
Propositional satisfiability (SAT) and

SAT-based decision procedures

Marco Maratea

j.w.w. Enrico Giunchiglia

Dipartimento di Informatica, Sistemistica e Telematica
DIST, University of Genova, STAR-Lab

Jun 13 2005 Napoli

Motivation

1. Propositional satisfiability (SAT) is one of the most studied fields in AI and CS

2. Very efficient and specialized SAT procedures exist

� use SAT solvers for deciding more expressive logics and formalisms . . .

� . . . reusing most of the work and knowledge available in SAT

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

SAT: The problem

A literal � is a proposition � or its negation � � .

Given the literals � � ��� � � � � � , a clause is � �
	 � � �	 � � .

Given the clauses � � � � � � � �
 , a CNF (Conjunctive Normal Form) formula is

� ��� � � �� �
 .

An assignment, or valuation � , is a partial function from the propositions to

� TRUE,FALSE � .

We can extend the definition of � in the natural way to assign truth values to literals,

clauses and formulas.

Given a CNF formula � , we define the propositional satisfiability problem (SAT):

Does there exist an assignment � to the propositions in � such that � is true?

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

SAT: Examples

1. ��� � � � � � 	 � � � � � � has the satisfying assignments

� � �� � TRUE, �� � TRUE, �� � FALSE �

� � �� � TRUE, �� � FALSE, �� � FALSE �
2. ��� � � � � � � 	 � � � � 	 � � � � � has no satisfying assignments because the

clause � � 	 � � � can not be satisfied.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

SAT: Solving methods

� Resolution algorithm

� Local search algorithms

� (Ordered) Binary Decision Diagrams (OBDDs)

� Stalmark’s method

� Davis-Logemann-Loveland (DLL) algorithm

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Agenda

� DLL

� DLL-based (SAT-based) decision procedures

� Application I: Answer Set Programming (ASP)

� Application II: Separation Logic (SL)

� Application III: SAT-related optimization problems (Max-SAT, Min-ONE)

� Conclusions

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

The DLL algorithm

function DLL � � ��� �
if � � � then return TRUE �

if � � then return FALSE �
if � � � � then return DLL �"!# # $ %'& � � � � � � � (� � � � �

) � � an atom occurring in � �
return DLL �"!# # $ %'& �) � � � � � (�) � � or

DLL �"!# # $ %'& � �) � � � � � (� �) � ��

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

DLL-based decision procedures

Given a formula t in the theory * that can be abstracted/compiled into SAT

function BEYSAT � t � return DLL � CNF � T2SAT � t � � � � � �

function DLL � � ��� �
if � � � then return test �� �,+ � �

if � � then return FALSE �
if � � � � then return DLL �"!# # $ %'& � � � � � � � (� � � � �

) � � an atom occurring in � �
return DLL �"!# # $ %'& �) � � � � � (�) � � or

DLL �"!# # $ %'& � �) � � � � � (� �) � ��
test �� �,+ � returns TRUE if S is a “solution” for the formula+ , and FALSE, otherwise.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

From DLL to BEY-SAT: Discussion

1. BEYSAT � t � returns TRUE iff+ has a “solution”

2. BEYSAT � t � can be (easily) modified in order to compute all the solutions of+

3.. Most SOTA SAT solvers are a (non-recursive) implementation of DLL

4. If SOTA SAT solvers are based on “learning” in order to backjump irrelevant

nodes while backtracking and avoid the exploration of useless parts of the

search tree, it is important that test �� �,+ � does not return only FALSE, but also a

“witness” of inconsistency (called reason)

5. BEYSAT �+ � works in polynomial-space if both T2SAT and test �� �,+ � does

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Application I: Answer Set Programming (ASP)

Answer Set (stable model) Programming is a programming paradigm proposed by

Marek, Truszczynski and Niemela in 1999.

It is a form of declarative programming. It is based on logic rules and on the answer

set semantic of Prolog proposed by Gelfond and Lifschitz in 1988.

