Propositional satisfiability (SAT), SAT-based ASP

and relation between ASP and SAT procedures

Marco Maratea

j.w.w. Enrico Giunchiglia

Department of Communication, Computer and System Sciences
DIST, University of Genova, STAR-Lab

un 16 2005 Cosenza - Unical

4 N

Motivation

1. Propositional satisfiability (SAT) is one of the most studied fields in Al and CS

2. Very efficient and specialized SAT procedures exist

—> use SAT solvers for deciding more expressive logics and formalisms . ..

— ...reusing most of the work and knowledge available in SAT

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

4 N

SAT: The problem

A literal [is a proposition p or its negation —p.

Given the literals 1, ...,[l;, aclauseis {1 V - -- V [.
Given the clauses c1, . . . , ¢;, @ Conjunctive Normal Form (CNF) formula is
Cit N\ N\Cp.

An assignment, or valuation v, is a partial function from the propositions to

{TRUE,FALSE}.

We can extend the definition of v in the natural way to assign truth values to literals,

clauses and formulas.

Given a CNF formula I', we define the propositional satisfiability problem (SAT):

Does there exist an assignment v to the propositions in I" such that I is true?

_ 9

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

-

.

1.

SAT: Examples

¢ = {p,p V —q, 1} has the satisfying assignments
e {p:=TRUE, q := TRUE, T := FALSE}

e {p:=TRUE, q := FALSE, " := FALSE}

2. = {—up, pV —q,rV —p, q} has no satisfying assignments because the

clause {p V —q} can not be satisfied.

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

SAT: Solving methods

e Resolution algorithm

® Local search algorithms

e (Ordered) Binary Decision Diagrams (OBDDs) (Bryant 1992)
e Stalmark’s method (1989)

e Davis-Logemann-Loveland (DLL) algorithm

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

-

.

DLL algorithm

CMODELS2: DLL-based (SAT-based) decision procedure for ASP

Experiments with CMODELS?2

Relation between ASP and SAT procedures

Conclusions

Agenda

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

DLL algorithm

function pLL-rec(I',S)
(I, S) := unit-propagate(T’, S);
if () € ') return FALSE;
if (' = () return TRUE;
A = ChooseAtom(S);
return pLL-REC(s-assign(A4,T")), SU{A}) or
pLL-REC(s-assign(A4,T)), S U {A});

function unit-propagate(I’,S)
if ({I} € I) return unit-propagate(s-assign({,I"), S U {{});
return (", S);

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

4 N

Introduction to ASP

A (logic) program 11 is a finite set of rules of the form
Ag +— Aq,...,Ap,not Apyq,...,not Ay, (1)

Let P be the setof atomsin I, Ag € PU{Ll}, {A44,..., A} C P. Agisthe
head.

Comp(II) (Clark 1978) consists of formulas of the type
Ag=\[(AL A NAp A=Ay A2 A= Ay)

for each symbol in P U {J_} In the equation, the disjunction extends over all rules
(1) in II with head Ag.

o %

TAR-Lab DIST

Univ. Genova

un 16 2005

Cosenza - Unical

-

CMODELS2: DLL-based decision procedure for ASP

function CmobeLs2(II) return DLL-REC(IpZSat(H),@);
function pLL-rec(I',S)

(I', S) := unit-propagate(I’, S);

if () € I') return FALSE;

if (' =) return test(.S,ID);

A := ChooseAtom(.S);

return pLL-REC(s-assign(A, ")), S U{A}) or

pLL-REC(s-assign(A, T')), S U {A});

function unit-propagate(I’,S)
if ({{} € T') return unit-propagate(s-assign({,I'), S U {l});
return (", S);

CMODELS2 employs the SAT solvers siMO, a zCHAFF-like solver. test(S, IT) returns TRUE if

\Sﬂ P is an answer set of 11, and FALSE, otherwise.

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

-

-

TAR-Lab

~

Extension to non-basic rules

CMODELSZ2 can work with other types of rules other than the basic ones showed

before, namely:

e choicerules, {Ag, ..., Ax} < Axs1,..., Am,not Apa1,...,not A,
e cardinality and weight constraint rules

Ao « L{A1 = wi,..., Am = wWm,not Ap41 = Wm+1,-..,n0t Ap = wy }U

All these rules, together with the basic, can be translated into basic nested rules
Ag «+— Aq,..., Ap,not Apiq, ... ,not Ag,not not Agiq,...,notnot A,.

