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Abstract

In railways, the in-station dispatching problem consists in planning the movements
of trains inside a railway station, where a potentially large number of trains have to
stop according to an official timetable. Managing the movements of trains inside a
station in a correct way can help reduce the accumulation of delays, which can then
have a beneficial knockout effect on the rest of the network. Despite the delicacy
of this operation, in-station train dispatching is still largely handled manually by
human operators without a decision support system able to provide helpful guidance
and aid.

In this thesis, the author makes a step towards supporting the operator with some
automatic tool, by describing an approach for performing in-station dispatching by
means of artificial intelligence techniques. Given its mixed discrete-continuous na-
ture, the problem is modelled with an AI planning language. To improve the perfor-
mances and being able to scale to large flows of trains, a state-of-the-art AI planning
engine is enhanced by domain-specific solving heuristics. The presented modelling
and improvements are then tested and benchmarked using real-data of a station of
the North West of Italy.
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«Cosa aggiungere potrebbe un narratore
a quanto già narrato dall’attore»



Contents

Chapter 1 Introduction 1

1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of this thesis and Architecture . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Problem definition 6

2.1 Topology of a railway station . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Movements of trains inside the station . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 In-Station Train Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 Planning Domain Definition Language 13

3.1 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Temporal and Hybrid Planning with PDDL+ . . . . . . . . . . . . . . . . . . . . 16

3.3 PDDL+ formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Why PDDL+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 Input 23

4.1 Data provided by Rete Ferroviaria Italiana . . . . . . . . . . . . . . . . . . . . . 23

4.2 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



4.2.2 Object properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Expanding the knowledge base with Semantic Web Rules . . . . . . . . 26

4.3 Estimation of the duration of trains movements . . . . . . . . . . . . . . . . . . 28

Chapter 5 Encoding 30

5.1 Introduction to the encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Preprocessor and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Fluents to model the flow of time . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Actions, events and processes to model the movement of trains . . . . . . . . . . 34

Chapter 6 Solving 39

6.1 Planning As Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Domain-Specific Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Adaptive Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Specialised Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 7 Evaluation and Analysis 47

7.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Validation Against Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Minimisation of Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Increment of the Railway Station Capacity . . . . . . . . . . . . . . . . . . . . . 53

7.5 Importance of the Domain-specific Extension . . . . . . . . . . . . . . . . . . . 54

Chapter 8 Related Work 57

8.1 In-Station Train Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2 Line Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.3 Timetabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.4 Other domain’s problems solved with PDDL+ . . . . . . . . . . . . . . . . . . . 60

iv



8.5 Other PDDL+ planning engines besides ENHSP . . . . . . . . . . . . . . . . . . 60

Chapter 9 Conclusions and Future Work 62

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.1 Modelling of more realistic aspects . . . . . . . . . . . . . . . . . . . . 63

9.2.2 Extension to bigger stations . . . . . . . . . . . . . . . . . . . . . . . . 64

9.2.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.2.4 Expansion to group of stations . . . . . . . . . . . . . . . . . . . . . . . 65

List of Figures iii

Bibliography vi

v



Chapter 1

Introduction

1.1 Context and Motivations

Railways represent one of the most important and high-volumes means of transportation in Eu-
rope for transporting either goods or passengers. Rail transport is the most sustainable, whether
in terms of CO2 emissions, energy consumption, use of space, or noise levels [Givoni et al.,
2009]. However, the increasing volume of people and freight transported on railways is congest-
ing the networks [Bryan et al., 2007]. Railway stations, where platforms and rails can be seen as
scarce resources in which numerous trains need to stop according to a given timetable, are prob-
ably the most critical points for interconnecting trains’ paths. If not dealt carefully, the concrete
risk of accumulating delays arises, which may result in cost penalties and inconveniences for
passengers. The only fast and economically viable way to increase capacity is then to improve
the efficiency of daily operations in order to be able to control a larger number of running trains
without requiring massive public investments in new physical assets.

The main problems that need to be addressed in the context of a railway station are: (i) the initial
generation of timetables, and (ii) the mitigation of delays and the resolution of conflicts which
could arise in the station, with the aim of minimising the overall negative impact. The latter,
formally defined as in-station train dispatching, is still nowadays handled manually by experi-
enced operators in charge of a large set of connected stations, despite the fact that in-station train
dispatching plays an important role in maximising the effective utilisation of available railway
infrastructures. These operators, termed dispatchers, are in charge of monitoring the occupations
of resources by all the trains in the station to ensure safety protocols: they provide instructions
to train conductors, and control the railroad switches in order to make the train follow a path
inside the station that will allow the train to enter the station, exit it or stop at a platform (if
needed). Despite the paramount importance and complexity of their job, dispatchers are cur-
rently receiving very limited support to their decision. The current railway control systems only
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provide a sensor-based overview of the traffic conditions of the station, but they do not provide
any suggestions for the correct movements of trains inside it.

