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Abstract

Digital Health is a relatively recent but already important field, where digitalization meets
the needed for solving automatically and efficiently problems in healthcare for improving
the quality of lives for patients. The need to efficiently solving some of these problems have
become even more pressing due to the Covid-19 pandemic that significantly increased stress
and demand over Hospitals. Hospitals have long waiting lists, surgeries cancellation and even
worst resource overload, issues that negatively impact the level of patients satisfaction and the
quality of care provided. Within every hospital, Operating Rooms (ORs) are an important unit.
The Operating Room Scheduling (ORS) problem is the task of assigning patients to operating
rooms, taking into account different specialties, lengths and priority scores of each planned
surgery, operating room session durations, and the availability of beds for the entire length of
stay both in the Intensive Care Unit and in the wards. A proper solution to the ORS problem
is of primary importance for the healthcare service quality and the satisfaction of patients
in hospital environments. In this thesis, we provide a number of contributions to the ORS
problem. We first present a solution to the problem based on Knowledge Representation and
Reasoning via a modeling and solving approach using Answer Set Programming (ASP). This
first basic solution builds on a previous solution but takes into account explicitly beds and
ICU unit, that in the pandemic we understood how they are important and limiting. Moreover,
we also present an ASP solution for the rescheduling problem, i.e. when the off-line schedule
cannot be completed for some reasons, and a further extension where surgical teams are also
considered. Another technical contribution is a second solution for the basic ORS problem
with beds and ICU unit, whose modeling departs on the guidelines previously used, and
shows improvements in efficiency. Finally, we introduce a web framework for managing
ORS problems via ASP that allows a user to insert the main parameters of the problem, solve
a specific instance, and show results graphically in real-time.
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Chapter 1

Introduction

1.1 Context and Motivation

Digital Health is a relatively recent but already important field, where digitalization meets
the needed for solving automatically and efficiently problems in healthcare for improving
the quality of lives for patients. The need to efficiently solving some of these problems have
become even more pressing due to the Covid-19 pandemic that significantly increased stress
and demand over Hospitals. Hospitals have long waiting times, surgeries cancellation and
even worst resource overload, issues that negatively impact the level of patients satisfaction
and the quality of care provided. Within every hospital, Operating Rooms (ORs) are an
important unit. Due to the personell involved and the needed infrastructures, ORs entail
significant costs. Moreover, the cost per minute for an unused OR can be easily go over
C30 (Macario 2010). In general, ORs account for approx. 33% of the overall budget in
Hospitals (Meskens et al. 2013). Other than ORs, another central element when dealing
with ORs-related problems are beds: For example, between Q1 2010/11 and Q3 2018/19,
the total number of NHS hospital beds decreased by 12%, from 144,455 to 127,589 1. The
latest official UK National Health Service (NHS) data show2 that in Q2 2019/20 (from July
to September 2019) 70 out of 202 Trusts had an average bed occupancy > 90%. Hospitals
cannot operate at or close at 100% occupancy, as spare bed capacity is needed to accommodate
variations in demand and ensure that patients can flow through the system. Thus, a proper
solution to the enriched problem in which both ORs and beds are explicitly considered is
of primary importance for the healthcare service quality and the satisfaction of patients

1https://www.nuffieldtrust.org.uk/resource/hospital-bed-occupancy
2See data stored on https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-

occupancy/bed-data-overnight/
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in hospital environments. The Operating Room Scheduling (ORS) problem is the task of
assigning patients to operating rooms, taking into account different specialties, lengths and
priority scores of each planned surgery, and operating room session durations. Enhancements
include the availability and management of beds for the entire length of stay both in the
Intensive Care Unit and in the wards, and of surgical teams involving anesthetists and
surgeons.

1.2 State-of-the-art

There is a significant number of approaches in literature for solving problems in Digital
Health related to ORs. Aringhieri et al. (2015a) addressed the joint OR planning (MSS) and
scheduling problem, described as the allocation of OR time blocks to specialties together
with the subsets of patients to be scheduled within each time block over a one week planning
horizon. They developed a 0-1 linear programming formulation of the problem and used a
two-level meta-heuristic to solve it. Its effectiveness was demonstrated through numerical
experiments carried out on a set of instances based on real data and resulted, for benchmarks
of 80-100 assigned registrations, in a 95-98% average OR utilization rate, for a number of ORs
ranging from 4 to 8. The execution times were around 30-40 seconds. In Landa et al. (2016),
the same authors introduced a hybrid two-phase optimization algorithm which exploits
neighborhood search techniques combined with Monte Carlo simulation, in order to solve the
joint advance and allocation scheduling problem, taking into account the inherent uncertainty
of surgery durations. In both the previous works, the authors solve the bed management
part of the problem limited to weekend beds, while assuming that each specialty has its own
post-surgery beds from Monday to Friday with no availability restriction. In Aringhieri et al.
(2015b), some of the previous authors face the bed management problem for all the days of
the week, with the aim to level the post-surgery ward bed occupancies during the days, using
a Variable Neighbourhood Search approach. For what concerns, instead, the availability of
surgical teams, Meskens et al. (2013) considered the surgical teams in the computation of
an OR schedule, and developed a model using Constraint Programming (CP) with multiple
constraints such as availability, staff preferences and affinities among surgical teams. They
optimize the use of ORs by minimizing makespan and maximizing affinities among surgical
team members. The effectiveness of their proposed method for improving surgical cases
was evaluated using real data from a hospital. Hamid et al. (2019) incorporated the decision-
making styles (DMS) of the surgical team to improve the compatibility level by considering
constraints such as the availability of material resources, priorities of patients, and availability,
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skills, and competencies of the surgical team. They developed a multi-objective mathematical
model to schedule surgeries. Two metaheuristics, namely Non-dominated Sorting Genetic
Algorithm and Multi-Objective Particle Swarm Optimization, were developed to find pareto-
optimal solutions. Xiang et al. (2015) proposed an Ant Colony Optimization (ACO) approach
to surgical scheduling taking into account all resources in the entire process of a surgery.
The problem was represented as an extended multi-resource constrained flexible job shop
scheduling problem, which was solved using a two-level hierarchical graph to integrate
sequencing job and allocating resources. To evaluate the efficiency of ACO, a Discrete
Event System (DES) model of an OR system was developed in the simulation platform
SIMIO. Monteiro et al. (2015) developed a comprehensive multi-objective mathematical
model using epsilon-constraint method coupled to the CPLEX solver. Vijayakumar et al.
(2013) used Mixed Integer Programming (MIP) model for multi-day, multi-resource, patient-
priority-based surgery scheduling. A First Fit Decreasing algorithm was developed. From a
solution time perspective, their model took hours and in most cases was unable to optimally
solve the problem. Belkhamsa et al. (2018) proposed two meta heuristics, an Iterative
Local Search (ILS) approach and Hybrid Genetic Algorithm (HGA) to solve a daily surgery
scheduling problem. Zhou et al. (2016) developed an Integer Programming model for optimal
surgery schedule of assigning patients to different resources in any surgical stage. They used
Lagrangian Relaxation algorithm and solved the subproblem by using branch and bound.
They verified their model using real data instances from an Hospital. A common issue with
all such solutions seem to be computation time and scalability; moreover, rescheduling and
the development of web applications are rarely considered.
A preliminary solution to the basic ORS problem based on ASP but not considering beds,
ICU units and surgical teams is presented in Dodaro et al. (2018, 2019b).

1.3 Contribution of the thesis

The main contributions of the thesis are the following:

• We provide an ASP encoding for solving the ORS problem involving beds management,
by means as a modular addition of ASP rules starting from the specification of the
problem. This has resulted into an article “An ASP-based Solution for Operating Room
Scheduling with Beds Management”, published in Proc of the 3rd International Joint
Conference on Rules and Reasoning(RuleML+RR 2019), LNCS 11784, pages 67-81,
2019 Dodaro et al. (2019a).
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• We run an experimental analysis assessing the good performance of our ASP solution
and a scalability analysis w.r.t. scheduling length, considering a number of scenarios
w.r.t. beds availability. This has been added as a part of an article “Operating Room
(Re)Scheduling with Bed Management via ASP”, published in Theory and Practice of
Logic Programming (TPLP), Vol. 22(2), pages 229-253, 2022. DOI: https://doi.org/10.
1017/S1471068421000090

• We provide an ASP encoding and an experimental analysis for the ORS problem en-
riched with the management of surgical teams composed by anesthetists and surgeons.
This has resulted into publication of an article “An ASP-based Solution for Operating
Room Scheduling with Surgical Teams in Hospital Environments”, in Post-Proc. of
the 19th International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2020), LNAI 12414, pages 192-204, 2021.

• We provide an alternative ASP encoding and an experimental analysis for the ORS
problem enriched with the management of surgical teams, that has been developed in
collaboration with Prof. Martin Gebser from the University of Klagenfurt.

• We provide a further ASP encoding and an experimental analysis for the rescheduling
of the basic ORS problem with beds, which comes into play when the scheduling cannot
be implemented due to unexpected events, e.g., unavailability of a patient. This work
has been inserted as part of the article “Operating Room (Re)Scheduling with Bed Man-
agement via ASP”, published in Theory and Practice of Logic Programming (TPLP),
Vol. 22(2), pages 229-253, 2022. DOI: https://doi.org/10.1017/S1471068421000090

• We describe a Graphical User Interface which employs our ASP solution to produce
a real-time scheduling of operating rooms, and to help users making use of it with
minimal effort, by allowing to impose the values of the main parameters of the problem.
Also this work has been inserted as part of the already mentioned article “Operating
Room (Re)Scheduling with Bed Management via ASP”, published in Theory and
Practice of Logic Programming (TPLP), Vol. 22(2), pages 229-253, 2022. DOI:
https://doi.org/10.1017/S1471068421000090

1.4 Structure of the thesis

The thesis is structured as follows. Chapter 2 contains needed preliminaries about ASP,
presenting syntax of the language, and then syntactic shortcuts are employed. Then, Chap-

https://doi.org/10.1017/S1471068421000090
https://doi.org/10.1017/S1471068421000090
https://doi.org/10.1017/S1471068421000090
https://doi.org/10.1017/S1471068421000090
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ter 3 presents the problem description of the basic ORS problem and of the enhancements
then considered in the thesis. The related ASP encoding involving bed management and
ICU unit is presented in Chapter 4. The same chapter highlights the Knowledge Repre-
sentation (KR) capabilities of ASP to represent specifications in a natural and intuitive way.
Furthermore, the chapter presents experimental analysis considering several scenarios with
respect to scheduling length, beds abundance and shortage. Chapter 5 presents two different
encodings as ASP solutions for the ORS problem with surgical teams. The first encoding
shows a solution following the guidelines of previous work while the alternative encoding is
a computationally optimized solution. Chapter 6 presents the experimental analysis of the
two ASP solutions for the ORS problem with surgical teams with respect to OR, surgeons
and anesthetists work time efficiencies. Chapter 7 provides a further ASP encoding and
experimental analysis for the rescheduling of the basic ORS problem, which comes into play
when the scheduling cannot be implemented due to unexpected events, e.g., unavailability
of a patient. Chapter 8 presents a Graphical User Interface for our ASP solution, which
allows easy user interface to produce real-time scheduling of operating rooms. Chapter 9
presents the state-of-the-art literature on different techniques for solving the ORS problem
and it also presents other scheduling problems where ASP has been employed. Chapter 10
finally presents conclusion by recapping the contributions of this thesis. The chapter then
presents opportunities of future work, i.e., the open issues and promising research directions
related to ORS problem with bed management and surgical teams, and beyond.



Chapter 2

Background on ASP

Answer Set Programming (ASP) Brewka et al. (2011) is a programming paradigm developed
in the field of nonmonotonic reasoning and logic programming. In this section, we overview
the language of ASP. More detailed descriptions and a more formal account of ASP, including
the features of the language employed in this paper, can be found in Alviano et al. (2015);
Brewka et al. (2011); Calimeri et al. (2020); Gebser et al. (2015). Hereafter, we assume the
reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings starting
with uppercase letter and constants are non-negative integers or strings starting with lowercase
letters. A term is either a variable or a constant. A standard atom is an expression p(t1, . . . , tn),
where p is a predicate of arity n and t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if
t1, . . . , tn are constants. A ground set is a set of pairs of the form ⟨consts :con j⟩, where consts

is a list of constants and con j is a conjunction of ground standard atoms. A symbolic set

is a set specified syntactically as {Terms1 : Con j1; · · · ;Termst : Con jt}, where t > 0, and
for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| = k > 0, and each Con ji
is a conjunction of standard atoms. A set term is either a symbolic set or a ground set.
Intuitively, a set term {X : a(X ,c), p(X);Y : b(Y,m)} stands for the union of two sets: the
first one contains the X-values making the conjunction a(X ,c), p(X) true, and the second
one contains the Y -values making the conjunction b(Y,m) true. An aggregate function is
of the form f (S), where S is a set term, and f is an aggregate function symbol. Basically,
aggregate functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are the following:

• #count, number of terms;
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• #sum, sum of integers.