A choice rule { A} <. is translated in A <— not not A, while weight constraint are

translated using the method presented in (Ferraris and Lifschitz, TPLP 2005).

For a basic nested program II, Comp(II) is defined as well. J

DIST Univ. Genova

Cosenza - Unical

un 16 2005 Cosenza - Unical

4 N

CMODELS2: Discussion

1. CmopeLs2(IT) returns TRUE iff IT has an answer set
2. CMODELS2 works in polynomial space

3. cmopEeLs2(IT) can be modified in order to compute all the answer sets of a

program 11
4. test(.S,II) can fail because of “loops” in IT
5. Most state-of-the-art SAT solvers are a (non-recursive) implementation of DLL

6. Most state-of-the-art SAT solvers are based on “learning” in order to backjump
irrelevant nodes while backtracking and avoid the exploration of useless parts of

the search tree

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

4 N

CMODELS2: Computing reasons

If SAT solvers are based on learning

1. Learning procedures require test(,S, IT) to return a S’ C S such that for each
S’ entailing Comp(II) and with S C S”, 5" N P is ensured not to be an AS
of 11

2. One such setis S, but it is important that S be as small as possible:

= one possibility it to return S N P, or (better)

= we can compute the subset of S which falsifies one of the loop formulas in 11

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

-

.

transformation)

CMODELS2: Advantages

With respect to ASSAT, CMODELS?2 has a number of advantages, other than points

2. and 3. in the discussion slide
e it works with basic and non-basic rules
® N0 computation is ever repeated

® it does not introduce extra variables (except the ones needed by the clause form

With respect to SMODELS and bLv, CMODELS2 has the advantage of being

SAT-based, and thus it can leverage on the great amount of work done in SAT

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

Cosenza - Unical

-

.

Experimental results: Blocks world

~

Standard programs

Extended programs

#b | #s SMODELS | ASSAT | CMODELS2 || SMODELS | CMODELS2
8 -1 12.32 0.80 1.19 0.81 0.47
11 | i-1 71.78 2.97 4.19 2.97 1.01
8 i 40.87 0.89 2.18 1.56 1.40
11 i 71.42 3.17 4.52 3.41 1.16
8 | i+l 23.35 0.96 0.97 4.99 0.31
11 | i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

-

TAR-Lab

Cosenza - Unical

Experimental results: H.C. complete graphs

Standard programs

Extended programs

SMODELS ASSAT DLV CMODELS2 SMODELS CMODELS2
np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 14.51 314.46 3.37 8.39 1.79
np60c 594.46 48.80 770.07 5.81 20.47 3.41
np70c 1323.61 291.60 1679.12 8.22 39.41 5.87
np80c 2354.28 32.51 3407.35 14.20 75.36 9.18
np90c TIME 779.06 TIME 22.23 122.53 14.19
npl100c TIME — TIME 28.63 185.52 20.76
np120c TIME — TIME 53.33 418.15 41.84

\ Table 2: Complete graphs. npXc corresponds to a graph with “X” nodes.

~

/

DIST

Univ. Genova

un 16 2005

Cosenza - Unical

-

.

Experimental results: Formal Verification problems

SMODELS | ASSAT DLV CMODELS2
mutex4 33.92 0.62 840.60 0.68
phid 0.24 2.98 1.44 TIME
mutex2 0.09 1.78 0.12
mutex3 229.57 MEM 24.16
phi3 2.87 236.91 3.91

Table 3: Checking requirements in a deterministic automaton. (Heljanko and Ste-
fanescu 2003)

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

Cosenza - Unical

-

Experimental results: BMC problems

BMC SMODELS CMODELS2 CMODELS?’
dp-10.i-02-b11 382.72 1476.72 442.14
dp-10.s-02-b8 15.24 8.20 14.22
dp-12.s-02-b9 336.03 65.41 137.34

dp-8.i-02-b9 8.08 12.62 10.69
dp-8.s-02-b7 1.19 1.02 2.28
dp-10.i-02-b12 445.47 3295.72 163.29
dp-10.s-02-b9 28.87 16.07 15.03
dp-12.s-02-b10 971.50 209.29 48.73
dp-8.i-02-b10 5.05 40.01 6.44
dp-8.s-02-b8 1.76 1.99 2.03

\ Table 4: Bounded Model Checking Problems. (Heljanko and Niemela 2003) J

~

TAR-Lab

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

On the relation between AS and SAT procedures:. Motivation

® The relation between Answer Set Programming (ASP) and propositional
satisfiability (SAT) has been at the center of several papers, especially in the last

years.
® Despite state-of-the-art ASP solvers are apparently quite different,

e the main search procedures used by ASP solvers (i.e., “native” and SAT-based)
have been advocated “similar” in many works. But this has never been formally

stated before.

