.formula1-i-O2-b8 (28) 6.17 (6) 0.45 (6) 0.43 0.46

dp 8.formula1-s-O2-b8 (15) 5.14 (29) 1.02 (14) 0.94 1.83

dp 8.formula1-i-O2-b10 (24) 28.72 (55) 7.22 (41) 6.61 5.08

dp 10.formula1-s-O2-b9 (24) 19.47 (89) 4.17 (36) 3.51 29.05

dp 10.formula1-i-O2-b12 (21) 51.36 (719) 73.09 (162) 14.34 428.85

dp 12.formula1-s-O2-b10 (69) 96.95 (100) 8.49 (93) 7.56 949.95

dp 12.formula1-i-O2-b14 (29) 469.83 (24) 242.56 (14) 81.80 timeout

Figura 3: Nontight Bounded Model Checking CMODELS using MCHAFF employing

ASSAT-like algorithm and SIMO employing backjumping (and learning) vs. SMODELS

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 22

Conclusions

� a SAT-based approach seems to be a very competitive approach to find answer

sets of logic programs

� CMODELS competes with specialized answer set solvers as SMODELS, and

outperforms SMODELS on some domains

� backward SAT techniques seems to help in particular on problems arising from

real world applications

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 23

Future work

� broad experimental analysis, in order to understand if the approach can be

competitive on more problem domains and in finding more than one answer set

� evaluate other techniques (ex: find a “better” reason, customize SAT heuristic)

� evaluate if the approach can be used also to solve disjunctive logic programs

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 24

References (1)

� P. Ferraris and V. Lifschitz. Weight constraints as nested expressions.

Theory and Practice of Logic Programming, to appear.

� J. Lloyd and R. Topor. Making Prolog more expressive.

Journal of Logic Programming, 1984, 3:225-240.

� ASSAT: Computing answer sets of a logic program by SAT solvers.

In Proc. AAAI-02, 2002.

DIST - MRG-LAB - Università di Genova ASP 2003

UT at Austin - TAG 26-29 September 2003 25

References (2)

� J. Lee and V. Lifschitz. Loop formulas for disjunctive logic programs.

In Proc. ICLP-03, To appear.

� Yu. Babovich and V. Lifschitz. Computing answer sets using program

completion. Unpublished draft, 2003.

� Yu. Babovich and M. Maratea. Cmodels-2: SAT-based answer set solver

enhanced to non-tight programs. Submitted to LPNMR-7.

DIST - MRG-LAB - Università di Genova ASP 2003