The two aforementioned problems have different needs concerning the allowed time to find a
viable solution. The task concerning the generation of timetables is an optimization problem
combining a multitude of decision variables, complex cost functions and constraints. Despite
this difficulty, the generation of timetables is an operation performed a few times a year. In Italy,
usually, the timetable changes depending on the season (usually one for summer and one for the
rest of the year) and some special timetables are put in place during the Christmas period, scaling
in order to compensate for the higher number of passengers travelling during the holidays. The
infrequency of generation of the timetables allows less care on the timing needed to produce a
solution. The in-station dispatching problem, on the other hand, requires a more careful attention
regarding the times needed to find a viable plan. The unexpected arise of maintenance necessities,
causing the temporary unavailability of resources, or a high accumulation of delays requires a
complete novel reschedule, invalidating the previously generated plans. For this reason, the time
of execution of algorithms finding solutions for the in-station train dispatching problems have to
be careful considered and tuned in order to find the solution in the fastest way possible.

1.2 Goals and contributions of this thesis

In this thesis, the in-station train dispatching problem is formalized and addressed for the purpose
of making a significant step towards supporting the operator with a tool able to solve the problem
in an automated way by means of automated planning.

The problem is modelled as an AI planning problem using PDDL+ [Fox and Long, 2006a], a plan-
ning domain description language for modelling mixed discrete-continuous planning domains.
The use of this particular language allows to manage several real-world complications: (i) the
opportunity to define a model valid for several stations while keeping it as general as possible,
(ii) the need to manage the continuous flow of time, and (iii) the necessity to manage external
events coming from the outside world (i.e. the arrival of trains from the outside network).

Domain-specific enhancements that allow to quickly solve large and complex instances are in-
troduced to the domain independent planning engine ENHSP [Scala et al., 2016, Scala et al.,
2020], a state-of-the-art planner for PDDL+ encoding. The enhancements, consisting of an ad-
vanced heuristic, a time-dependent discretisation of the time and a series of constraints pruning
the search-space, allows the planner to solve large instances in a small amount of time, allowing
the model to be used to quickly solve conflicts caused by the unexpected arise of maintenance
necessities, causing the temporary unavailability of resources, or a high accumulation of delays.

In order to validate the modelling of the problem at hand, the plans produced by human oper-
ators are compared with the plans produced by the automated planning engine. This validation
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is performed with the aim of answering the question "Would the autonomous planning agent,
given the same initial conditions, have made the same decision taken by the human dispatcher
?". The validation process answered the question positively, giving the proposed approach dig-
nity to correctly model the real-world dynamics. This implies that planning-based tools can be
correctly exploited, and the planning engine can provide an encompassing framework for com-
paring different strategies to deal with recurrent issues, and for testing new train dispatching
solutions.

In the proposed approach, we considered real-world historical data of a medium-sized railway
station from North-West of Italy provided by Rete Ferroviaria Italiana (RFI), and tested our
approach in numerous scenarios. Results show the potential of our approach on a wide range
of scenarios. In particular, the proposed approach demonstrates the ability to reduce delays and
to better exploit the available infrastructure – with the potential of allowing a station to serve a
larger number of trains without the need for structural modifications.

1.3 State-of-the-art

Automated approaches have been employed for solving variants of the in-station train dispatch-
ing problem. Mixed-integer linear programming models have been introduced in [Mannino and
Mascis, 2009] for controlling a metro station. The experimental analysis demonstrated the ability
of the proposed technique to effectively control a metro station, but also highlighted scalability
issues when it comes to control larger and more complex railway stations.

More recently, constraint programming models have been employed in [Kumar et al., 2018] for
performing in-station train dispatching in a large Indian terminal: this approach is able to deal
with a large railway station, but only for very short time horizons, i.e., less than 10 minutes. In
[Abels et al., 2021] a hybrid approach that extends Answer Set Programming (ASP) [Lifschitz,
1999] is used to tackle real-world train scheduling problems, involving routing, scheduling, and
optimisation.