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

4 N

On the relation between AS and SAT procedures: Goal

We study the computational properties of ASP systems, in order to formally

characterize under which conditions different systems have same behavior.

We begin our study with sMODELS and CMODELS2, and then we see how the

results extend to other systems like DLV, SMODELS-CC and ASSAT.

The main focus of this work is on tight programs (Fages 1994; Babovich, Erdem and
Lifschitz 2000; Erdem and Lifschitz 2003) using basic rules, where we will establish

a strong relation between sMoDELS and CMODELSZ2 procedures.

We will use the result both on the theoretical side (in order to show new complexity
results for SMODELS) and on the experimental side (for evaluating efficient strategies

and heuristics coming from SAT, in ASP systems).

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

/ SMODELS procedure (I)

function smopeLs(I1) return smopeLs-rec(II, {T });
function smobpeLs-Rec(I1,.S)
(IT, S) := expand(I1I, S);
if {1, notl} C S)return FALSE;
if({A: A€ P,{A,not A} NS # 0} = P)return TRUE;
A := ChooseAtom(S);
return smMopeLs-Rec (p-assign(A, IT)), S U {A}) or
sMoDELs-REC (p-assign(not A, I1)), S U {not A});
function expand(I1,.S)
S"=8;
S = AtLeast(I1, S);
IT := p-assign(S, IT);
S=SU{notA: Aec P,A¢amost(IT1?,)}
IT := p-assign(S, IT);
if (S # S’) return expand(I1,S);
return (II, S);

.

~

/

TAR-Lab DIST

Univ. Genova

un 16 2005 Cosenza - Unical

/ SMODELS procedure (Il) \

function AtLeast(II,S)
if » € IT and body(r) = () and head(r) & S)
return AtLeast(p-assign(head(r), IT), S U {head(r) }
if {A,not A}NS =0and Ar € I : head(r) = A)
return AtLeast(p-assign(not A, IT), S U {not A});
if v € IT and head(r) € S and body(r) # () and
Ar’ € TI,r" # r : head(r’) = head(r))
return AtLeast(p-assign(body(r), II), S U body(r));
if (- € IT and not head(r) € S and body(r) = {l})
return AtLeast(p-assign(not [, 11)), S U {not l});

return S

N—

function AtMost(11,.5)
if » € IT and body(r) = () and head(r) & S)
return AtMost(p-assign(head(r), IT), S U {head(r)});

\ return S; J

TAR-Lab DIST Univ. Genova

un 16 2005

TAR-Lab

\Finally, the translation of I1, denoted with Ip2sat(11), is Upe pugiyIp2sat(1l, p).

/ From a logic program to a set of clauses \

We have defined Ip2sat(IT) to be the set of clauses corresponding to Comp(II). More
precisely, if Ag is an atom, the translation of I1 relative to Ao, denoted with Ip2sat(11, Ag),

consists of
1. for each rule r € II of the form (1) and whose head is Ag, the clauses:
{A())ﬁ'f‘}) {nr’Z]_7...7Zm’Am+1’...’An}’
{ﬁr,Al},...,{ﬁr,Am}, {ﬁr,Zm_*_l},...,{ﬁr,An},
where N, is a newly introduced atom, and

2. the clause {Ag, Ny s . - . , Mrq } Where .y, ..., Ny, (g > 0) are the new symbols

introduced in the previous step.

The translation of I1 relative to |, denoted with Ip2sat(II, L), consists of a clause
{A1,..., Am, Amy1, ..., An}, one for each rule in 11 of the form (1) with head L.

DIST

Cosenza - Unical

/

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

From a set of clauses to a logic program

If C'isaclause {l1,...,l;} (I > 0) we define sat2tlp(C) to be the rule
1L+ notlq,...,notl;.
Then, if I" is a formula, the translation of I', denoted with sat2tlp(I"), is
Ucersat2tip(C) U Upep{p not p', p’ + not p}

where, for each atom p € P, p’ is a new atom associated to p.