In answer set programming we obtain the answers by declaring the properties of the

answers, by the mean of logic rules.

ASP has been used in several fields like planning, commonsense reasoning,

(bounded) model checking, VLSI (wire routing), security protocols.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

ASP: Logic rules for 3-colorability problem

% Simple graph containing 3 nodes and 3 edges:

% edges between nodes 1 and 2, 2 and 3, 3 and 1.

node(1). node(2). node(3).

edge(1,2). edge(2,3). edge(3,1).

% Declaration of three colors

col(red). col(green). col(blue).

% A node has some color

color(X,red) v color(X,green) v color(X,blue) :- node(X).

% Neighboring nodes should not have the same color

:- edge(X,Y), color(X,C), color(Y,C), col(C).

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Basic preliminaries

A (logic) program - is a finite set of rules of the form
) .0/) � � � � � �)
 �& 1 +)
 2 � � � � � �& 1 +) 3 (1)

Let 4 be the set of atoms in - ,) . 4 (�65 � , �) � � � � � �) 3 �7 4 .) . is the

head.& 1 + is the negation as failure operator.

Comp � - � consists of formulas of the type

) .�8 �) �� � � ��)
 � �)
 2 �� � � �� �) 3 �

for each symbol in 4 (�65 � . In the equation, the disjunction extends over all rules

(1) in - with head) . .

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

What is an answer set?

Consider first - in which 9 � & . Let : be a set of atoms.

We say that : is closed under - if for every rule in - ,) . : whenever

�) � ��� � � �)
 �7 : .

We say that : is an answer set for - if : is the smallest set closed under - .

Consider now the general case& ; 9 .

The reduct -=< of - related to : is the set of rules

) .0/) � � � � � �)

such that : > �)
 2 � � � � � �) 3 � � � .

We say that : is an answer set for - if : is an answer set for - < .

Given a (logic) program - , find if it has a solution is an NP-complete problem.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

ASP: Examples

1. Be - � : � / & 1 + �

� / & 1 + �
The only AS is � � �

2. Be - ? : � / & 1 + �

� / & 1 + �

The ASs are � � � and � � �

3. Be - @ : � / & 1 + �

- @ does not have AS.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Cmodels2 decision procedure

function CMODELS2 � - � return DLL � CNF � Comp � - � � � � � �

function DLL � � ��� �
if � � � then return test �� � - � �

if � � then return FALSE �
if � � � � then return DLL �"!# # $ %& � � � � � � � (� � � � �

) � � an atom occurring in � �
return DLL �"!# # $ %& �) � � � � � (�) � � or

DLL �"!# # $ %& � �) � � � � � (� �) � ��

test �� � - � returns TRUE if� > 4 is an answer set of - , and FALSE, otherwise.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

From DLL to Cmodels2: Discussion

1. CMODELS2 � - � returns TRUE iff - has an answer set

2. CMODELS2 � - � can be easily modified in order to compute all the answer sets of

a program -

3. test �� � - � can fail because of “loops” in - . The reason is extracted from the

“loop formulas”

Ex. - : � / � � Comp � - � is � 8 �

4. CMODELS2 works in polynomial-space

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Experimental results: Blocks world

Standard programs Extended programs

#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2

8 i-1 12.32 0.80 1.19 0.81 0.47

11 i-1 71.78 2.97 4.19 2.97 1.01

8 i 40.87 0.89 2.18 1.56 1.40

11 i 71.42 3.17 4.52 3.41 1.16

8 i+1 23.35 0.96 0.97 4.99 0.31

11 i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Experimental results: H.C. complete graphs