An aggregate atom is of the form f (S)≺ T , where f (S) is an aggregate function, ≺ ∈ {<
,≤,>,≥, ̸=,=} is a comparison operator, and T is a term called guard. An aggregate atom
f (S)≺ T is ground if T is a constant and S is a ground set. An atom is either a standard atom
or an aggregate atom. A rule r has the following form:

a1 ∨ . . . ∨ an :– b1, . . . ,bk,not bk+1, . . . ,not bm.

where a1, . . . ,an are standard atoms, b1, . . . ,bk are atoms, bk+1, . . . ,bm are standard atoms,
and n,k,m ≥ 0. A literal is either a standard atom a or its negation not a. The disjunction
a1∨ . . .∨an is the head of r, while the conjunction b1, . . . ,bk,not bk+1, . . . ,not bm is its body.
Rules with empty body are called facts. Rules with empty head are called constraints. A
variable that appears uniquely in set terms of a rule r is said to be local in r, otherwise it is
a global variable of r. An ASP program is a set of safe rules, where a rule r is safe if the
following conditions hold: (i) for each global variable X of r there is a positive standard atom
ℓ in the body of r such that X appears in ℓ; and (ii) each local variable of r appearing in a
symbolic set {Terms :Conj} also appears in a positive atom in Conj.
A weak constraint Buccafurri et al. (2000) ω is of the form:

:∼ b1, . . . ,bk,not bk+1, . . . ,not bm. [w@l]

where w and l are the weight and level of ω , respectively. (Intuitively, [w@l] is read “as
weight w at level l”, where weight is the “cost” of violating the condition in the body, whereas
levels can be specified for defining a priority among preference criteria). An ASP program
with weak constraints is Π = ⟨P,W ⟩, where P is a program and W is a set of weak constraints.
A standard atom, a literal, a rule, a program or a weak constraint is ground if no variables
appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand base

BP of P are defined as usual. The ground instantiation GP of P is the set of all the ground
instances of rules of P that can be obtained by substituting variables with constants from UP.
An interpretation I for P is a subset I of BP. A ground literal ℓ (resp., not ℓ) is true w.r.t. I if
ℓ ∈ I (resp., ℓ ̸∈ I), and false otherwise. An aggregate atom is true w.r.t. I if the evaluation of
its aggregate function (i.e. the result of the application of f on the multiset S) with respect to
I satisfies the guard; otherwise, it is false.
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A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I whenever all
conjuncts of the body of r are true w.r.t. I.
A model is an interpretation that satisfies all rules of a program. Given a ground program GP

and an interpretation I, the reduct of GP w.r.t. I is the subset GI
P of GP obtained by deleting

from GP the rules in which a body literal is false w.r.t. I. An interpretation I for P is an
answer set (or stable model) for P if I is a minimal model (under subset inclusion) of GI

P (i.e.
I is a minimal model for GI

P) Faber et al. (2011); Ferraris (2011). For a detailed discussion on
the semantics of ASP programs with aggregates, we refer the reader to Alviano et al. (2015).
Given a program with weak constraints Π = ⟨P,W ⟩, the semantics of Π extends from the
basic case defined above. Thus, let GΠ = ⟨GP,GW ⟩ be the instantiation of Π; a constraint
ω ∈ GW is violated by an interpretation I if all the literals in ω are true w.r.t. I. An optimum

answer set for Π is an answer set of GP that minimizes the sum of the weights of the violated
weak constraints in GW in a prioritized way.

Syntactic shortcuts. In the following, we also use choice rules of the form {p}, where p

is an atom. Choice rules can be viewed as a syntactic shortcut for the rule p∨ p′, where p′ is
a fresh new standard atom not appearing elsewhere in the program.



Chapter 3

Problem Description

In this section we provide an informal description of the ORS problem and its main require-
ments, organized in paragraphs containing the basic problem, the addition of bed management
and the inclusion of surgical teams, respectively.

Basic ORS problem. As we already said in the introduction, most modern hospitals are
characterized by a very long surgical waiting list, often worsened, if not altogether caused,
by inefficiencies in operating room planning. A very important factor is represented by the
availability of beds in the wards and, if necessary, in the ICU for each patient for the entire
duration of their stay. This means that hospital planners have to balance the need to use the
OR time with the maximum efficiency with an often reduced bed availability.
In this thesis, the elements of the waiting list are called registrations. Each registration
links a particular surgical procedure, with a predicted surgery duration and length of stay
in the ward and in the ICU, to a patient. The overall goal of the ORS problem is to assign
the maximum number of registrations to the operating rooms (ORs), taking into account
the availability of beds in the associated wards and in the ICU. This approach entails that
the resource optimized is the one, between the OR time and the beds, that represents the
bottleneck in the particular scenario analyzed.
As first requirement of the ORS problem, the assignments must guarantee that the sum of
the predicted duration of surgeries assigned to a particular OR session does not exceed the
length of the session itself: this is referred in the following as surgery requirement. Moreover,
registrations are not all equal: they can be related to different medical conditions and can be
in the waiting list for different periods of time. These two factors are unified in one concept:
priority. Registrations are classified according to three different priority categories, namely
P1, P2 and P3. The first one gathers either very urgent registrations or the ones that have
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been in the waiting list for a long period of time; it is required that these registrations are all
assigned to an OR. Then, the registrations of the other two categories are assigned to the top
of the ORs capacity, prioritizing the P2 over the P3 ones (minimization).

Bed management. Regarding the bed management part of the problem, we have to ensure
that a registration can be assigned to an OR only if there is a bed available for the patient for
the entire LOS. In particular, we have considered the situation where each specialty is related
to a ward with a variable number of available beds exclusively dedicated to the patients
associated to that specialty. This is referred in the following as ward bed requirement. The
ICU is a particular type of ward that is accessible to patients from any specialty. However,
only a small percentage of patients is expected to need to stay in the ICU. This requirement
will be referred as the ICU bed requirement. Obviously, during their stay in the ICU, the
patient does not occupy a bed in the specialty’s ward.
In our model, a patient’s LOS has been divided in the following phases:

• a LOS in the ward before surgery, in case the admission is programmed a day (or more)
before the surgery takes place; and

• the LOS after surgery, which can be further subdivided into the ICU LOS and the
following ward LOS.

Surgical teams. Additionally, in each specialty (considered to be 5 as target in small-
medium-sized Hospitals) surgical teams are allocated with number of surgeons and anaes-
thetists every day as exemplified in Table 3.1. Tables 3.2 and 3.3, instead, show how many
surgeons/anesthetists are available in each shift and for each specialty. However, surgeons
assigned to a shift in a day are different from the ones assigned for the other shift of the same
day, while the same anesthetists cover both shifts of the same day. Every surgeon works
specifically for a number of hours every day; also surgeons in each specialty are assigned
only to a single shift in a day, i.e., they either work in the morning (represented as shift 1, 3,
5, 7 and 9) or in evening shift (represented as shift 2, 4, 6, 8 and 10) as shown in Table 3.2.
The anaesthetists are also linked to specialty and they also work for a fixed number of hours
every day, but they can work together with surgeons during any shift of the day as shown in
Table 3.3. In our model, we also assume that once a surgery is started in an OR it cannot
be interrupted. Further, surgeons cannot operate on more than one patient at the same time.
The overall goal is to assign the maximum number of registrations to the ORs, respecting the
priorities, and taking into account the availability of respective surgical teams in a particular
specialty for the complete surgery duration.
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Table 3.1 Total number of surgeons and anaesthetists in each specialty.

Specialty Number of Surgeons Number of anaesthetists
1 6 6
2 4 4
3 4 4
4 2 2
5 4 4

Total 20 20

Table 3.2 Surgeons availability for each specialty and in each day.

Days (D) 1 2 3 4 5
Shifts (s) 1 2 3 4 5 6 7 8 9 10

Specialty (SP) Surgeons
1 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1
5 2 2 2 2 2 2 2 2 2 2

Table 3.3 Anaesthetists availability for each specialty and in each day.

Days (D) 1 2 3 4 5
Shifts (s) 1 2 3 4 5 6 7 8 9 10

Specialty (SP) Anaesthetists
1 6 6 6 6 6 6 6 6 6 6
2 4 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4
4 2 2 2 2 2 2 2 2 2 2
5 4 4 4 4 4 4 4 4 4 4



Chapter 4

ASP solution for the ORS problem with
bed management

(r1) {x(R,P,O,S,D)} :- registration(R,P,_,_,SP,_,_), mss(O,S,SP,D).
(r2) :- x(R,P,O,S1,_), x(R,P,O,S2,_), S1 != S2.
(r3) :- x(R,P,O1,S,_), x(R,P,O2,S,_), O1 != O2.
(r4) surgery(R,SU,O,S) :- x(R,_,O,S,_), registration(R,_,SU,_,_,_,_).
(r5) :- x(_,_,O,S,_), duration(N,O,S), #sum{SU,R:surgery(R,SU,O,S)}>N.
(r6) stay(R,(D-A)..(D-1),SP) :- registration(R,_,_,LOS,SP,_,A),

x(R,_,_,_,D), A>0.
(r7) stay(R,(D+ICU)..(D+LOS-1),SP) :- registration(R,_,_,LOS,SP,ICU,_),

x(R,_,_,_,D), LOS>ICU.
(r8) stayICU(R,D..(D+ICU-1)) :- registration(R,_,_,_,_,ICU,_),

x(R,_,_,_,D), ICU>0.
(r9) :- #count {R: stay(R,D,SP)}>AV, SP>0, beds(SP,AV,D).
(r10) :- #count {R: stayICU(R,D)}>AV, beds(0,AV,D).
(r11) :- N = totRegsP1 - #count{R: x(R,1,_,_,_)}, N > 0.
(r12) :∼ N = totRegsP2 - #count{R: x(R,2,_,_,_)}. [N@3]
(r13) :∼ N = totRegsP3 - #count{R: x(R,3,_,_,_)}. [N@2]

Figure 4.1 ASP encoding of the ORS problem.

Starting from the specifications in the previous section, here the ASP encoding of the basic
ORS scheduling problem with bed managementis is described in the ASP language, in
particular following the input language of CLINGO, in a first subsection, while results of an
experimental analysis on a number of scenario regarding beds availability are presented in a
second subsection.
It is important to emphasize here that, albeit CLINGO is compliant with the ASP-Core2 Cal-
imeri et al. (2013) input language, it supports a richer syntax and slightly different semantics,
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see Gebser et al. (2015) for a formal description of the language. Next two sub-sections
present the data model and the encoding itself, respectively.

4.1 ASP Encoding

Data Model. The input data is specified by means of the following atoms:

• Instances of registration(R,P,SU,LOS,SP,ICU,A) represent the registrations, character-
ized by an id (R), a priority score (P), a surgery duration (SU) in minutes, the overall
length of stay both in the ward and the ICU after the surgery (LOS) in days, the id of
the specialty (SP) it belongs to, a length of stay in the ICU (ICU) in days, and finally a
parameter representing the number of days in advance (A) the patient is admitted to
the ward before the surgery.

• Instances of mss(O,S,SP,D) link each operating room (O) to a session (S) for each
specialty (SP) and planning day (D) as established by the hospital Master Surgical
Schedule (MSS).

• The OR sessions are represented by the instances of the predicate duration(N,O,S),
where N is the session duration.

• Instances of beds(SP,AV,D) represent the number of available beds (AV ) for the beds
associated to the specialty SP in the day D. The ICU is represented by giving the value
0 to SP.

The output is an assignment represented by atoms of the form x(R,P,O,S,D), where the
intuitive meaning is that the registration R with priority P is assigned to the OR O during
the session S and the day D. It is important to emphasize here that the priority P is not
actually needed in the output, however it is included because it improves the readability of
the encoding presented in the subsequent section.

Encoding. The related encoding is shown in Figure 4.1, and is described in the following.
Rule (r1) guesses an assignment for the registrations to an OR in a given day and session
among the ones permitted by the MSS for the particular specialty the registration belongs to.
The same registration should not be assigned more than once, in different OR sessions. This
is assured by constraints (r2) and (r3). Note that in our setting there is no requirement that
every registration must actually be assigned.
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Surgery requirement. With rules (r4) and (r5) we impose that the total length of surgery
durations assigned to a session is less than or equal to the session duration.
Rules (r6)-(r10) deal with the presence and management of beds. In particular, rule (r6)
assigns a bed in the ward to each registration assigned to an OR, for the days before the
surgery. Rule (r7) assigns a ward bed for the period after the patient was dismissed from the
ICU and transferred to the ward. Rule (r8) assigns a bed in the ICU.

Ward bed requirement. Rule (r9) ensures that the number of patients occupying a bed in
each ward for each day is never larger than the number of available beds.

ICU bed requirement. Finally, rule (r10) performs a similar check as the one in rule (r9),
but for the ICU.

Minimization. We remind that we want to be sure that every registration having priority 1 is
assigned, then we assign as much as possible of the others, giving precedence to registrations
having priority 2 over those having priority 3. This is accomplished through constraint
(r11) for priority 1 and the weak constraints (r12) and (r13) for priority 2 and 3, respectively,
where totRegsP1, totRegsP2, and totRegsP3 are constants representing the total number of
registrations having priority 1, 2 and 3, respectively.
Minimizing the number of unassigned registrations could cause an implicit preference
towards the assignments of the registrations with shorter surgery durations. To avoid this
effect, one can consider to minimize the idle time; however, this is in general slower from
a computational point of view and often unnecessary, since the preference towards shorter
surgeries is already mitigated by our three-tiered priority schema.