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

/ Relating sMODELS and CMODELS?2

related if II is tight. We establish this comparing the search trees of
smopeLs-Rec(Il, {T}) and bLL-rec(Ip2sat(IT), 0).

to smopeLs-Rec(Il’, S), following the invocation of smopeLs(IT). Similar

considerations are made for CMODELS?2.

If proc is smopELS(II) or CmopELs2(IT), we define
Br(proc) = {S N (P U P) : S is a branching node of proc}.

We say that smopeLs(IT) and CmopeLs2(II) are equivalent if
Br(smopeLs(IT)) = Br(CmopeLs2(1I)).

Theorem 1 For each tight program II, smopeLs(II) and CmopeLs2(I1) are

\equivalent.

Our goal is to prove that the computations of SMODELS and CMODELS?2 are highly

We say that a set of literals .S is a branching node of smopeLs(II) if there is a call

~

/

TAR-Lab DIST

Univ. Genova

un 16 2005

TAR-Lab

/ New results for SMODELS: Pigeonhole principle

Cosenza - Unical

The complexity of a procedure proc on a program 11 is the smallest /N such that
Br(proc)| = N.

Consider the formula P H P, where n, m are two natural numbers, and consisting of the

clauses

{Ai,l, Ai,Q, ce ,Ai,n} (’L S m),
{Air, Aj} (6,5 <mk <n,i#j).

The formulas PH P, are from (Haken 1985) and encode the pigeonhole principle. If
n < m, PHP" are unsatisfiable and it is well known that any procedure based on

resolution (like DLL) has an exponential behavior on these formulas.

Corollary 1 The complexity of SMODELS and CMODELS2 on sat2tlp(PH P,}_1) is

exponential in n.

The result extends to CMODELS2 because it is based on DLL. For SMODELS, it relies on the

\fact that sat2tlp(P H P;;_1) is tight, and thus SMODELS and CMODELS?2 are equivalent. J

~

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

New results for sMODELS: Randomly generated k-CNF formulas

A formula I’ is a k-CNF if each clause in I" consists of k literals.

The random family of k-CNF formulas is a k-CNF whose clauses have been
randomly selected with uniform distribution among all the clauses C of k literals and

such that, for each two distinct literals { and I’ in C, [# I'.

Corollary 2 Consider a random k-CNF formula I" with n atoms and m clauses.
With probability tending to one as n tends to infinity, the complexity of SMODELS and

CMmoDELs2 on sat2tip(T) is exponential in 7 if the density d = m/n > 0.7 x 2.

This result follows from (Chvatal and Szemerédi 1988), and again from the fact that
sat2t|p(F) is tight on the random family, from the fact that CMODELSZ2 is based on

DLL and our equivalence result on tight programs.

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

4 N

New results for sMODELS: Deciding the best literal

We define a literal [to be optimal for a program 11 if there exists a minimal search
tree of smopELS(II) whose root is labeled with [. The following result echoes the

one by (Liberatore 2000) for DLL.

Corollary 3 In sSMODELS, deciding the optimal literal to branch on is both NP-hard
and co-NP hard, and in PSPACE for tight programs.

There are many other results holding for bLL that can be lifted to SMODELS,
including (Monasson 2004) and (Achlioptas et al. 2001) for average complexity of
coloring randomly generated graphs and for exponential lower bounds on random

3-CNF formulas also below the satisfiability threshold.

o %

TAR-Lab DIST Univ. Genova

un 16 2005 Cosenza - Unical

g N

SMODELS and CMODELS?2 are not equivalent on non-tight programsl

Consider again the pigeonhole formulas. They give us the opportunity to define a

class of formulas that are exponentially hard for CMODELS2 but easy for SMODELS.

For each formula I', defines sat2n|p(F) to be the program
Ucersat2tip(C) U Upe p{p < p}.

Corollary 4 The complexity of SMODELS and CMODELS2 on sat2nlp(PH P) is

0 and exponential in n respectively.

In this case, sat2nlp(P H P}_,) is non-tight, and SMODELS can determine the non

existence of answer sets without branching mainly thanks to the procedure AtMost.

The above results can be easily generalized to any formula I' which is known to be

exponentially hard for DLL.

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

-

_

Extending the results to other systems

ASSAT is different from CMODELS2 only on non-tight programs, assuming that I is

computed as Ip2sat(IT).
SMODELS-CC is SMODELS enhanced with “clause-learning” look-back strategies.