Standard programs Extended programs

SMODELS ASSAT DLV CMODELS2 SMODELS CMODELS2

np30c 11.70 1.14 22.08 0.69 0.36 0.36

np40c 62.89 41.81 97.96 1.63 2.48 0.87

np50c 219.56 14.51 314.46 3.37 8.39 1.79

np60c 594.46 48.80 770.07 5.81 20.47 3.41

np70c 1323.61 291.60 1679.12 8.22 39.41 5.87

np80c 2354.28 32.51 3407.35 14.20 75.36 9.18

np90c TIME 779.06 TIME 22.23 122.53 14.19

np100c TIME A TIME 28.63 185.52 20.76

np120c TIME A TIME 53.33 418.15 41.84

Table 2: Complete graphs. npXc corresponds to a graph with “X” nodes.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Experimental results: Formal Verification problems

SMODELS ASSAT DLV CMODELS2

mutex4 33.92 0.62 840.60 0.68

phi4 0.24 2.98 1.44 TIME

mutex2 0.09 1.78 0.12

mutex3 229.57 MEM 24.16

phi3 2.87 236.91 3.91

Table 3: Checking requirements in a deterministic automaton.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Experimental results: BMC problems

BMC SMODELS CMODELS2 CMODELS2’

dp-10.i-02-b11 382.72 1476.72 442.14

dp-10.s-02-b8 15.24 8.20 14.22

dp-12.s-O2-b9 336.03 65.41 137.34

dp-8.i-O2-b9 8.08 12.62 10.69

dp-8.s-O2-b7 1.19 1.02 2.28

dp-10.i-O2-b12 445.47 3295.72 163.29

dp-10.s-O2-b9 28.87 16.07 15.03

dp-12.s-O2-b10 971.50 209.29 48.73

dp-8.i-O2-b10 5.05 40.01 6.44

dp-8.s-O2-b8 1.76 1.99 2.03

Table 4: Bounded Model Checking Problems.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Application II: Separation Logic (SL)

Decision procedures able to decide quantifier-free first-order theories are becoming

increasingly important in Artificial Intelligence and Formal Verification.

Several properties of hardware, timed automata, and software can be modeled in

quantifier-free first-order theories as well as planning and scheduling problems.

Separation Logic (SL) is one of such decidable quantifier-free first-order theories

that allows boolean combination of difference constraints (BDC EF �).

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Why Separation Logic?

SL is a good compromise between efficiency and expressivity.

It combines propositional atoms with a restricted form of linear arithmetic via the

standard boolean connectives.

Many available benchmarks are in SL and a lot of properties of systems and

planning/scheduling constraints can be encoded in this logic.

Examples:

“Activity A1 lasts for 10 units of time at most”: G �C # �F H I

“Activity A1 should start before activity A2 finishes”:# �F G ?
“Activity A1 should start before activity A2 finishes, otherwise A3 should start when

A2 finishes”:# �F G ? 	 # @ � G ?

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

SL: Definitions

Fix a domain of interpretation J for the arithmetic variables (the set of real or the

set of integer numbers).

An SL-atom is either a propositional variable or a difference constraint B C EF �

(K � ; �L � � � M� can be (easily) recast inF), where B and E range on J and � is a

numeric constant.

An SL-literal is an SL-atom or its negation.

An SL-clause is a finite disjunction of SL-literals.

An SL-formula is a finite conjunction of SL-clauses.

Deciding an SL-formula (Is there an SL-assignment to propositional atoms and

arithmetic variables, such that the SL-formula N is true?) is an NP-complete

problem.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

TSAT++ decision procedure

Given a formula N in SL,

function TSAT++ � N � return DLL � CNF �) O# + � ! � + � N � � � � � �

function DLL � � � � �
if � � � then return test �� � N � �

if � � then return FALSE �
if � � � � then return DLL � !# # $ %'& � � � � � ��� (� � � � �

) � � an atom occurring in � �

return DLL � !# # $ %'& �) � � � ��� (�) � � or

DLL � !# # $ %'& � �) � � � ��� (� �) � ��

test �� � N � returns TRUE if the set of constraints in� is consistent, FALSE otherwise.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

From DLL to TSAT++: Discussion

1. TSAT++ � N � returns TRUE iff N has a solution

2. test �� � N � can fail because of sets of inconsistent difference constraints in N .