Remark. We note that, given that the MSS is fixed, our problem and encoding could be
decomposed by considering each specialty separately in case the beds are not a constrained
resource, as will be the case for one of our scenario. We decided not to use this property
because (i) this is the description of a practical application that is expected to be extended
over time and to correctly work even if the problem becomes non-decomposable, e.g. a
(simple but significant) extension in which a room is shared among specialties leads to
a problem which is not anymore decomposable, and (ii) it is not applicable to all of our
scenario. Additionally, even not considering this property at the level of the encoding, the
experimental analysis that we will present is already satisfactory for our use case even when
the decomposition could be applied.
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Table 4.1 Bed availability for each specialty and in each day in scenario A.

Specialty Monday Tuesday Wednesday Thursday Friday
0 (ICU) 40 40 40 40 40

1 80 80 80 80 80
2 58 58 58 58 58
3 65 65 65 65 65
4 57 57 57 57 57
5 40 40 40 40 40

4.2 Experimental analysis

In this section, we report about the results of an empirical analysis of the ORS encoding.
Data have been randomly generated but having parameters and sizes inspired by real data.
Experiments were run on a Intel Core i7-7500U CPU @ 2.70GHz with 7.6 GB of physical
RAM. The ASP system used was CLINGO Gebser et al. (2016), version 5.5.2, with the
"−−restart−on−model" option enabled.

4.2.1 ORS benchmarks

The employed encoding is composed by the ASP rules (r1), . . . ,(r13) from Figure 4.1. The
test cases we have assembled are based on the requirements of a typical small-medium size
Italian hospital, with five surgical specialties to be managed over the widely used 5-day
planning period. Three different scenarios were assembled. The first one (scenario A) is
characterized by an abundance of available beds, so that the constraining resource becomes
the OR time. For the second one (scenario B), we reduced the number of beds, in order to
test the encoding in a situation with plenty of OR time but few available beds. Scenario B
is pushed further in scenario C, where the number of beds is further reduced, to test our
encoding also in this extreme situation. Each scenario was tested 10 times with different
randomly generated inputs.
The characteristics of the tests are the following:

• 3 different benchmarks, comprising a planning period of 5 working days, and different
numbers of available beds, as reported in Table 4.1, Table 4.2 and Table 4.3 for scenario
A, B, and C, respectively;

• 10 ORs, unevenly distributed among the specialties;
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Table 4.2 Bed availability for each specialty and in each day in scenario B.

Specialty Monday Tuesday Wednesday Thursday Friday
0 (ICU) 4 4 5 5 6

1 20 30 40 45 50
2 10 15 23 30 35
3 10 14 21 30 35
4 8 10 14 16 18
5 10 14 20 23 25

Table 4.3 Bed availability for each specialty and in each day in scenario C.

Specialty Monday Tuesday Wednesday Thursday Friday
0 (ICU) 4 4 5 5 6

1 10 15 20 25 30
2 7 10 11 14 18
3 7 10 13 16 20
4 4 6 8 11 13
5 6 9 12 15 18

• 5 hours long morning and afternoon sessions for each OR, summing up to a total of
500 hours of ORs available time for each benchmark;

• 350 generated registrations, from which the scheduler will draw the assignments. In
this way, we simulate the common situation where a hospital manager takes an ordered,
w.r.t. priorities, waiting list and tries to assign as many elements as possible to each
OR.

The surgery durations have been generated assuming a normal distribution, while the priorities
have been generated from a uneven distribution of three possible values (with weights
respectively of 0.20, 0.40 and 0.40 for registrations having priority 1, 2 and 3, respectively).
The lengths of stay (total LOS after surgery and ICU LOS) have been generated using a
truncated normal distribution, in order to avoid values less than 1. In particular for the ICU,
only a small percentage of patients have been generated with a predicted LOS while the large
majority do not need to pass through the ICU and their value for the ICU LOS is fixed to 0.
Finally, since the LOS after surgery includes both the LOS in the wards and in the ICU, the
value generated for the ICU LOS must be less than or equal to the total LOS after surgery.
The parameters of the test have been summed up in Table 4.4. In particular, for each specialty
(1 to 5), we reported the number of registrations generated, the number of ORs assigned to
the specialty, the mean duration of surgeries with its standard deviation, the mean LOS after
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Table 4.4 Parameters for the random generation of the scheduler input.

Specialty Reg. ORs Surgery Duration (min) LOS (d) ICU (%) ICU LOS (d) LOS (d)
mean (std) mean (std) mean (std) before surgery

1 80 3 124 (59.52) 7.91 (2) 10 1 (1) 1
2 70 2 99 (17.82) 9.81 (2) 10 1 (1) 1
3 70 2 134 (25.46) 11.06 (3) 10 1 (1) 1
4 60 1 95 (19.95) 6.36 (1) 10 1 (1) 0
5 70 2 105 (30.45) 2.48 (1) 10 1 (1) 0

Total 350 10

Table 4.5 Scheduling results for the scenario A benchmark.

Assigned Registrations

Priority 1 Priority 2 Priority 3 Total OR Time Eff. Bed Occupancy Eff.
62 / 62 132 / 150 72 / 138 266 / 350 96.6% 52.0%
72 / 72 128 / 145 64 / 133 264 / 350 95.6% 51.0%
71 / 71 132 / 132 69 / 147 272 / 350 96.7% 96.7%
66 / 66 138 / 142 57 / 142 261 / 350 96.2% 50.7%
79 / 79 119 / 130 67 / 141 265 / 350 96.0% 51.9%
67 / 67 131 / 131 66 / 152 264 / 350 96.6% 53.8%
66 / 66 121 / 132 69 / 152 256 / 350 96.0% 49.8%
69 / 69 130 / 135 68 / 146 267 / 350 96.8% 51.6%
60 / 60 139 / 153 59 / 137 258 / 350 96.8% 50.8%
68 / 68 138 / 142 57 / 139 263 / 350 95.2% 51.3%

the surgery with its standard deviation, the percentage of patients that need to stay in the
ICU, the mean LOS in the ICU with its standard deviation and, finally, the LOS before the
surgery (i.e. the number of days, constant for each specialty, the patient is admitted before
the planned surgery is executed).

4.2.2 Results

Results of the experiments are reported for scenario A in Table 4.5, for scenario B in Table 4.6,
and for scenario C in Table 4.7.
A time limit of 60 seconds was given and each scenario was run 10 times with different
input registrations. No run manages to reach the optimal solution within the chosen timeout.
However, the quality of the solution improves only marginally even if the timeout is extended
up to 5 minutes, which is the largest timeout value we have tried in view of a practical
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Table 4.6 Scheduling results for the scenario B benchmark.

Assigned Registrations

Priority 1 Priority 2 Priority 3 Total OR Time Eff. Bed Occupancy Eff.
62 / 62 106 / 150 13 / 138 181 / 350 66.3% 92.7%
72 / 72 77 / 145 43 / 133 192 / 350 67.5% 94.2%
71 / 71 80 / 132 38 / 147 189 / 350 68.2% 96.1%
66 / 66 81 / 142 41 / 142 188 / 350 71.4% 93.4%
79 / 79 90 / 130 20 / 141 189 / 350 69.0% 94.1%
67 / 67 95 / 131 25 / 152 187 / 350 66.5% 93.9%
66 / 66 92 / 132 30 / 152 188 / 350 71.8% 94.1%
69 / 69 84 / 135 36 / 146 189 / 350 68.7% 92.7%
60 / 60 91 / 153 34 / 137 185 / 350 69.7% 94.1%
68 / 68 82 / 142 35 / 139 185 / 350 69.3% 95.1%

Table 4.7 Scheduling results for the scenario C benchmark.

Assigned Registrations

Priority 1 Priority 2 Priority 3 Total OR Time Eff. Bed Occupancy Eff.
62 / 62 43 / 150 12 / 138 117 / 350 43.1% 85.8%
71 / 71 41 / 132 6 / 147 118 / 350 42.9% 93.2%
66 / 66 40 / 142 11 / 142 117 / 350 42.5% 92.0%
79 / 79 38 / 130 7 / 141 124 / 350 44.0% 93.8%
67 / 67 42 / 131 9 / 152 118 / 350 41.9% 89.8%
69 / 69 39 / 135 13 / 146 121 / 350 45.3% 94.4%
60 / 60 48 / 153 10 / 137 118 / 350 45.3% 91.2%
68 / 68 38 / 143 13 / 139 119 / 350 44.6% 91.5%

use of the program. For this reason, we decided to keep the timeout value at 60 seconds,
which makes the program adapt to be used also for quick testing of "what-if" scenarios and
simulations. For each satisfiable instance out of the 10 runs executed, the tables report in
the first three columns the number of the assigned registrations out of the generated ones
for each priority, and in the remaining two columns a measure of the total time occupied
by the assigned registrations as a percentage of the total OR time available (indicated as
"OR Time Eff." in the tables) and the ratio between the beds occupied after the planning
to the available ones before the planning (labeled as "Bed Occupancy Eff." in the tables).
As a general observation, these results show that our solution is able to utilize efficiently
whichever resource is more constrained: on scenario A, our solution manages to reach a very
high efficiency, over 95%, in the use of OR time, while in scenario B achieves an efficiency
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of bed occupancy between 92% and 95%, and over 85% even in the extreme case represented
by Scenario C. The same set of generated registrations was used in each scenario, so that
the differences in the results can be ascribed only to the different bed configurations. Taking
into consideration a practical use of this solution, the user would be able to individuate and
quantify the resources that are more constraining and take the appropriate actions. This
means that the solution can also be used to test and evaluate "what if" scenarios.
Finally, in Figure 4.2 we (partially) present the results achieved on one instance (i.e. the first
instance of Table 4.5, Table 4.6, and Table 4.7) with 350 registrations for 5 days. Each bar
represents the total number of available beds for specialty 1, as reported in Table 4.1 for the
plot at the top, Table 4.2 for the middle one, and Table 4.3 for the bottom one, for each day
of the week, from Monday through Friday. The colored part of the bars indicates the amount
of occupied beds while the gray part the beds left unoccupied by our planning.

4.2.3 Scalability Analysis

We have performed a scalability analysis on the performance of employed ASP solver and
encoding for ORS with bed management w.r.t schedule length.

Evaluation. The characteristics of the tests for each scenario are the following:

• We consider 7 different benchmarks with planning period of 1, 2, 3, 5, 7, 10, and 15
working days;

• For each benchmark the total number of randomly generated registrations were 70
per day, i.e. 70, 140, 210, 350, 490, 700, and 1050 for 1, 2, 3, 5, 7, 10, and 15 days,
respectively;

• 5 specialties for each benchmark;

• 10 ORs unevenly distributed among the specialties;

• 5 hours long morning and afternoon shifts for each OR summing to 100, 200, 300, 500,
700, 1000, and 1500 hours of OR available time for the 7 benchmarks;

• An execution time of 60 seconds was given to each instance.

Table 4.8 shows the distribution of the total number of randomly generated registrations for
each benchmark. Further, this table also shows the distribution of ORs for each speciality, i.e
to speciality 1 three ORs are assigned, to speciality 2, 3 and 5, two ORs are assigned, while
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to speciality 4 only one OR is allocated. Each speciality is considered as a ward with variable
number of available beds.

Table 4.8 Total number of randomly generated registrations for each benchmark

Specialty Registrations ORs

15-day 10-day 7-day 5-day 3-day 2-day 1-day
1 240 160 112 80 48 32 16 3
2 210 140 98 70 42 28 14 2
3 210 140 98 70 42 28 14 2
4 180 120 84 60 36 24 12 1
5 210 140 98 70 42 28 14 2

Total 1050 700 490 350 210 140 70 10

Moreover, we kept also for this analysis the parameters for the random generation of scheduler
input from Table 4.4.

Scenario A. The results of scenario A are reported in Table 4.9, that shows averages of
results for satisfiable instances with abundance of available beds. It should be noted that each
benchmark (15, 10, 7, 5, 3, 2 and 1 day) represents here the average of the satisfiable runs
with different randomly generated inputs.
As we can see, Table 4.9 contains seven columns, where the first column shows the name of
the benchmark for which the test is performed, the columns from the second to the fourth
show the average number of the assigned registrations out of the generated ones for each
priority (P1, P2 and P3, respectively), while the last two columns show the mean for the OR
time and the bed occupancy efficiency.
As we can observe from the results, all considered benchmarks achieved an overall OR time
efficiency greater than 80%, but for the case with 15 days, where some degradation is visible,
for which the OR time Efficiency is 67.6%.

Scenario B. The results of the scalability analysis for scenario B are reported in Table 4.10
that shows averages of results for all satisfiable instances generated, and is organized as
Table 4.9.
From Table 4.10 it can be observed that all the considered benchmarks achieve efficiency of
bed occupancy greater than 90%, in particular between 92% and 96%, being able, as in the
previous scenario, to optimize the constrained resource.
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Table 4.9 Averages of the results for 15, 10, 7, 5, 3, 2 and 1 day benchmarks for Scenario A.