Given the complexity of the train dispatching problem, many works focused on related sub-
problems or on a more abstract formulation of the overall problem. For example, [Rodriguez,
2007] formulated a constraint programming model for performing train scheduling at a junc-
tion, which shares some characteristics of a station, but does not include platforms and stops.
Differently from [Rodriguez, 2007], a number of works [Cardillo and Mione, 1998, Billionnet,
2003, Chakroborty and Vikram, 2008] focused on the problem of assigning trains to available
platforms, given the timetable and a set of operational constraints.

Taking another perspective, [Caprara et al., 2010] focused on the identification and evaluation of
recovery strategies in case of delays.These strategies include actions such as the use of different
platforms or alternative paths.
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In [Li et al., 2021] a solution is presented to efficiently manage dense traffic on rail networks
based on Multi-Agent Path Finding (MAPF) which can plan collision-free paths for thousands
of trains, but doesn’t take into account safety mechanism of mutual exclusion of resources or the
need of a train to stop at platforms.

In Chapter 8 a more in depth analysis on the state-of the art will be performed covering also
orthogonal problems like line dispatching and timetabling.

1.4 Structure of this thesis and Architecture

Instance Preprocessor
Optimised
Planning
Engine

Planning Problem Plan

ML
Predictions

Station
Structure Timetable

Ontology

Visualisation
Tool

Chapter 4 - Input
Chapter 5 - Encoding
Chapter 6 - Solving Chapter 7 - Analysis

Circulations
Logs

RFI Data

Statistical
Analysis

Figure 1.1: The architecture presented in this thesis aimed at solving the in-station train dispatch-
ing problem.

In Chapter 2 a formal representation of the structure of a railway station and a description of
the mechanics by which a train moves inside a station are presented; afterwards the in-station
train dispatching problem, with all its challenges and complications, is formally introduced. In
Chapter 3 one of the most important languages for describing planning domains, the Planning
Domain Definition Language (in short PDDL) is presented following its development history
from the first version of PDDL, for classical planning, to PDDL+ for modelling mixed discrete-
continuous domains; the reasons behind the choice of PDDL as a modelling language together
with a quick look at the algorithms behind the planning engine ENHSP are discussed at the end
of the chapter.

In Figure 1.1 a block-diagram depicting the architecture presented in this thesis is shown. The
first block represents the input of the problem (which will be thoroughly described in Chapter 4):
in this phase the instance of the problem, provided by the human dispatcher, is reinforced by a
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preprocessor which augments it with additional information extrapolated from data provided by
Rete Ferroviaria Italiana (RFI), the owner of Italy’s railway network; this data mainly consists of
(i) a JSON-like file containing a structured representation of the station’s topology (ii) a Flat-File
Database containing timestamped logs coming from the Rail Traffic Management System (TMS)
which controls and monitors the movements of trains inside the station, and (iii) the timetable of
the station which contains information about the expected times in which trains should arrive and
depart from the station. The file representing the topology of the station is parsed and re-written
under the form of an ontology, which enables to reason upon the status of each component in a
simple way through a set of well-defined logic rules. In order to realistically plan the movements
of trains inside a railway station, the time it takes for a train to move between points inside the
station is of paramount importance; these times are predicted with Machine Learning’s model
which are trained on the data provided by RFI (the block is represented with a black box since the
main work was produced in [Boleto et al., 2021] and the results were straightforwardly used in
this thesis). The preprocessor uses all this accessory data to produce a planning problem written
in the Planning Domain Definition Language (PDDL) which is described, in Chapter 5. This
planning problem is then taken as input from a state-of-the-art planning engine, ENHSP [Scala
et al., 2016, Scala et al., 2020] which is presented in Chapter 6. ENHSP is a modular planning
engine, and includes a range of off-the-shelf search and heuristic techniques which proved to be
capable of solving prototypical instances, hence demonstrating the feasibility of the approach.
To allow ENHSP to solve large and complex in-station train dispatching problems, leveraging its
modularity, the behaviour of the solver was specialised with domain-specific extensions which
leveraged the prior knowledge of the domain in order to guide the search through the search-
space. The produced plans are then analysed in several ways in Chapter 7: Firstly, a visualisation
tool is introduced, which enabled domain experts to manually inspect the produced plans and
validate that the planned movements capture correctly the expected behaviour of trains inside the
station. Then, the automatic planner validates the plans produced by human dispatchers in the
past, thus showing that the proposed AI dispatcher could have taken the same decision a human
operator would have, given the same initial conditions. Then, an analysis is performed to evaluate
the capacity of the proposed approach to choose plans that would minimise the total delay of
trains in stations. Afterwards, the automatic planning approach is used to simulate a stress-test in
which more and more trains are scheduled to pass through the station; this simulation provides
an evaluation of the limit on how much of the railway station’s available infrastructure can be
exploited.