The reason is extracted using the Bellman-Ford algorithm considering the

difference constraints involved in a negative cycle.

3. TSAT++ works in polynomial-space

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Disjunctive Temporal Problem (DTPs)

These are well-known random problems from the AI community.

DTPs are randomly generated by fixing the number P of expressions BC EF � per

SL-clause, the number& of arithmetic variables, a positive integer Q such that all

the constants are taken in RC Q � Q S . Then:

1. the number of clauses 9 is increased in order to range from satisfiable to

unsatisfiable instances from 2*& to 14*& step& ,

2. for each tuple of values of the parameters, 100 instances are generated and

then given to the solvers, and

3. the median of the CPU time is plotted against the 9 T& ratio.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

TSAT++’s performance (1): DTPs

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

10
3

ratio

cp
u

tim
e

DTP: 35 variables on integer domain

TSAT++
TSAT++ plain
Epilitis
SEP

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

10
3

ratio

cp
u

tim
e

DTP: 35 variables on real domain

TSAT++
TSAT++ plain
MathSAT
CSPi
Tsat
SEP

Figure 1: Evaluation on the DTP on 35 variables. Integer domain (left) and real

domain (right). Setting: P � U , Q � H I I .

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

TSAT++’s performance (2): hand-made problems

K T unique TSAT++ TSAT++p MathSAT SEP

100 5 NO 0.01 0.11 0.61 1.18

100 5 YES 0.04 7.57 TIME 0.17

250 5 NO 0.08 0.76 5.40 52.20

250 5 YES 0.21 194.99 TIME 0.77

500 5 NO 0.29 4.46 21.22 742.99

500 5 YES 1.05 TIME TIME 4.85

1000 5 NO 1.07 22.3 – TIME

1000 5 YES 6.45 TIME – 22.53

2000 5 NO 3.76 94.23 – –

2000 5 YES 29.90 TIME – –

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

TSAT++’s performance (3): real-world problems

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

benchmarks

cp
u

tim
e

real−life benchmarks

TSAT++
TSAT++ plain
MathSAT
SEP

Figure 2: Real-world problems.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Application III: SAT-related optimization problems

There is some interesting research related to SAT, namely

1. Max-SAT: Given an unsatisfiable SAT instance, how many clauses can be

satisfied at most (at the same time)?

2. Max(Min)-One: Given a satisfiable SAT instance, find the satisfying assignment

with the maximum (minimum) number of variables assigned to TRUE

They have applications in planning, routing problems, (unbounded) model checking,

correcting the minimum amount of inconsistent knowledge.

Till now, methods for solving these problems have been focused on

branch-and-bound algorithms.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Application III: The new approach

Let focus for the moment on the Max-SAT and Max-One problems.

Both problems can be expressed via an optimization function 9 ! B V B V where

the B V are (a subset of) the variables in the SAT instance.

A cardinality constraint V B V can be encoded (via half adders, specialized

encoding) into a propositional formula ENC � B V �# V � O V � where the# V are some added

variables and O . � � � � � O W represent in some way the cardinality constraint

(depending on the encoding used).

Given a CNF formula X the idea is to build the extended SAT formula

X � CNF � ENC � B V �# V � O V � � and than guiding the search with the O V bits from the

MSB to the LSB.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

The OPTSAT decision procedure

function OPTSAT � X � return DLL � X � CNF � ENC � B V �# V � O V � � � � � �

function DLL � � � � �
if � � � then return Y 1 9 �,Z + G � 1 �Z + $ 1& �� � B V � O V � �

if � � then return FALSE �
if � � � � then return DLL � !# # $ %'& � � � � � ��� (� � � � �

) � � an atom occurring in � � preferentially and in order on O V �

return DLL � !# # $ %'& �) � � � ��� (�) � � or

DLL � !# # $ %'& � �) � � � ��� (� �) � ��

Y 1 9 �Z + G � 1 �Z + $ 1& �� � B V � O V � computes the solution given the encoding and the

values of O V ; it can be used for finding all the solutions with the same “rank”,

otherwise return TRUE.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

From DLL to OPTSAT: Discussion

1. OPTSAT � X � returns the “optimal” solution of X as first solution

2. OPTSAT � X � can be (easily) modified in order to compute “all the optimal

solutions” of X

3. OPTSAT works in polynomial-space

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Analysis on randomly generated 2SAT benchmarks: Max-SAT

#var #cl #CNF b #CNF bm #CNF w

ub #ist bf optz b optz bm optz w

1500 1800 3279104 3280903 66567

0 24 3.94 5.2 5.24 26.76

1 33 7.96 5.55 5.49 27.93

2 22 8.29 5.90 5.80 28.31

3 14 29.27 7.50 6.78 29.90

4 6 131.44 42.82 13.95 46.16

5 1 – 569.10 107.74 145.85

TIME 1 0 0 0

2000 2400 5814208 5816607 93281

0 13 9.89 9.88 9.73 50.71

1 30 14.12 10.55 10.20 51.11

2 29 15.05 11.34 10.80 52.87

3 13 76.88 17.00 12.65 55.45

4 10 180.59 143.18 34.30 142.33

5 1 – 351.25 135.53 273.13

TIME 12 4 2 2

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Analysis on randomly generated benchmarks: Min-ONE

#var #cl #CNF b #CNF bm #CNF w PBS opbdp optz b optz bm optz w

2 200 50 42938 43137 7019 0.19 0.76 0.17 0.17 0.96

S 200 100 42988 43187 7069 47.12 16.91 4.73 3.76 TIME

A 200 150 43038 43237 7119 16.87 14.54 7.63 10.04 148.30

T 200 200 43088 43287 7169 26.46 45.95 5.84 6.37 TIME

3 120 120 16064 16183 4463 14.61 4.50 0.55 0.46 11.39

S 120 240 16184 16303 4583 TIME 30.52 22.66 90.62 TIME

A 120 360 16304 16423 4703 TIME 3.81 85.7 79.6 TIME

T 120 480 16424 16543 4823 0.64 0.08 5.73 5.15 5.84

Table 5: Randomly generated benchmarks. Min-ONE 2SAT e 3SAT problems.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Analysis on real-world benchmarks: Max-SAT

ist #var #cl #CNF b / w bf optz b optz w

b4 578 2035 [\ � .^] / 82124 0.65 6.92 40.41

b5 1407 5383 – / 202480 21.42 MEM 260.97

l2 1164 3525 – / 129998 57.11 MEM 117.47

l7 3319 10335 – / 393514 – MEM 1061.61

l8 3810 11877 – / 435148 – MEM 1729.87

q8 512 2273 [_ � .^] / 89852 0.62 9.80 50.36

q10 886 5622 – / 208933 2.21 MEM 409.09

q14 1370 9313 – / 365920 – MEM 1145.27

c880 957 2590 [` � .^] / 98411 TIME 12.65 56.86

c1355 1294 3662 – / 136707 TIME MEM 138.80

c1355-s 1294 3670 – / 137147 TIME MEM 142.95

c1908 1917 5096 – / 194731 TIME MEM 237.09

c1908-s 1919 5108 – / 195055 TIME MEM 229.22

c1908.b 957 2590 – / 194839 1705.69 MEM 232.01

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Analysis on real-world benchmarks: Min-ONE