Benchmark Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed Occupancy Eff.
15 days 211 / 211 261 / 421 70 / 418 542 / 1050 67.6% 62.5%
10 days 142 / 142 240 / 277 76 / 281 458 / 700 84.4% 61.6%
7 days 105 / 105 166 / 189 68 / 196 339 / 490 89.8% 53.3%
5 days 68 / 68 131 / 139 65 / 143 264 / 350 96.2% 51.6%
3 days 44 / 44 78 / 82 36 / 84 158 / 210 96.5% 36.9%
2 days 28 / 28 53 / 57 22 / 55 108 / 140 95.9% 27.6%
1 day 13 / 13 27 / 29 13 / 28 53 / 70 93.4% 15.3%

Table 4.10 Averages of the results for 15, 10, 7, 5, 3, 2 and 1 day benchmarks for Scenario B.

Benchmark Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed Occupancy Eff.
15 days 208 / 208 189 / 423 107 / 419 504 / 1050 62.7% 96.9%
10 days 144 / 144 166 / 281 56 / 275 366 / 700 68.0% 96.5%
7 days 95 / 95 136 / 197 30 / 198 261 / 490 70.6% 94.0%
5 days 68 / 68 88 / 139 31 / 143 187 / 350 68.8% 94.0%
3 days 41 / 41 58 / 85 19 / 84 118 / 210 73.3% 93.3%
2 days 30 / 30 35 / 56 6 / 54 71 / 140 66.7% 92.6%
1 day 16 / 16 25 / 28 6 / 26 47 / 70 70.4% 99.4%

Scenario C. The results for third scenario are reported in Table 4.11, which is organized as
Tables 4.9 and 4.10.
From the results, we can note that although the total number of available beds if further
reduced, for all benchmarks we achieve efficiency of bed occupancy greater than 85%, even
for the extreme case of 15 days planning length, and overall between 86% and 95%.

Table 4.11 Averages of the results for 15, 10, 7, 5, 3, 2 and 1 day benchmarks for Scenario C.

Benchmark Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed Occupancy Eff.
15 days 206 / 206 64 / 407 32 / 437 302 / 1050 37.8% 96.4%
10 days 135 / 135 91 / 289 13 / 276 239 / 700 44.0% 96.3%
7 days 101 / 101 49 / 194 13 / 195 163 / 490 43.2% 91.6%
5 days 68 / 68 41 / 140 10 / 143 119 / 350 44.5% 91.9%
3 days 43 / 43 25 / 83 4 / 84 72 / 210 45.0% 91.4%
2 days 27 / 27 19 / 57 3 / 56 49 / 140 43.9% 85.9%
1 day 13 / 13 22 / 29 3 / 28 38 / 70 70.4% 99.4%
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Figure 4.2 Example of bed occupancy of the ward corresponding to specialty 1 for 5-day
scheduling. The plot at the top corresponds to the first instance of scenario A, the one in the
middle to the first instance of scenario B. Finally, the one at the bottom corresponds to the
first instance of scenario C.



Chapter 5

ASP solutions for the ORS problem with
surgical teams

In this chapter, we present two ASP solutions for the basic ORS problem enriched with
surgical teams, whose specifications are provided in Chapter 3, in two separate sections.
The first encoding extends those previously presented, while the second is based on a new
modeling idea.

5.1 First ASP solution

Data Model. The input data to our model is specified by means of the following atoms:

• Instances of registration(R,P,SU,_,SP,_,_) represent the registrations,
where we outline only the main variables: with an id (R), a priority score (P) , a surgery
duration (SU) in minutes, and the id of the specialty (SP ) it belongs to.

representing that the registration (R) with priority (P) is assigned with surgeon id (SR)
and anaesthetist id (AN) to the operating room (O) during the shift (S) of the day (D)
with a slot time (ST).

• Instances of mss(O,S,SP,D) link each operating room (O) to a shift (S) for each
specialty (SP) and planning day (D), as established by the hospital Master Surgical
Schedule (MSS).

• Instances of surgeon(SR,SP,S) represent the surgeons with an id (SR) for each
specialty (SP) and shift (S).
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• Instances of an(AN,SP,S) show the anaesthetists with an id (AN) for each specialty
(SP) and shift (S).

• Instances of time(S,ST) show the time slots (ST) for each shift (S), i.e, each shift
is divided it into ST time slots (which are always 30 in our setting) and each of
them corresponds to a specific length expressed in minutes. As an example, each
shift can be divided into 30 time slots where each time slot lasts 10 minutes. The
length of each slot depends on the different scenarios. In particular, we consider 4
different variants (or scenario) of the problem, where the length of each time slot is
set to 10 (scenario A), 20 (scenario B), 30 (scenario C), and 60 (scenario D) minutes,
respectively. The choice of the length is injected in the encoding by specifying a
constant, called shift_duration, that represents the total length (expressed in
minutes) of the shift, e.g., shift_duration is set to 300 if each time slot lasts 10
minutes (30 time slots times 10 minutes), whereas it is set to 600 if each time slot lasts
60 minutes.

• Instances of surgWT(SWT,SR,D) represent the total work time in hours (SWT) for
surgeons with id (SR) for each day (D).

• Instances of anWT(AWT,AN,D) represent the total work time in hours (AWT) for
anaesthetists with id (AN) for each day (D).

The output is stored in an assignment represented by atom of the following form:

x(R,P,SR,AN,O,S,D,ST)

representing that the registration (R) with priority (P) is assigned with surgeon id (SR) and
anaesthetist id (AN) to the operating room (O) during the shift (S) of the day (D) with a slot
time (ST).

Encoding. The related ASP encoding is shown above in Figure 5.1, and is described in this
section. The encoding is based on the Guess&Check programming methodology.
Rule (r1) guesses an assignment for the registrations, surgeons and anaesthetists to an OR in
a given day, shift and with a time slot among the ones permitted by the MSS for the particular
specialty the registrations, surgeons and anaesthetists belongs to, such that the registrations
assigned with a slot time and surgery duration should be less than shift_duration of
OR. We recall that shift_duration is a constant that depends on the different scenario
considered (see Section 5.1).
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(r1) {x(R,P,SR,AN,O,S,D,ST): (ST+SU) <= shift_duration} :-
registration(R,P,SU,_,SP,_,_), mss(O,S,SP,D), surgeon(SR,SP,S),
an(AN,SP,S), time(S,ST).

(r2) :- registration(R,_,_,_,_,_,_), #count{R,SR,AN,O,S,D,ST :
x(R,P,SR,AN,O,S,D,ST)}>1.

(r3) :- x(R1,_,_,_,O,S,D,ST), x(R2,_,_,_,O,S,D,ST), R1 != R2.
(r4) :- #count{R:x(R,_,_,_,O,S,_,ST), registration(R,_,SU,_,_,_,_),

T>=ST, T<ST+SU}>1, mss(O,S,_,_), time(S,T).
(r5) :- #count{R:x(R,_,SR,_,_,S,_,ST)} > 1, surgeon(SR,_,S),

time(S,ST).
(r6) :- #count{R:x(R,_,SR,_,_,S,_,ST), registration(R,_,SU,_,_,_,_),

T>=ST, T<ST+SU}>1, surgeon(SR,_,S), time(S,T).
(r7) :- #count{R:x(R,_,_,AN,_,S,_,ST)} > 1, an(AN,_,S), time(S,ST).
(r8) :- #count{R:x(R,_,_,AN,_,S,_,ST), registration(R,_,SU,_,_,_,_),

T>=ST, T<ST+SU}>1, an(AN,_,S), time(S,T).
(r9) :- #sum{SU,R:x(R,_,SR,_,_,_,D,_), registration(R,_,SU,_,_,_,_)}

> SWT, surgWT(SWT,SR,D).
(r10) :- #sum{SU,R:x(R,_,_,AN,_,_,D,_), registration(R,_,SU,_,_,_,_)}

> AWT, anWT(AWT,AN,D).
(r11) :- #count{R:x(R,1,_,_,_,_,_,_)} < totRegsP1.
(r12) :∼ M=#count{R:x(R,2,_,_,_,_,_,_)}, N=totRegsP2-M. [N@3].
(r13) :∼ M=#count{R:x(R,3,_,_,_,_,_,_)}, N=totRegsP3-M. [N@2].

Figure 5.1 ASP encoding of the ORS problem with surgical teams.

After guessing an assignment for the registrations, the encoding presents constraints, related
to general and work-time requirements, and to registrations of priority 1, to discard some
unwanted assignments. All such constraints are explained in the following paragraphs,
together with weak constraints for dealing with the optimization on registrations having
priority 2 and 3.

General requirements. Rule (r2) checks that same registration with same surgeon and
anaesthetist should not be assigned more than once in different OR or shifts at the same time.
Rule (r3) ensures that different registrations cannot be assigned in the same OR and shift at
the same time slot. Rule (r4) checks that different registrations cannot be assigned at different
times ,in the same OR and shift until the end time of the previous surgery to avoid time
overlapping. Rule (r5) shows that the same surgeon cannot be assigned at the same time slot
in different ORs in the same shift. Rule (r6) checks that the same surgeon cannot be assigned
at different times in different OR in the same shift until the end of previous surgery. Rule (r7)
ensures that the same anaesthetist cannot be assigned at the same time slot in different ORs
in the same shift. Rule (r8) checks that the same anaesthetist cannot be assigned to different
times to different ORs in the same shift until the previous surgery is finished.
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Work time requirements. Rules (r9) and (r10) are related to the work time of surgeons
and anaesthetist to impose that the total number of registrations assigned to a surgeon cannot
increase her/his total work hours in a day; similarly for anaesthetist the rule ensures that the
total number of registrations assigned should not increase the total work hours in a day.

Priorities and optimization. Finally, since we model a priority based system, we want
to be sure that every registration having priority 1 is assigned first, then we assign as
much as possible the others, giving preference to registrations having priority 2 over those
having priority 3. This is accomplished through constraint (r11) for priority 1 and the
weak constraints (r12) and (r13) for priority 2 and 3, where totRegsP1, totRegsP2 and
totRegsP3 are constants representing the total number of registrations having priority 1, 2
and 3, respectively.

5.2 Alternative ASP solution

In this section, for the same problem solved in the previous section about the basic ORS
problem with surgical teams, we present an alternative solution still based on ASP but whose
modeling principles depart from those used in the previous encoding. This solution has been
designed during the (remote) PhD collaboration with Prof. Martin Gebser of Klagenfurt
University in Austria.

Data Model. The input data is the same specified in the previous chapter. The output is
an assignment represented by atoms of the form schedule(R,L,O,P,D,S,r(oproom,I), where
the intuitive meaning is that the registration R with priority L and operation duration equal
to O for the specialty P during the session S and the day D in the operating room I. It is
important to emphasize here that the priority L is not actually needed in the output, however
it is included because it improves the readability of the encoding presented in the subsequent
paragraph.

Encoding. The related encoding is shown in Figure 5.2, and is described in the following.
Rules r4, r9, and r21 are defined to reduce the number of fields of the atoms involved in the
rules. Rules from r1 to r3 define the atom resource for the ORs, surgeons and anaesthetists
which, starting from the mss atoms, get all the sessions, days, and specialty in which these
resources exist.
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(r1) resource(r(oproom,I),P,D,S) :- mss(I,S,P,D).
(r2) resource(r(surgeon,I),P,D,S) :- resource(r(oproom),P,D,S),

surgeon(I,P,S).
(r3) resource(r(anaesthetist,I),P,D,S) :- resource(r(surgeon),P,D,S),

an(I,P,S).
(r4) resource(r(K),P,D,S) :- resource(r(K,I),P,D,S).
(r5) capacity(r(surgeon,I),D,C) :- surgeryTime(C,I,D),

#sum+{shift_duration,S : resource(r(anaesthetist),P,D,S),
resource(r(surgeon,I),P,D,S)} > C.

(r6) capacity(r(anaesthetist,I),D,C) :- anaesthetistWT(C,I,D),
#sum+{shift_duration,S : resource(r(anaesthetist,I),P,D,S)} > C.

(r7) feasible(R,L,O,P,D,S) :- resource(r(anaesthetist),P,D,S),
registration(R,L,O,_,P,_,_), O <= shift_duration.

(r8) feasible(R,L,O,P,D,S, r(K,I)) :- resource(r(K,I),P,D,S),
feasible(R,L,O,P,D,S).

(r9) feasible(R,L,O,P) :- feasible(R,L,O,P,D,S).
(r10) {occupation(R,P,D-2..D-1; schedule(R,L,O,P,D,S) :

feasible(R,L,O,P,D,S)} 1 :- feasible(R,L,O,P).
(r11) {schedule(R,L,O,P,D,S,r(K,I)) : feasible(R,L,O,P,D,S, r(K,I))} = 1

:- resource(r(K,I),P,D,S), schedule(R,L,O,P,D,S).
(r12) :- capacity(X,D,C), #sum+{O,R: schedule(R,L,O,P,D,S,X)} > C.
(r13) beds(200,P,D) :- mss(_,_,P,D).
(r14) :- beds(N,P,D) :- #count{R: occupation(R,P,D)} > N.
(r15) overlap(R1,O1,R2,O2) :- schedule(R1,L1,O1,P1,D,S,X),

schedule(R2,L2,O2,P2,D,S,X), R1 < R2.
(r16) {ordering(R1,R2,O2)} :- overlap(R1,O1,R2,O2).
(r17) ordering(R2,R1,O1) :- overlap(R1,O1,R2,O2), not ordering(R1,R2,O2.
(r18) end(R,0..O-1) :- feasible(R,L,O,P).
(r19) end(R,Q) :- ordering(R1,R,O),end(R1,Q1), Q = Q1+O, Q <=

shift_duration.
(r20) :- end(R,shift_duration).
(r21) schedule(R,L,O,P) :- schedule(R,L,O,P,D,S).
(r22) :- registration(R,1,O,_,P,_,_), not schedule(R,1,O,P).
(r23) :∼ registration(R,L,O,_,P,_,_), not schedule(R,L,O,P), 1 < L.