In Chapter 8 other state-of-the-art systems which models the in-station train dispatching are
introduced and compared to the proposed approach of this thesis; additionally an excursus on
orthogonal problems in the railway domain are introduced. In the final chapter (Chapter 9) an
analysis on possible future works is presented and conclusions are drawn.
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Chapter 2

Problem definition

This chapter is organized in three sections, in the first (Section 2.1) the topology of a railway sta-
tion is introduced together with a mathematical formalization, then in Section 2.2 the movements
that a train can perform are introduced and, based on the type of the train (i.e. Origin, Destina-
tion, Transit or Stop) the initial conditions and goals that will characterise the movement of the
train inside the station are presented. Section 2.3 ends Chapter 2 by presenting the In-Station
Train Dispatching Problem and by providing a hint on the difficulties that need to be tackled by
an automatic planner.

2.1 Topology of a railway station

In [Moscarelli et al., 2017] a classification and statistics of Italian stations is provided, extrapo-
lated from Rete Ferroviaria Italiana’s Service Charter. Stations are classified in four categories:
Platinum, Gold, Silver or Bronze on the base of four criteria: (i) station dimension, (ii) daily
number of travellers (iii) connections with other means of transport and (iv) commercial offer. In
this thesis, a formulation is presented based upon a real medium-sized station classified by RFI
as Gold.

By modelling the complexity and nuances of a Gold station, stations of minor classifications
like Silver and Bronze are also covered in the formalization. The number of stations in Italy
is approximately 2500 containing 13 platinum stations, 103 gold, 850 silver and 1500 bronze.
Consequently, numerous stations in Italy can be modelled as expressed in the following sections.

A railway station can be represented as a tuple S = 〈G, I, P, E+, E−〉. G is an undirected graph,
G = 〈S,C〉, where S is the set of nodes representing the track segments, i.e., the minimal
controllable rail units, and C is a set of edges that defines the connections between them. Their
status can be checked via track circuits, that provide information about occupation of the segment
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Figure 2.1: Schematic representation of a medium-sized (gold) station. Examples of itineraries
are highlighted in a blue colour. One itinerary allows the train to move from the East entry point
(E+) to the Platform V, the other brings a train from the Platform III to the West exit point (W-)

and about corresponding timings. Track segments are grouped in itineraries I .
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Figure 2.2: Graph of the itineraries. Nodes are flags and the connecting oriented edge are
itineraries. Gray edges coincide with portals of the station.

Each itinerary i = 〈sm1, sm2, ..., smn〉 ∈ I is a path graph, i.e., a subset of the graphG, represent-
ing a sequence of connected track segments. Track segments are grouped in itineraries manually
by experts of the specific railway station, and a track segment can be included in more than one
itinerary. While track segments are the minimal controllable units of a station, itineraries de-
scribe paths that the trains will follow in order to move inside the station. Itineraries represent a
simplification for human operators who are able to give instructions for the movements of a train
inside the station in a more simple and concise way; for this reason itineraries explicitly describe
a direction of movement inside the station by defining an ordered sequence of track segments and
by connecting two flags together. Flags are positioned in strategic points of the station, usually
near a portal or a platform, in order to easily manage the flow of trains inside the station. Flags
are a graphic and logic constructs that allow train dispatchers to define the movements between
points in a station; usually, flags are positioned near a traffic light which tells the train if it should
proceed to move to the next itinerary or wait.

P is a set of platforms that can be used to embark/disembark the train. Each platform p ∈ P
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has an associated set of track segments {si, . . . , sj} indicating that trains stopping at those track
segments will have access to the platform.

E+ = {e+} is a set of entry points to the station from outside the railway network; similarly,
E− = {e−} is a set of exit points of the station that allow the train to leave the station and enter
the external railway network. Entry and exit points together represent portals that connect the
station with the external rail network.

For the sake of this formalisation, entry points and exit points behave like buffers of infinite size
which are connected to a single track segment that is the first (last) track segment the train will
occupy after (before) entering (exiting) the station.