instance #var #CNF b w #res PBS opbdp optz b optz bm optz w

2bitcomp-5 125 17554 / 2700 39 8.02 0.95 1.78 1.82 10.69

2bitmax-6 252 68042 / 5739 61 TIME 120.5 60.59 48.64 183.08

3blocks 283 94132 / 15230 56 0.14 296.92 6.75 5.09 0.14

4blocks 758 199624 / 31955 66 0.25 TIME 4.14 8.72 7.46

4blocksb 410 419805 / 159562 66 52.57 TIME TIME TIME TIME

sat-bw-large.b 1087 1216246 / 35808 131 0.18 1.78 15.16 11.31 0.22

sat-bw-large.c 3016 – / 103938 136 34.97 TIME MEM MEM 3.56

sat-logistics.a 828 707642 / 21399 135 MEM TIME 14.66 14.06 11.52

sat-logistics.b 843 733605 / 22297 138 TIME TIME 364.34 200.21 TIME

cnf-r1-b1-k1.1 307 100789 / 7535 36 7.6 86.13 1.14 1.22 0.88

cnf-r2-b3-k1.1 1495 2274580 / 36060 141 0.05 67.14 13.41 12.85 0.25

cnf-r3-b1-k1.1 1461 2174994 / 35116 119 6.88 TIME 289.75 200.91 12.97

qg1-8 512 419805 / 159562 49 TIME TIME 64.03 105.59 89.24

qg2-8 512 419805 / 159562 64 TIME TIME 41.75 38.97 31.02

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

Conclusions

� the SAT-based approach is very competitive and often superior w.r.t. rival

approaches in a number of application areas

� it can leverage on the work done on SAT in the last years, and our algorithms

can (easily) take advantages on future enhancement in the field (SAT

competitions every year!)

� here we have focused on NP-complete problem, but the approach

can be/has been applied to “harder” problems such as disjunctive logic

programming and conformant planning

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

References (I)

A. Armando, C. Castellini, E. Giunchiglia and M. Maratea - The SAT-based Approach to

Separation Logic Accepted to the Journal of Automated Reasoning (JAR). 2005.

E. Giunchiglia and M. Maratea - Evaluating Search Strategies and Heuristics for Efficient

Answer Set Programming. Accepted to the 9th Congress of the Italian Association for

Artificial Intelligence (AI*IA 2005). To appear LNAI.

Yu. Lierler and M. Maratea - Cmodels2: SAT-based Answer Set Solvers Extended to

Non-tight Programs. In Proc. 7th International Conference on Logic Programming and Non

Monotonic Reasoning (LPNMR 2004). LCNS series.

E. Giunchiglia, Yu. Lierler and M. Maratea - SAT-based Answer Set Programming. In Proc.

19th American Association for Artificial Intelligence (AAAI 2004). AAAI / MIT Press.

A. Armando, C. Castellini, E. Giunchiglia and M. Maratea - A SAT-based Decision Procedure

for the Boolean Combination of Difference Constraints. Accepted to 7th International

Conference on Theory and Practice of Satisfiability Testing (SAT 2004). To appear LNCS.

STAR-Lab DIST Univ. Genova

Jun 13 2005 Napoli

References (II)

A. Armando, C. Castellini, E. Giunchiglia, M. Idini and M. Maratea - TSAT++: An

Open Reasoning Platform for Satisfiability Modulo Theory. Accepted to 2nd

Workshop on Pragmatic of Decision Procedures in Automated Reasoning (PDPAR

2004). To appear ENTCS.

E. Giunchiglia, M. Maratea and A. Tacchella - (In)Effectiveness of Look-ahead

Techniques in a Modern SAT solver. In Proc. 9th International Conference on

Principle and Practice of Constraint Programming (CP 2003). LNCS series.

E. Giunchiglia, M. Maratea and A. Tacchella - Dependent and Independent

Variables in Propositional Satisfiability. In Proc. 8th European Conference on Logics

in Artificial Intelligence (JELIA 2002). LNAI series.

E. Giunchiglia, M. Maratea, A. Tacchella and D.Zambonin - Evaluating Search

Heuristics and Optimization Techniques in Propositional Satisfiability. In Proc. 1st

International Joint Conference on Automated Reasoning (IJCAR 2001). LNCS.

STAR-Lab DIST Univ. Genova