[1@5-L,R]

Figure 5.2 ASP encoding optimized of the ORS problem.

Rule r7 get all the possible days and sessions in which each registration can be assigned. Then
r8 use the atom defined in rule r7 to get all the operating rooms in which the registration can
be assigned and all the possible surgeon and anaesthetists that can be assigned to the surgery.
Rules r10 guess a day and a session for each possible registration from the possible days
and sessions assignable to the registration. Rule r11 guess the resources for each assigned
registration. Rule r12 imposes that the total length of surgery durations assigned to each
resource is less than the maximum capacity of the considered resource. Rules r13 and r14

define 200 beds for each specialty and day and checks that the number of assigned registration
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to the considered days and specialties are lower than 200. Rule r15 get all the registrations
assigned to the same day, session and resource. Then, with rules r16 and r17 is assigned an
order between the two registrations. Rules r18, r19 and, r20 define the ending time of each
assigned surgery. In particular, r19 ensure that each surgery is started and completed after the
surgery before, while r20 checks that the ending time of each surgery is before the ending
time of the considered session. Rule r22 impose that every registration with priority level
equal to 1 is assigned. With rule r23 we minimize the number of registration with priority L
with weight equal to 5-L.



Chapter 6

Analysis of the two ASP solutions for the
ORS problem with surgical teams

This chapter first presents the dimensions on which the analysis has been performed, and
then a (comparative) analysis of the two ASP encoding for the ORS problem with surgical
teams presented in the previous chapter.

6.1 Benchmarks

We have performed different slot interval analysis on the performance of our encoding
and employed ASP solver. As described in Section 5.1, the dimension of the slot interval
determines the time sensitivity of our encoding, and four different scenarios have been
considered: A, B, C, and D for slot interval of 10, 20, 30, and 60 minutes, respectively.
For each scenario, the characteristics of the tests are as follows:

• 4 different benchmarks, with a planning period of 1, 2, 3 and 5 working days;

• For each benchmark the total number of randomly generated registrations were 350
for 5 days, 210 for 3 days, 140 for 2 days and 70 for 1 days;

• 5 specialties;

• 20 surgeons assigned to the 5 specialties;

• 20 anaesthetists assigned to the 5 specialties;

• 4 hours of work time in a day for each surgeon;
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Table 6.1 Total number of randomly generated registrations for each benchmark.

Specialty
Registrations

ORs
5-day 3-day 2-day 1-day

1 80 48 32 16 3
2 70 42 28 14 2
3 70 42 28 14 2
4 60 36 24 12 1
5 70 42 28 14 2

Total 350 210 140 70 10

• 6 hours of work time in a day for each anaesthetist;

• 10 ORs distributed among the specialties;

• 5 hours morning and afternoon shifts for each OR summing up to 500, 300, 200 and
100 hours of OR available time for the four benchmarks;

Table 6.1 shows the distribution of the total number of randomly generated registrations for
each benchmark of 5, 3, 2 and 1 day, for each specialty, together with the distribution of ORs
for each specialty.

6.2 Experimental Results

For simplicity we refer to the ASP encoding in Chapter 5.1 as Encoding 1, and to the second
ASP encoding in Chapter 5.2 as Encoding 2.
The averages of results with the experiments for encoding 1 and 2 are reported for scenario A
in Table 6.2 for scenario B in Table 6.3, for scenario C in Table 6.4 and for scenario D in Table
6.5, respectively. Each benchmark was tested 10 times with different randomly generated
inputs (see part 3 for details). A time limit of 300 seconds was set for each experiment in
both encodings. In each table averages for 10 instances for each benchmark are reported,
and assignments to P1, P2, P3 priorities, total assignments, OR, Surgeons and Anesthetists
efficiency are reported.
As we can see in scenario A Table 6.2 with slot interval of 10 minutes. For encoding 1 we
obtain results only for schedules up to 3 days, while in the case of the 5-days benchmark
the computation time exceeds our time limit of 300 seconds on all instances. However, with
encoding-2 other than the 1, 2 and 3-days benchmark we also obtained schedules for 5 days
benchmark. It can also be seen that for encoding 2 the OR efficiency is 74% while Surgeons
and Anesthetists WT efficiency remains greater than 91% and 60% for all benchmarks.
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For Scenario B Table 6.3 details the scheduling results for encoding 1 and 2 with slot intervals
of 20 minutes. It can be seen that OR efficiency for both the encodings is 75% while the
Surgeons and Anesthetists WT efficiency remain greater than 90% and 60%, respectively, for
all benchmarks in this scenario.
In scenario C Table 6.4 with a slot interval of 30 minutes, the OR efficiency for encoding
1 and 2 is around 76% while the Surgeons and Anesthetists WT efficiency for both the
encodings are up to 94% and 63% for all benchmarks respectively.
In scenario D Table 6.5 with a slot interval of 60 minutes, OR efficiency for both encodings
is almost 79% while the Surgeons WT efficiency is more than 95%, and Anesthetists WT
efficiency is up to 65%.

Table 6.2 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario A with
encoding 1 and 2

Encoding Bench. P1 P2 P3 Total
OR
Eff.

Surgeons WT
Efficiency

Anesthetists WT
Efficiency

1

5 days - - - - - - -
3 days 43.1 / 43.1 53 / 81.6 26.2 / 85.3 122.3 / 210.0 73.5% 91.8% 61.2%
2 days 29.9 / 29.9 37.0 / 54.7 17.7 / 55.4 84.6 / 140.0 74.7% 93.4% 62.3%
1 day 13.4 / 13.4 22.8 / 28.0 8.9 / 28.6 46.1 / 70.0 75.6% 94.5% 62.9%

2

5 days 70.5 / 70.5 91.7 / 144.2 48.3 / 135.3 210.5 / 350.0 74.3% 92.8% 61.9%
3 days 43.1 / 43.1 60.5 / 81.6 22.1 / 85.3 125.7 / 210.0 74.7% 93.4% 62.5%
2 days 29.9 / 29.9 43.6 / 54.7 10.9 / 55.4 84.4 / 140.0 75.9% 94.9% 63.2%
1 day 13.4 / 13.4 22.9 / 28.0 9.8 / 28.6 44.1 / 70.0 75.5% 94.3% 62.9%

Table 6.3 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario B with
encoding 1 and 2

Encoding Bench. P1 P2 P3 Total
OR
Eff.

Surgeons WT
Efficiency

Anesthetists WT
Efficiency

1

5 days 71.2 / 71.2 99.4 / 140.1 38.3 / 138.7 208.9 / 350.0 75.1% 93.8% 62.5%
3 days 40.9 / 40.9 61.6 / 85.3 25.2 / 83.8 127.7 / 210.0 75.3% 94.1% 62.8%
2 days 28.2 / 28.2 41.1 / 56.1 14.9 / 55.7 84.2 / 140.0 75.0% 93.7% 62.5%
1 day 12.5 / 12.5 23.1 / 29.7 8.9 / 27.8 43.5 / 70.0 75.5% 94.4% 62.9%

2

5 days 71.2 / 71.2 95.5 / 140.1 46.8 / 138.7 213.5 / 350.0 75.3% 94.2% 62.8%
3 days 40.9 / 40.9 67.0 / 85.3 21.1 / 83.8 129 / 210.0 76.3% 95.3% 63.6%
2 days 28.2 / 28.2 44.8 / 56.1 12.1 / 55.7 85.1 / 140.0 75.9% 94.8% 63.2%
1 day 12.5 / 12.5 23.1 / 29.7 8.9 / 27.8 43.5 / 70.0 75.3% 94.1% 62.7%
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Table 6.4 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario C with
encoding 1 and 2

Encoding Bench. P1 P2 P3 Total
OR
Eff.

Surgeons WT
Efficiency

Anesthetists WT
Efficiency

1

5 days 71.9 / 71.9 99.0 / 139.8 44.1 / 138.3 215.0 / 350.0 76.0% 95.2% 63.3%
3 days 41.7 / 41.7 66.9 / 84.8 21.6 / 83.5 130.2 / 210.0 76.1% 95.1% 63.5%
2 days 27.9 / 27.9 42.7 / 53.8 16.9 / 58.3 87.5 / 140.0 76.2% 95.2% 63.5%
1 day 14.2 / 14.2 23.0 / 29.4 6.7 / 26.4 43.9 / 70.0 76.2% 95.1% 63.5%

2

5 days 71.9 / 71.9 96.2 / 139.8 46.3 / 138.3 214.4 / 350.0 75.8% 94.7% 63.1%
3 days 41.7 / 41.7 67.4 / 84.8 21.4 / 83.5 130.5 / 210.0 76.5% 95.6% 63.7%
2 days 27.9 / 27.9 42.9 / 53.8 16.6 / 58.3 87.3 / 140.0 76.3% 95.4% 63.8%
1 day 14.2 / 14.2 23.0 / 29.4 6.7 / 26.4 43.9 / 70.0 76.5% 95.6% 63.8%

Table 6.5 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario D with
encoding 1 and 2

Encoding Bench. P1 P2 P3 Total
OR
Eff.

Surgeons WT
Efficiency.

Anesthetists WT
Efficiency

1

5 days 68.7 / 68.7 109.6 / 143.8 46.9 / 137.5 224.8 / 350.0 79.0% 98.8% 65.8%
3 days 41.8 / 41.8 65.1 / 81.9 25.5 / 86.3 132.4 / 210.0 78.7% 98.4% 65.6%
2 days 27.5 / 27.5 46.5 / 54.5 14.6 / 58.0 87.7 / 140.0 79.2% 98.9% 65.9%
1 day 13.3 / 13.3 23.1 / 27.5 8.3 / 29.2 44.7 / 70.0 78.3% 97.8% 65.2%

2

5 days 68.7 / 68.7 100.2 / 143.8 53.6 / 137.5 222.5 / 350.0 79.0% 98.7% 65.8%
3 days 41.8 / 41.8 66.9 / 81.9 23.2 / 86.3 131.9 / 210.0 78.9% 98.6% 65.7%
2 days 27.5 / 27.5 47.1 / 54.5 13.5 / 58.0 88.1 / 140.0 79.2% 99.1% 66.0%
1 day 13.3 / 13.3 23.3 / 27.5 8.1 / 29.2 44.7 / 70.0 78.8% 98.5% 65.7%

Appendix A further reports very detailed results about metrics like CPU time, answer sets,
optimization and assigned registrations for the experiments performed on both Encoding 1
and 2 just showed in Tables 6.2-6.5.

Analysis with different optimization strategies. We have performed different slot interval
analysis for scenario A, B, C, D on the performance of Encoding 1 and 2 by setting the
solver options to –restart-on-model (denoted as rom), –opt-strategy=bb,1 (denoted as bb1)
and Multithreading (denoted as -t4) in tables below.
The results of the experiments for encoding 1 and 2 with solver options (rom, bb1, t4) are
reported for scenario A in Table 6.6, for scenario B in Table 6.7, for scenario C in Table
6.8and for scenario D in Table 6.9, respectively. Each benchmark was tested 10 times with
different randomly generated inputs. A time limit of 300 seconds was set for each experiment.
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In each table averages for 10 instances for each benchmark are reported. Each table consists
of six columns, with the first column show the name of the benchmark, the second column
reports the option used, then further for each encoding we have reported as an average a
column for Assigned (P1, P2, P3 and total assigned registrations) while the second column
reports (OR, surgeon work time and anesthetist work time) efficiencies.
As we can see in scenario A (Table 6.6) with slot interval of 10 minutes. For encoding
1 with all options we obtain results only for schedules up to 3 days, while in the case of
the 5-days benchmark the computation time exceeds our time limit of 300 seconds on all
instances. However, with encoding-2 other than the 1, 2 and 3-days benchmark we also
obtained schedules for 5 days benchmark. For 1 day benchmark both the encodings for
all options performs almost the same. It can also be seen that in case of 2, 3 and 5 day
benchmark for both encoding 1 and 2 with option (bb,1 and t4) the number of assigned P2
registrations are increased (shown in bold). It can also be seen that for option (bb,1) and (t4)
with encoding 2 the OR efficiency is greater than 70% while Surgeons and Anesthetists WT
efficiency remains greater than 91% and 60% for all benchmarks.