Results in (Haken 1985) and (Chvatal and Szemerédi 1988) hold for any proof
systems based on resolution. Enhancing sMoDELS and CMODELS2 with “learning”

look-back strategies does not lower the exponential complexity.
Thus, the related corollaries hold also for SMODELS-CC and ASSAT.

DLV core algorithm is similar to the one of SMODELS. In particular, the rules used by
AtLeast to extend the assignment S are very similar to those used by the bLv
procedure DetCons, see (Faber 2002), pagg. 41-44. We are working on the

comparison between DLV algorithm and DLL-REC.

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

Cosenza - Unical

-

.

Experimental analysis: Assessment (l)

Given the above results, one expects that the combinations of reasoning strategies that

currently dominate in SAT, are also bound to dominate in ASP, at least on tight logic programs.

We show experimentally, on a wide set of currently challenges benchmarks, that this is the

case to certain degrees, and results extend (on the experimental side) to non-tight programs.

We have used our solver, CMODELS2, because it is SAT-based and thus strengths the relation

between SAT and ASP, and also
® its front-end is LPARSE (Simons 2000), a widely used grounder for logic programs;

® its back-end solver already incorporates (lazy) data structures for fast unit propagation as

well as some state-of-the-art strategies and heuristics evaluated in this work; and

® can be also run on non-tight programs.

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

/ Experimental analysis: Assessment (ll) \

We have further extended CMODELS2 with a variety a look-ahead, look-back strategies and
heuristics coming from the SAT community. We have considered

® Look-ahead: basic unit-propagation (u), unit-propagation+failed-literal (f) (Freeman 1995)

® Look-back: basic backtracking (b), backtracking+backjumping+learning (I) (Sakallah and
Silva 1996; Bayardo and Schrag 1997; Zhang et. al 2001)

® Heuristic: VSIDS (v) (Moskewicz et al. 2001), Unit-based (u and p) (Li and Anbulagan
1997)

We focus on 5 combination of strategies built out of them: ulv, flv, flu, fou and ulp.

Performing the experiment on a unique platform is of fundamental importance, otherwise

results can be biased by implementation issues.

Given the established “equivalence”, results would extend to SMODELS (and to the other

systems, according to the considerations made) if enhanced with corresponding techniques

wt least on tight programs). /

TAR-Lab DIST Univ. Genova

un 16 2005

TAR-Lab

Experimental analysis: Tight logic programs

PB # VAR ulv flv flu fbu ulp
4.5 300 TIME TIME 81.92 22.53 TIME
5 300 448.21 485.36 8.27 4.72 452.75
55 300 73 38.61 2.26 17 38.48
dp-12.fsa-i-b9 1186 223.93 383.66 353.53 TIME 2910.96
key-2-i-b29 3199 415.54 204.87 44.14 589.45 1329.53
mmgt-3.fsa-i-b10 1933 16.23 32.23 26.71 16.55 6.19
mmgt-4.fsa-s-b8 1586 17.02 27.59 421.30 327.55 13.79
g-1.fsa-i-b17 2201 1539.96 505.15 259.05 816.26 TIME
gqueens21 925 786.14 1864.49 384.87 47.33 0.24
queens24 1201 TIME TIME TIME 368.76 0.28
gueens50 5101 TIME TIME TIME TIME 347.98
bw-large.d9 9956 1.02 5.84 2.69 2.75 1.01
bw-large.e9 12260 0.98 1.91 1.92 1.93 1.03
bw-large.e10 13482 1.29 7.51 5.03 4.95 1.55
p1000 14955 0.48 37.86 15.41 15.23 3.69
p3000 44961 8.86 369.27 14412 142.83 223.62
p6000 89951 99.50 TIME 583.55 578.98 2549.50
DIST

Cosenza - Unical

Univ. Genova

un 16 2005

Cosenza - Unical

-

.