Table 6.6 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario A with
encoding 1 and 2

Encoding 1 Encoding 2

Bench Option
Assigned

[P1, P2, P3,Total]
Efficiency (%)

[OR, SWT, AWT]
Assigned

[P1, P2, P3, Total]
Efficiency (%)

[OR, SWT, AWT]

1

rom [13.4 , 22.8, 8.9, 46.1] [75.6, 94.5, 62.9] [13.4, 22.9, 9.8, 44.1] [75.5, 94.3, 62.9]
bb1 [13.4, 22.9, 7.3, 43.6] [74.8, 93.4, 62.3] [13.4, 22.9, 7.8, 44.1] [75.4, 94.2, 62.8]
t4 [13.4, 22.9, 7.3, 43.6] [74.5, 93.4, 62.2] [ 13.4, 22.9, 7.8, 44.1] [75.1, 90.9, 57.1]

2

rom [29.9, 37.0, 17.7, 84.6] [74.7, 93.4, 62.3] [29.9, 43.6, 10.9, 84.4] [75.9, 94.9, 63.2]
bb1 [29.9, 43.3, 0, 73.2] [68.0, 85.1, 57.0] [29.9, 43.5, 8.3, 81.7] [73.3, 91.7, 61.1]
t4 [29.9, 43.5, 2.6, 76.0] [69.8, 87.3, 58.2] [29.9, 43.5, 8.4, 81.8] [73.6, 91.9, 61.3]

3

rom [43.1, 53.0, 26.2, 122.3] [73.5, 91.8, 61.2] [43.1, 60.5, 22.1, 125.7] [74.7, 93.4, 62.5]
bb1 [43.1, 65.0, 0, 108] [67.7, 84.7, 56.4] [43.1, 65.7, 5.3, 114.1] [70.0, 87.5, 58.3]
t4 [43.1, 64.6, 0, 107.7] [67.4, 84.3, 56.2] [43.1, 65.6, 7.8, 116.5] [71.0, 88.8, 59.2]

5

rom - - [70.5, 91.7, 48.3, 210.5] [74.3, 92.8, 61.9]
bb1 - - [70.5, 118, 4.8, 193.7] [70.3, 87.8, 58.5]
t4 - - [70.5, 117.9, 5.1, 193.5] [70.4, 88.0, 58.7]
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In scenario B (Table 6.7) with slot interval of 20 minutes, for encoding 1 we obtain results
for a complete 5 day schedule for all options (rom, bb1 and t4). It can also be seen that
for both encoding 1 and 2 with option (bb1 and t4) the number of assigned P2 registrations
are increased (shown in bold). Further, for option (bb,1) and (t4) with encoding 1 the OR
efficiency is greater than 66% while Surgeons and Anesthetists WT efficiency remains greater
than 82% and 55% for all benchmarks. For encoding 2 with option (bb,1) and (t4) the OR
efficiency is greater than 69% while the Surgeons and Anesthetists WT efficiency remains
greater than 86% and 57%. In scenario C (Table 6.8) and scenario D (Table 6.9) with slot
interval of 30 and 60 minutes. It can be seen that for both encoding 1 and 2 with option (bb,1
and t4) the number of assigned P2 registrations are increased (shown in bold). It can also be
seen that for option (bb,1) and (t4) for both encoding 1 and 2 the OR efficiency remains same
for all benchmarks and is greater than 65% while Surgeons and Anesthetists WT efficiency
remains greater than 82% and 55% for all benchmarks.

Table 6.7 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario B with
encoding 1 and 2

Encoding 1 Encoding 2

Bench Option
Assigned

[P1, P2, P3,Total]
Efficiency (%)

[OR, SWT, AWT]
Assigned

[P1, P2, P3, Total]
Efficiency (%)

[OR, SWT, AWT]

1

rom [12.5, 23.1, 8.9, 43.5] [75.5, 94.4, 62.9] [12.5, 23.1, 8.9, 43.5] [75.3, 94.1, 62.7]
bb1 [12.5, 23.1, 7.9, 43.5] [74.5, 94.2, 62.8] [12.5, 23.1, 7.9, 43.5] [75.3, 94.2, 62.8]
t4 [12.5, 23.1, 7.0, 42.6]] [73.8, 92.2, 61.5] [12.5, 23.1, 7.9, 43.5]] [75.0, 93.7, 62.5]

2

rom [28.2, 41.4, 14.9, 84.2] [75.0, 93.7, 62.5] [28.2, 44.8, 12.1, 85.1] [75.9, 94.8, 63.2]
bb1 [28.2, 44.8, 0, 73.0] [67.7, 84.6, 56.4] [28.2, 44.9, 1.5, 74.6] [69.5, 86.8, 57.9]
t4 [28.2, 44.7, 1.2, 74.1]] [68.3, 85.3, 56.9] [28.2, 45.0, 6.4, 79.5] [73.3, 91.6, 61.0]]

3

rom [40.9, 61.6, 25.2, 127.7] [75.3, 94.1, 62.8] [40.9, 67.0, 21.1, 129.0] [76.3, 95.3, 63.6]
bb1 [40.9, 70.4, 0, 111.3] [69.0, 86.2, 57.5] [40.9, 70.8, 0.4, 112.1] [69.3, 86.6, 57.7]
t4 [40.9, 70.4, 0, 111.3]] [68.8, 86.0, 57.3] [40.9, 70.6, 3.9, 115.4] [71.2, 89.0, 59.4]

5
rom [71.2, 99.4, 38.3, 208.9] [75.1, 93.8, 62.5] [71.2, 95.5, 46.8, 213.5] [75.3, 94.2, 62.8]
bb1 [71.2, 117.6, 0, 188.8] [69.9, 87.3, 58.2] [71.2, 118.5, 2.2, 191.5] [70.6, 88.2, 58.8]
t4 [71.2, 93.6, 15.9, 180.7] [66.0, 82.6, 55.0] [71.2, 118.0, 2.6, 191.7] [70.6, 88.2, 59.0]]
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Table 6.8 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario C with
encoding 1 and 2

Encoding 1 Encoding 2

Bench Option
Assigned

[P1, P2, P3,Total]
Efficiency (%)

[OR, SWT, AWT]
Assigned

[P1, P2, P3, Total]
Efficiency (%)

[OR, SWT, AWT]

1

rom [14.2, 23.0, 6.7, 43.9] [76.2, 95.1, 63.5] [14.2, 23.0, 6.7, 43.9] [76.5, 95.6, 63.8]
bb1 [14.2, 23.0, 6.5, 43.7] [75.9, 94.8, 63.2] [14.2, 23.0, 6.7, 43.9] [75.9, 94.8, 63.2]
t4 [14.2, 23.0, 6.4, 43.6] [75.6, 94.5, 63.0] [14.2, 23.0, 6.7, 43.9] [76.2, 95.2, 63.5]

2

rom [27.9, 42.7, 16.9, 87.5] [76.2, 95.2, 63.5] [27.9, 42.9, 16.6, 87.3] [76.3, 95.4, 63.8]
bb1 [27.9, 44.1, 0, 72.0] [65.5, 82.0, 54.6] [27.9, 44.1, 1.7, 73.7] [67.0, 83.7, 55.8]
t4 [27.9, 44.1, 6.1, 78.1] [70.1, 87.6, 58.4] [27.9, 44.1, 10.6, 82.6] [74.0, 92.5, 61.6]

3

rom [41.7, 66.9, 21.6, 130.2] [76.1, 95.1, 63.5] [41.7, 67.4, 21.4, 130.5] [76.5, 95.6, 63.7]
bb1 [41.7, 71.1, 0, 112.8] [68.6, 85.7, 57.1] [41.7, 71.3, 0.6, 113.6] [69.0, 86.2, 57.5]
t4 [41.7, 71.1, 0, 112.8] [68.7, 85.9, 57.2] [41.7, 71.2, 2.6, 115.2] [69.9, 87.4, 58.3]

5
rom [71.9, 99.0, 44.1, 215.0] [76.0, 95.2, 63.3] [71.9, 96.2, 46.3, 214.4] [75.8, 94.7, 63.1
bb1 [71.9, 118.7, 0, 190.6] [70.0, 87.4, 58.2] [71.9, 119.0, 1.8, 192.5] [70.4, 88.0, 58.7
t4 [71.9, 118.5, 0, 190.4] [69.7, 87.1, 58.1] [71.9, 118.7, 1.7, 192.3] [70.6, 88.2, 58.8]

Table 6.9 Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario D with
encoding 1 and 2

Encoding 1 Encoding 2

Bench Option
Assigned

[P1, P2, P3,Total]
Efficiency (%)

[OR, SWT, AWT]
Assigned

[P1, P2, P3, Total]
Efficiency (%)

[OR, SWT, AWT]

1

rom [13.3, 23.1, 8.3, 44.7] [78.3, 97.8, 65.2] [13.3, 23.3, 8.1, 44.7] [78.8, 98.5, 65.7]
bb1 [13.3, 23.3, 8.0, 44.6] [78.5, 98.1, 65.4] [13.3, 23.3, 8.1, 44.7] [78.7, 98.3, 65.5 ]
t4 [13.3, 23.3, 8.1, 44.7] [78.5, 98.1, 65.4] [13.3, 23.3, 8.1, 44.7] [78.5, 98.1, 65.4]

2

rom [27.5, 46.5, 14.6, 87.7] [79.2, 98.9, 65.9] [27.5, 47.1, 13.5, 88.1] [79.2, 99.1, 66.0]
bb1 [27.5, 47.1, 0, 74.6] [70.1, 87.7, 58.4] [27.5, 47.1, 0.6, 75.2] [70.4, 88.0, 58.7]
t4 [27.5, 47.1, 0, 74.6] [70.0, 87.5, 57.4 ] [27.5, 47.1, 10.0, 84.6] [78.0, 97.5, 65.0]

3

rom [41.8, 65.1, 25.5, 132.4] [78.7, 98.4, 65.6] [41.8, 66.9, 23.2, 131.9] [78.9, 98.6, 65.7]
bb1 [41.8, 71.2, 0, 113.0] [71.4, 89.2, 59.5] [41.8, 71.2, 0.2, 113.2] [71.5, 89.4, 59.6]
t4 [41.8, 71.2, 1.6, 114.6] [72.7, 90.8, 60.6] [41.8, 71.2, 4.3, 117.3] [74.0, 92.5, 61.6]

5

rom [68.7, 109.6, 46.9, 224.8] [79.0, 98.8, 65.8] [68.7, 100.2, 53.6, 222.5] [79.0, 98.7, 65.8]
bb1 [68.7, 125.9, 0, 194.6] [72.5, 90.6, 60.4] [68.7, 125.7, 1.1, 195.5] [72.8, 91.0, 60.7]
t4 [68.7, 125.9, 0, 194.6 [72.7, 90.7, 60.5] [68.7, 125.7, 0.9, 195.3] [72.7, 91.0, 60.6]



Chapter 7

Rescheduling for the ORS problem with
bed management

The rescheduling procedure is applied to a previously planned schedule, i.e. we start from an
already created schedule (old schedule or x-schedule) that could not be executed fully till the
end due to some reasons, e.g. some patients could not be operated in their assigned slots or
the patients may delete their registration. In such a situation all those postponed registrations
(or surgeries) must be reallocated to one of the next slots in the remaining part of the original
planning period (new schedule or y-schedule). The planning period we consider is 5 days,
and we consider the basic ORS setting with bed management (Chapter 4).
Once planned, a speciality schedule does not influence other specialties so it makes sense to
reschedule one specialty at a time. Since we already have the initial schedule for the planning
period of 5 days, we assumed that in day 2, a number of registrations from specialty 1 had to
be postponed to the next day. So we have to reschedule these registrations in the remaining
available three days, i.e. day 3, 4 and 5.
In order to insert the postponed registrations in the new schedule (y-schedule) we have to
make sure that the start of the schedule leaves enough available OR time by automatically
dropping the necessary registrations from the old schedule; the choice of the registrations
to be removed will begin from the last day, i.e. day 5 of the planning period and from
registrations in the priority 3 category.
The next two sub-sections will show ASP encoding for the rescheduling problem, together
with the needed changes in the data model, and the results of the experimental analysis we
performed.
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(rr1) {y(R,P,O,S,D)} :- registration(R,P,_,_,SP,_,_), mss(O,S,SP,D).
(rr2) :- y(R,P,O,S1,_), y(R,P,O,S2,_), S1 != S2.
(rr3) :- y(R,P,O1,S,_), y(R,P,O2,S,_), O1 != O2.
(rr4) surgery(R,SU,O,S) :- y(R,_,O,S,_), registration(R,_,SU,_,_,_,_).
(rr5) :- y(_,_,O,S,_), #sum{SU,R: surgery(R,SU,O,S)}>N, duration(N,O,S).
(rr6) stay(R,(D-A)..(D-1),SP) :- registration(R,_,_,LOS,SP,_,A),

y(R,_,_,_,D), A>0.
(rr7) stay(R,(D+ICU)..(D+LOS-1),SP) :- registration(R,_,_,LOS,SP,ICU,_),

y(R,_,_,_,D), LOS>ICU.
(rr8) stayICU(R,D..(D+ICU-1)) :- registration(R,_,_,_,_,ICU,_),

y(R,_,_,_,D), ICU>0.
(rr9) :- #count{R: stay(R,D,SP)} > AV, SP>0, beds(SP,AV,D).
(rr10) :- #count{R: stayICU(R,D)} > AV, beds(0,AV,D).
(rr11) :- not y(R,P,_,_,_),x(R,P,_,_,2).
(rr12) totReg(L,4) :- M = #count{R:y(R,1..2,_,_,_),x(R,1..2,_,_,_)},

P = #count{R : x(R,1..2,_,_,_)}, L=P-M.
(rr13) totReg(L,3) :- M = #count{R:y(R,3,_,_,_),x(R,3,_,_,3..4)},

P = #count{R : x(R,3,_,_,3..4)}, L=P-M.
(rr14) totReg(L,2) :- M = #count{R:y(R,3,_,_,5),x(R,3,_,_,5)},

P = #count{R : x(R,3,_,_,5)}, L=P-M.
(rr15) :∼ totReg(L,V). [L@V]
(rr16) :∼ y(R,_,_,_,D),x(R,_,_,_,OldD),DF = |D - OldD|. [DF@1, R]

Figure 7.1 ASP encoding of the ORS problem without beds-management (Rescheduling)

7.1 ASP Encoding

Input. The input data is specified by means all of the atoms described in Section 4.1 and
by atoms of the form x(R,P,O,S,D). The latter represent a solution to the ORS problem
as computed by the encoding described in Section 5.2. Moreover, in the following we
assume that atoms of the form mss(O,S,SP,D) include only elements from day 3 to day 5, i.e.
3 ≤ D ≤ 5.

Output. The output of the new schedule is represented by atoms of the form y(R,P,O,S,D),
representing that the registration R of the patient with priority P is assigned to an operating
room O in a shift S of day D.

Encoding. The ASP rescheduling encoding for ORS problem is shown in Figure 7.1. In
particular, rules (rr1)-(rr10) correspond to rules (r1)-(r10) from the encoding reported in
Figure 4.1, where atoms over the predicate x are replaced with the ones over the predicate
y. Rule (rr11) states that all registration scheduled for the day 2 (i.e. the ones postponed
according to our scenarios) should be rescheduled. Rules (rr12)-(rr15) ensure that the
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Table 7.1 Results for the four rescheduling scenarios

Scenario Postponed Registr. Total Old Registr. Dropped Registr. Total New Registr.
I 1 45 0 46
II 2 44 1 46
III 4 43 2 47
IV 6 41 4 47

maximum number of registrations from the old schedule should be included also in the
new one. In particular, rule (rr12) computes the difference between the total number of
registrations with priority 1 and 2 assigned in the previous schedule and the number of
registrations assigned in the current schedule, whereas rule (rr13) (resp. (rr14)) computes the
difference between the total number of registrations with priority 3 for day 3 and 4 (resp. day
5), and the number of registrations assigned in the current schedule. Such differences are
then minimized by means of the weak constraint (rr15). Finally, rule (rr16) minimizes the
total sum of the difference (in terms of number of days) between the new schedule and the
old one for each registration.

7.2 Experimental Results

The results using our ASP rescheduling encoding on four scenarios (I, II, III, and IV) are
summarized in Table 7.1. An execution time of 60 seconds was given for each scenario.
For our tests we started from an old schedule (x-schedule) calculated under the conditions
delineated in Scenario A of the scheduling problem, in particular we took into account the
results for specialty 1. Since we consider postponed registrations from a single speciality
for our analysis, it should be noted that the total number of old registrations of specialty
1 with priority 1, 2 and 3 to be rescheduled in the next 3 days were 45. In the table, the
first column mentions the scenario, the second shows the number of registrations that were
inserted in each scenario (Postponed Registrations), the third column reports the total number
of registrations from the old schedule (Total Old Registrations), while the fourth column
shows the necessary number of dropped registrations from the old schedule. Finally, the last
column shows the total number of registrations in the new schedule by also reassigning the
postponed registrations (Total New Registrations) in the next days. Columns from the second
to the fifth report the (rounded) mean of the 10 instances. Overall, our encoding dropped 0,
1, 2 and 4 priority 3 old schedule registrations for scenarios I, II, III, and IV, respectively.
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These results confirm that we managed to produce a new schedule in case of disruption
of the previous one even when already in its execution phase. This was accomplished by
allowing the rescheduled registrations to change time but minimizing the number of changes
of surgery date, which would imply a major disruption in the procedure of the hospital, in
particular regarding the ICU and ward bed management. On the one hand, in a situation
of minor disruption like that of Scenario I we managed to produce a new schedule without
having to drop any of the previously scheduled surgeries; on the other hand, even in case of
greater disruption, like in Scenario II, III, and IV, the number of scheduled surgeries in the
new schedule were at least as many as in the previous schedule.



Chapter 8

GUI for ASP solution

Our scheduling solution has been planned and developed also in view of a practical utilization
by medical operators in hospitals. To this end, we are developing a web application which
wraps the ASP encoding for scheduling the basic ORS setting with bed management (Chapter
4), and the CLINGO solver (see Figure 8.1). The software is a full-stack JavaScript application
with a Graphical User Interface (GUI) and a Node.js back-end. The ASP facts and encoding
are dynamically composed at run-time reflecting the user choices, and are then relayed to
the ASP solver through a wrapper package. This solution allows the solver to be embedded
inside an easily reachable and usable web application, removing the hurdle that installing and
managing the solver may represent for a non-expert user. The application currently includes:

• a registration and authentication process,

• a database for storing and retrieving previous test data, and

• a GUI to easily create and customize new test scenarios or load pre-made ones.

The GUI can be divided in the following sections: an input screen, an overall results screen
and their graphical representation for the ORs and for the bed occupancy. The input screen
(see Figure 8.2) currently hosts two tables: on the left the parameters for the random
generation of the registrations and on the right the bed availability. It is important to note that
in a more operative stage the generation parameter will be obviously replaced by the actual
registration data. In the left table the user can set the parameters for the generator. From left
to right these are:

• the specialty names;

• the number of registrations we aim to assign for each specialty;
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Figure 8.1 Web application architecture schema.

Figure 8.2 Input screen for the registration generator parameter and the beds availability.
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• the parameters (mean and coefficient of variation) of the Gaussian distribution used to
generate the predicted LOS in the ward after the surgery;

• the parameters (mean and coefficient of variation) of the Gaussian distribution used to
generate the predicted surgery lengths;

• the ratio of patients predicted to need a place in the ICU ward; and

• the parameters (mean and coefficient of variation) of the Gaussian distribution used to
generate the predicted LOS in the ICU ward after the surgery.

In the right table, the user can set the number of available beds for each ward connected to a
specialty. From left to right the parameters are:

• the specialty names;

• the number of available beds for each day of the planning period (in the figure a five
days period is shown);

• the percentage of the maximum number of beds potentially available, reflecting the
practice usually used by hospitals to reserve a bed quota for emergencies and unex-
pected events; and

• the total number of beds allocated to the specialty.

The number of beds tends to increase during the planning period to simulate the patients
operated during the previous period that still occupy a bed at the beginning of the planning
period and are gradually discharged.
In the overall results screen (see Figure 8.3) the user can monitor in real-time the evolution
of the process and, finally, read the final results:

• At the top of the screen there are three cards containing the number of assigned regis-
trations out of the total, arranged according to their priority class, for each solution
found by the solver engine. Each number is continuously updated during the execu-
tion whenever a new solution is found. The percentage of assigned registrations is
represented by a progress bar at the bottom of each card.

• At the bottom we summarize the final results at the end of the execution. In particular,
the OR time out of the total available is reported, both in absolute numbers and as a
percentage through a progress bar.



43

Figure 8.3 Results screen.

Figure 8.4 Graphical representation of the OR schedules for a single day and shift.

• Finally, we have two links that lead to the graphical representation of the OR scheduling
and bed occupancy for each day of the planning period.

The graphical representation of each OR schedule is shown through colored bars, one for each
day and shift of the period (see Figure 8.4). In the OR graphs each column displays an OR
and each bar inside the column represents a registration. The bed occupancy is also shown
through a carousel of stacked bar graphs (see Figure 8.5). This time each graph displays the
bed occupancy of a single specialty: each column shows the situation in a day, in particular
the green part of the bar denotes the beds already occupied by patients operated previously,
while the blue part shows the beds occupied by the patients scheduled in the current period.
The solid line shows the total number of beds assigned to the specialty, while the dashed line
gives the maximum number of available beds, respecting the quota for emergencies.
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Figure 8.5 Graphical representation of the bed occupancy for a single specialty.



Chapter 9

Related Work

In this section we review related literature, organized into two paragraphs. The first paragraph
is devoted to outlining different techniques for solving the ORS problem, while in the second
paragraph we report about other scheduling problems where ASP has been employed.

Solving ORS problems. Aringhieri et al. (2015a) addressed the joint OR planning (MSS)
and scheduling problem, described as the allocation of OR time blocks to specialties together
with the subsets of patients to be scheduled within each time block over a one week planning
horizon. They developed a 0-1 linear programming formulation of the problem and used a
two-level meta-heuristic to solve it. Its effectiveness was demonstrated through numerical
experiments carried out on a set of instances based on real data and resulted, for benchmarks
of 80-100 assigned registrations, in a 95-98% average OR utilization rate, for a number
of ORs ranging from 4 to 8. The execution times were around 30-40 seconds. In Landa
et al. (2016), the same authors introduced a hybrid two-phase optimization algorithm which
exploits neighborhood search techniques combined with Monte Carlo simulation, in order to
solve the joint advance and allocation scheduling problem, taking into account the inherent
uncertainty of surgery durations. In both the previous works, the authors solve the bed
management part of the problem limited to weekend beds, while assuming that each specialty
has its own post-surgery beds from Monday to Friday with no availability restriction. In
Aringhieri et al. (2015b), some of the previous authors face the bed management problem for
all the days of the week, with the aim to level the post-surgery ward bed occupancies during
the days, using a Variable Neighbourhood Search approach.
Other relevant approaches are: Abedini et al. (2016), that developed a bin packing model with
a multi-step approach and a priority-type-duration rule; Molina-Pariente et al. (2015), that
tackled the problem of assigning an intervention date and an OR to a set of surgeries on the
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waiting list, minimizing the access time for patients with diverse clinical priority values; and
Zhang et al. (2017), that addressed the problem of OR planning with different demands from
both elective patients and non-elective ones, with priorities in accordance with urgency levels
and waiting times. However, bed management is not considered in these three last mentioned
approaches. Approaches more related to the treatment of surgical teams follow. Meskens et al.
(2013) considered the surgical teams in the computation of an OR schedule, and developed a
model using Constraint Programming (CP) with multiple constraints such as availability, staff
preferences and affinities among surgical teams. They optimize the use of ORs by minimizing
makespan and maximizing affinities among surgical team members. The effectiveness of
their proposed method for improving surgical cases was evaluated using real data from an
Hospital. Hamid et al. (2019) incorporated the decision-making styles (DMS) of the surgical
team to improve the compatibility level by considering constraints such as the availability
of material resources, priorities of patients, and availability, skills, and competencies of the
surgical team. They developed a multi-objective mathematical model to schedule surgeries.
Two metaheuristics, namely Non-dominated Sorting Genetic Algorithm and Multi-Objective
Particle Swarm Optimization, were developed to find pareto-optimal solutions. Xiang et al.
(2015) proposed an Ant Colony Optimization (ACO) approach to surgical scheduling taking
into account all resources in the entire process of a surgery. The problem was represented
as an extended multi-resource constrained flexible job shop scheduling problem, which
was solved using a two-level hierarchical graph to integrate sequencing job and allocating
resources. To evaluate the efficiency of ACO, a Discrete Event System (DES) model of an OR
system was developed in the simulation platform SIMIO. Monteiro et al. (2015) developed a
comprehensive multi-objective mathematical model using epsilon-constraint method coupled
to the CPLEX solver. Vijayakumar et al. (2013) used Mixed Integer Programming (MIP)
model for multi-day, multi-resource, patient-priority-based surgery scheduling. A First Fit
Decreasing algorithm was developed. From a solution time perspective, their model took
hours and in most cases was unable to optimally solve the problem. Belkhamsa et al. (2018)
proposed two meta heuristics, an Iterative Local Search (ILS) approach and Hybrid Genetic
Algorithm (HGA) to solve a daily surgery scheduling problem. Zhou et al. (2016) developed
an Integer Programming model for optimal surgery schedule of assigning patients to different
resources in any surgical stage. They used Lagrangian Relaxation algorithm and solved the
subproblem by using branch and bound. They verified their model using real data instances
from an Hospital. A common issue with all such solutions seem to be computation time and
scalability.
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ASP in scheduling problems. We already mentioned in the introduction that ASP has
been already successfully used for solving hard combinatorial and application problems in
several research areas, and in particular in scheduling. Concerning ORS, the problem has
been already addressed in Dodaro et al. (2018, 2019b), but without taking into account beds
and surgical teams, which instead are a fundamental resource to be considered. Concerning
scheduling problems other than ORS, ASP encodings were proposed for the following
problems: Incremental Scheduling Problem (Balduccini (2011); Calimeri et al. (2014, 2016);
Gebser et al. (2017a,b)), where the goal is to assign jobs to devices such that their executions
do not overlap one another; Team Building Problem (Ricca et al. (2012)), where the goal is to
allocate the available personnel of a seaport for serving the incoming ships; Nurse Scheduling

Problem (Alviano et al. (2017, 2018); Dodaro and Maratea (2017)), where the goal is to
create a scheduling for nurses working in hospital units; Interdependent Scheduling Games

(Amendola (2018)), which requires interdependent services among players, that control
only a limited number of services and schedule independently, and the Conference Paper

Assignment Problem (Amendola et al. (2016)), which deals with the problem of assigning
reviewers in the Program Committee to submitted conference papers. More recent problems,
still in the Healthcare domain, include the Chemotherepy Treatment Scheduling problem
(Dodaro et al. (2021)), in which patients are assigned a chair or a bed for their treatments,
and the Rehabilitation Scheduling Problem (Cardellini et al. (2021)), which assigns patients
to operators in rehabilitation sessions. Other relevant papers are (Gebser et al. (2018)), where,
in the context of routing driverless transport vehicles, the setup problem of routes such
that a collection of transport tasks is accomplished in case of multiple vehicles sharing the
same operation area is solved via ASP, in the context of car assembly at Mercedes-Benz
Ludwigsfelde GmbH, and the recent survey paper by Falkner et al. (2018), where industrial
applications dealt with ASP are presented, including those involving scheduling problems.