Experimental analysis: Non-tight logic programs

~

/

TAR-Lab

PB # VAR ulv flv flu fbu ulp

4 300 265.43 | 218.48 41.97 31.05 77.41

5 300 TIME TIME 136.67 99.75 439.71

6 300 TIME TIME 107.34 65.83 591.3
bw-basic-P4-i 5301 2.16 15.54 6.07 5.79 2.54
bw-basic-P4-i-1 4760 1.64 4.92 247 2.44 1.86
bw-basic-P4-i+1 5842 2.49 24.27 22.01 19.71 2.41
np60c 10742 2.83 1611.32 44.12 44.12 4.77
np70c 14632 4.69 TIME 97.44 97.89 591
np80c 19122 6.91 TIME 192.29 | 196.32 12.88

DIST

Univ. Genova

un 16 2005 Cosenza - Unical

4 N

Main results

e the SAT-based approach used by CMODELS?Z2 is competitive w.r.t. rival systems,

at least on non-disjunctive case and when looking for one answer set

e ASP and SAT procedures have been demonstrated to be “equivalent” on tight
programs; this lead to establish new, previously unknown results for SMODELS
that can be extended to ASSAT and SMODELS-ccC with the extents we have seen.

Extending the results to DLV is work in progress

® a deep experimental investigation, motivated by the previous theoretical result,
has shown how SAT techniques can be beneficial for ASP solvers, and has

shed light on future directions for develop ASP systems

o %

TAR-Lab DIST Univ. Genova

un 16 2005

Cosenza - Unical

-

SAT-based: Other applications

procedure for

and

The SAT-based approach has been used (in our group) to develop decision

® Separation Logic, a decidable quantifier-free fragment of the first order logic
involving propositional logic and linear arithmetic, with applications in FV and
scheduling (TSAT++)

e optimization problem related to SAT (namely Max-SAT, Min-ONE) with
application in model checking and planning (OPTSAT)

e QSAT, or QBF, (QUBE++)

e disjunctive logic programming (Cmodels3)

\o conformant planning (CPlan)

~

/

TAR-Lab

DIST

Univ. Genova

un 16 2005

/ References (l): ASP \

\and Non Monotonic Reasoning (LPNMR 2004).

TAR-Lab

E. Giunchiglia and M. Maratea - Evaluating Search Stategies and Heuristics for
Efficient Answer Set Programming. Accepted to 9th Congress of the Italian

Association for Artificial Intelligence (AI*IA 2005). To appear LNAL.

E. Giunchiglia and M. Maratea - An Experimenal Study on Search Stategies and

Heuristics in Answer Set Programming. Accepted to ASPO5.

E. Giunchiglia, Yu. Lierler and M. Maratea - A SAT-based Polynomial Space
Algorithm for Answer Set Programming. In Proc. 10th International Workshop on
Non Monotonic Reasoning (NMR 2004).

E. Giunchiglia, Yu. Lierler and M. Maratea - SAT-based Answer Set Programming. In
Proc. 19th American Association for Artificial Intelligence (AAAI 2004).

Yu. Lierler and M. Maratea - Cmodels2: SAT-based Answer Set Solvers Extended to

/

Non-tight Programs. In Proc. 7th International Conference on Logic Programming

DIST Univ. Genova

Cosenza - Unical

un 16 2005 Cosenza - Unical

/ References (ll): Others \

A. Armando, C. Castellini, E. Giunchiglia and M. Maratea - The SAT-based Approach to Separation Logic
Accepted to the Journal of Automated Reasoning (JAR). 2005.

A. Armando, C. Castellini, E. Giunchiglia and M. Maratea - A SAT-based Decision Procedure for the
Boolean Combination of Difference Constraints. Accepted to 7th International Conference on Theory and
Practice of Satisfiability Testing (SAT 2004). To appear LNCS.

A. Armando, C. Castellini, E. Giunchiglia, M. Idini and M. Maratea - TSAT++: An Open Reasoning
Platform for Satisfiability Modulo Theory. Accepted to 2th Workshop on Pragmatic of Decision
Procedures in Automated Reasoning (PDPAR 2004). To appear ENTCS.

E. Giunchiglia, M. Maratea and A. Tacchella - (In)Effectiveness of Look-ahead Techniques in a Modern
SAT solver. In Proc. 9th Int. Conference on Principle and Practice of Constraint Programming (CP 2003)

E. Giunchiglia, M. Maratea and A. Tacchella - Dependent and Independent Variables in Propositional
Satisfiability. In Proc. 8th European Conference on Logics in Artificial Intelligence (JELIA 2002)

E. Giunchiglia, M. Maratea, A. Tacchella and D.Zambonin - Evaluating Search Heuristics and

Optimization Techniques in Propositional Satisfiability. In Proc. 1st International Joint Conference on

thomated Reasoning (IJCAR 2001) J

TAR-Lab DIST Univ. Genova