Chapter 10

Conclusions and future research

In this research we have employed ASP for solving the ORS problem with several enhance-
ments, i.e., bed management and the inclusion of surgical teams, given ASP has already
proved to be a viable tool for solving scheduling problems due to the readability of the
encoding and availability of efficient solvers. Specifications of the problem are modularly
expressed as rules in the ASP encoding, and the ASP solver CLINGO has been used. We
have then presented the results of experimental and scalability analysis, on ORS benchmarks
with realistic sizes and parameters on three scenarios, that reveal that our solution is able
to utilize efficiently whichever resource is more constrained, being either the OR time or
the beds. Moreover, for the planning length of 5 days usually used in small-medium Italian
hospitals, this is obtained in short timings in line with the needs of the application. We
further developed and evaluated a rescheduling procedure, to be employed in case the orig-
inal schedule cannot be fully executed for some reason. We finally also presented a web
framework that supports the online execution of our scheduling solution. While we do not
directly manage emergencies, the flexibility of our algorithm can be exploited even in those
cases. For example, if a part of the hospital resources (being OR time, ICU or ward beds)
must be suddenly redirected to serve other purposes, as for example happened in the Covid19
emergency, by simply adjusting the numbers our solution can immediately be utilized to
manage the remaining resources at the best of their capacity.
Future work includes both short-term and medium-term objectives. Short-term objectives
include the usage of other solving paradigms as, e.g. SMT or CSP. In terms of efficiency,
given the known relationship among SAT and ASP solving procedures Giunchiglia et al.
(2008); Giunchiglia and Maratea (2005), we plan both to evaluate heuristics and optimization
techniques (see, e.g. Alviano et al. (2020); Giunchiglia et al. (2002, 2003); Rosa et al. (2008)),
as well as further clingo options, and improvement to the current encoding. Medium-term
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objectives, instead, aim at completing the picture, that is somehow fragmented in some
respect, and include: (i) the inclusion of bed management in the alternative encoding, which
showed superior performance; (ii) the extension of re-scheduling solutions to the treatment
of surgical teams; (iii) the extension of the web application to deal with both surgical teams
and re-scheduling, and (iv) a further extension of all our contributions to include also nurses
in the problem definition and modeling.
All materials presented in this work, including benchmarks and encodings, can be found at:
http://www.star.dist.unige.it/~marco/RuleMLRR2TPLP/material.zip.

http://www.star.dist.unige.it/~marco/RuleMLRR2TPLP/material.zip
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Appendix A

Detailed results

In order for further investigations this part reports metrics like CPU time, answer sets,
optimization and assigned registrations for the experiments performed on both encoding 1
and 2, for scenario A in Table A.1 , for scenario B in Table A.2, for scenario C in Table
A.3 and for scenario D in Table A.4. Each table consists of eight column, with first column
showing the encoding, the second column shows the benchmark, third column reports the
time-limit in second for the solver, the forth column shows the cpu time, the fifth column
shows the optimization value, the sixth column shows the generated answer sets and the last
two columns reports the total assigned and total generated registrations for each benchmark.
For comparison purposes in each Scenario (A,B,C,D) a single instance from each benchmark
tested by both encodings are reported. It can be seen the first two column shows the name
of the encoding and the benchmark for which the experiments are performed. The next
four columns shows the time-limit for solver, CPU time, optimization and generated answer
sets while the last two column mention the total assigned registrations and total generated
registrations for each benchmark. The further details of these experiments for all the instances
can be found in part3.
As we can see below for scenario A in Table A.1 for 1-day benchmark and for both the
encodings the total assigned registrations are 47 but encoding-2 took less CPU time 8.2
seconds than encoding 1 for 299.5 seconds. Similarly in other scenarios (B,C and D) for
1-day benchmark, encoding 2 took less CPU time.
Furthermore, for scenario B in Table A.2, for scenario C in Table A.3 and scenario D in Table
A.4 the CPU time or computation time for 2,3 and 5-days benchmarks for both the encodings
1 and 2 remains almost the same with equal number of total number of assigned registrations.
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Additionally, Table A.5, Table A.6, Table A.7 and Table A.8 reports the CPU time, Optimum
, Answer Set and Total assigned registration for all the 10 instances for 1, 2, 3 and 5 day
benchmark executed for both encoding 1 and 2.
Overall results shows that the two encodings have the same results on easy instances (1 day)
as far as optimization is concerned of course the assignment may be different, but the cost is
the same. Also the new encoding can perform better, also significantly. The answer sets “11
vs 20” reported below in Table A.1 for 1 day benchmark in scenario A is because we have a
different set of predicates, and thus the heuristic of Clingo can take different paths towards
solution outputting different (partial) solutions. The same can be observed in Table A.2, A.3
and A.4.
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Table A.1 Solver time-limit, cpu time, answer sets and the assigned registrations of a single
instance for Scenario A

Encoding Bench. Time-limit (sec) CPU Time (sec) Optimization Answer Set
Total Assigned

Regs’
Total Generated

Regs’

1

5 days 300.0 - - - - 350
3 days 300.0 300.0 [31,56 ] 82 123 210
2 days 300.0 300.0 [21,37] 58 82 140
1 day 300.0 300.0 [3,20] 41 47 70

2

5 days 300.0 300.0 [53,86] 209 211 350
3 days 300.0 300.0 [18,67] 142 125 210
2 days 300.0 300.0 [13,46] 65 81 140
1 day 300.0 8.2 [3,20] 11 47 70

Table A.2 Solver time-limit, cpu time, answer sets and the assigned registrations of a single
instance for Scenario B

Encoding Bench. Time-limit (sec) CPU Time (sec) Optimization Answer Set
Total Assigned

Regs’
Total Generated

Regs’

1

5 days 300.0 300.0 [27,107] 148 216 350
3 days 300.0 300.0 [26,62] 104 122 210
2 days 300.0 300.0 [18,44] 70 78 140
1 day 300.0 300.0 [6,21] 44 43 70

2

5 days 300.0 300.0 [48,82] 218 220 350
3 days 300.0 300.0 [11,73] 193 126 210
2 days 300.0 300.0 [13,49] 80 78 140
1 day 300.0 300.0 [6,21] 32 43 70
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Table A.3 Solver time-limit, cpu time, answer sets and the assigned registrations of a single
instance for Scenario C

Encoding Bench. Time-limit (sec) CPU Time (sec) Optimization Answer Set
Total Assigned

Regs’
Total Generated

Regs’

1

5 days 300.0 300.0 [19,121] 140 210 350
3 days 300.0 300.0 [24,52] 113 134 210
2 days 300.0 300.0 [12,39] 68 89 140
1 day 300.0 300.0 [3,26] 44 41 70

2

5 days 300.0 300.0 [41,97] 233 212 350
3 days 300.0 300.0 [18,60] 193 132 210
2 days 300.0 300.0 [12,39] 97 89 140
1 day 300.0 3.9 [3,26] 41 41 70

Table A.4 Solver time-limit, cpu time, answer sets and the assigned registrations of a single
instance for Scenario D

Encoding Bench. Time-limit (sec) CPU Time (sec) Optimization Answer Set
Total Assigned

Regs’
Total Generated

Regs’

1

5 days 300.0 300.0 [20,107] 205 223 350
3 days 300.0 300.0 [24,52] 113 134 210
2 days 300.0 300.0 [7,46] 68 87 140
1 day 300.0 300.0 [2,25] 49 43 70

2

5 days 300.0 300.0 [35,91] 230 224 350
3 days 300.0 300.0 [18,60] 193 132 210
2 days 300.0 300.0 [7,46] 124 87 140
1 day 300.0 32.6 [2,25] 43 43 70

Table A.5 Solver time, cpu time, answer set and the assigned registrations for 1-day in
scenario A with encoding 1 and 2

Solver
Time (sec)

Encoding 1 Encoding 2 Total
Regs’CPU

Time (sec)
Optimum

Answer
Set

Total Assigned
Regs’

CPU
Time (sec)

Optimum Answer Set
Total Assigned

Regs’
300.0 300.0 [3,20] 41 47 8.2 [3,20] 11 47

70

300.0 300.0 [9,20] 44 41 11.3 [9,20] 13 41
300.0 300.0 [3,25] 31 42 7.7 [3,25] 9 42
300.0 300.0 [7,22] 38 41 13.2 [7,22] 22 41
300.0 300.0 [0,26] 38 44 15.9 [0,26] 17 44
300.0 300.0 [3,23] 42 44 10.5 [3,23] 22 44
300.0 300.0 [7,18] 49 45 14.6 [7,18] 16 45
300.0 300.0 [5,19] 49 46 9.4 [4,21] 14 45
300.0 300.0 [12,14] 45 44 55.3 [12,13] 16 45
300.0 144.6 [3,20] 42 47 3.2 [3,20] 18 47
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Table A.6 Solver time, cpu time, answer set and the assigned registrations for 2-days in
scenario A with encoding 1 and 2

Solver
Time (sec)

Encoding 1 Encoding 2 Total
Regs’CPU

Time (sec)
Optimum

Answer
Set

Total Assigned
Regs’

CPU
Time (sec)

Optimum Answer Set
Total Assigned

Regs’
300.0 300.0 [21,37] 58 82 300.0 [13,46] 65 81

140

300.0 300.0 [23,35] 71 82 300.0 [17,41] 94 82
300.0 300.0 [16,34] 66 90 300.0 [13,38] 58 89
300.0 300.0 [23,31] 72 86 300.0 [12,41] 84 87
300.0 300.0 [19,34] 61 87 300.0 [12,40] 64 88
300.0 300.0 [11,43] 66 86 300.0 [6,49] 74 85
300.0 300.0 [16,43] 69 81 300.0 [12,48] 62 80
300.0 300.0 [19,38] 59 83 300.0 [11,48] 64 81
300.0 300.0 [15,40] 76 85 300.0 [8,45] 80 87
300.0 144.6 [14,42] 57 84 300.0 [7,49] 76 84

Table A.7 Solver time, cpu time, answer set and the assigned registrations for 3-days in
scenario A with encoding 1 and 2

Solver
Time (sec)

Encoding 1 Encoding 2 Total
Regs’CPU

Time (sec)
Optimum

Answer
Set

Total Assigned
Regs’

CPU
Time (sec)

Optimum Answer Set
Total Assigned

Regs’
300.0 300.0 [31,56 ] 82 123 300.0 [18,67] 142 125

210

300.0 300.0 [21,61] 86 128 300.0 [24,54] 139 132
300.0 300.0 [39,50] 99 121 300.0 [23,66] 146 121
300.0 300.0 [36,52] 100 122 300.0 [23,60] 126 127
300.0 300.0 [30,57] 92 123 300.0 [24,60] 132 126
300.0 300.0 [26,59] 78 125 300.0 [20,64] 97 126
300.0 300.0 [20,72] 78 118 300.0 [26,62] 113 122
300.0 300.0 [30,59] 109 121 300.0 [22,59] 132 129
300.0 300.0 [17,74] 90 119 300.0 [9,78] 148 123
300.0 300.0 [36,51] 88 123 300.0 [22,62] 142 126
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Table A.8 Solver time, cpu time, answer set and the assigned registrations for 5-day in
scenario A with encoding 1 and 2

Solver
Time (sec)

Encoding 1 Encoding 2 Total
Regs’CPU

Time (sec)
Optimum

Answer
Set

Total Assigned
Regs’

CPU
Time (sec)

Optimum Answer Set
Total Assigned

Regs’
300.0 300.0 - - - 300.0 [53,86] 209 211

350

300.0 300.0 - - - 300.0 [47,92] 198 211
300.0 300.0 - - - 300.0 [49,88] 184 213
300.0 300.0 - - - 300.0 [52,84] 220 214
300.0 300.0 - - - 300.0 [57,88] 197 205
300.0 300.0 - - - 300.0 [57,84] 209 209
300.0 300.0 - - - 300.0 [51,92] 184 207
300.0 300.0 - - - 300.0 [47,83] 220 220
300.0 300.0 - - - 300.0 [56,86] 197 208
300.0 300.0 - - - 300.0 [56,87] 170 208
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