Figure 2.1 provides a schematic representation of a railway station. Flags are marked with a
rectangle providing the identification of the flag. In medium-sized station, flags are usually
located only near portals and near platforms, while in larger stations, flags usually split very
long itineraries in order to provide more control on the station. Platforms, highlighted in green
in the figure, usually are delimited by two flags; based on how the station is represented in the
CAD files, the flags belonging to a platform are distinguished in "left" or "right" based on their
position in respect to the platform. These two flags encapsulate a number of track segments
that physically represent the platform and will be the track segments in which the train will rest
when it’s stopping at the platform. The identification number of the platform is given in Roman
numbers starting from the top. Flags belonging to a platform are thus identified combining the
number of the platform and the position of the flag (e.g. flag 3L is the left flag of platform III).
In the figure, two itineraries are highlighted with a blue colour; itinerary 3L-03 connects the
flags 3L and 03 allowing a train to move from platform III to the West exit point W-. Itinerary
04-5L brings a train from the East entry point E+ to the platform V. As it can be seen in the
figure, itineraries which brings to the platform are also composed by the track segments of the
platform, itineraries which leave a platform start from the track segments immediately after the
platform.

Figure 2.2 presents a higher level visualisation of the graph of itineraries of the station. The
nodes of the graph represents the flags and the connecting edges represents the itinerary that
allows movement between flags. Flags that corresponds to portals are highlighted in grey. As it
can be seen, even if itineraries share a subset of track segments the abstract graph of itineraries
only provide a sense of direction between the flags and can be seen as disjointed. Moreover,
the figure shows that if the movement of the train happens from West to East the right flag
(denoted with a R) allows a train to stop at (or pass by) a platform; in the other direction instead
the left flag (denoted with L is used). The graph of itineraries results acyclic, thus excluding
the possibility for a train to perform tight-turns, reverse its movement and exit from the same
direction it entered.
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(a) Track circuit off (b) Track circuit on

Figure 2.3: A schema of a DC track circuit as shown in [Scalise, 2014]. The figure on the left
depicts a track segment and the flow of current when no train is running on it. When a train
approaches the block, its wheels and axles connect the two running rails together shorting the
battery, thus signalling the presence of a train.

2.2 Movements of trains inside the station

A track segment can be occupied by a single train at the time. Track segments are a visual
representation of a physical component called track circuit. As stated in [Scalise, 2014], the
track circuit consists of a block section of rails electrically insulated with other adjacent pieces
of rails by insulated joints at each edge. The signal source (in the DC case it’s a battery, in
the AC case a transmitter) is connected to the rails at one edge of the block section, while the
receiver (a relay) is connected to the other edge. When a train approaches the block, its wheels
and axles connect the two running rails together, shorting the circuit and thereby reducing to zero
the current through the relay. This causes the relay to drop, turning off the green signal light and
turning on the red light to indicate that the block is occupied by a train. Figure 2.3 depicts the
two different state of a track circuit.

For safety reasons, a train is required to reserve an itinerary before moving on it, and this can be
done only if the itinerary is currently not being used by another train. While a train is navigating
the itinerary, the track segments left by the train are released. This is done to allow trains to early
reserve itineraries even if they share a subset of the track segments.

Figures 2.1 and 2.2 provide two different levels of detail on the station. The first one gives a
graphical representation of the undirected graph G and represents the physical connections of
track segments inside the station. This graph alone is unable to capture the allowed movement of
the trains inside the station; given the limited ability of manoeuvre of a train, tight turns must not
be allowed. For example, a train that is moving through the track segments aa and ac cannot
move to the track segment ad next since the angle would be too tight; instead, the train could
move through the segments af or ag. The choice between the two track segment is mechanically
expressed by switches that are positioned at the intersection of the track segments. A switch can
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be in two positions: normal or reverse; the first position will allow the train to move to the track
segment af, the latter to ag. The concept was not modelled in Section 2.1 because the position
of the switches can be straightforwardly deduced by the itinerary chosen by the train. The choice
of the next track segment after ac depends on the itinerary chosen by the operator for the train.
If the operator chooses itinerary 01-5R, 01-4R or 01-3R then the train will move to the track
segment af next; instead, if the chosen itinerary is one of 01-4R or 01-5R the next segment
will be ag. As it can be seen from Figure 2.2 no itinerary exists that allows a train to move from
the entry point W+ (flag 01) to the exit point W- (flag 02). This forbids the tight turn to the track
segment ad after ac.

A train t moving through the controlled railway station is running a route Rt in the station graph
G, by reserving an itinerary and moving through the corresponding track segments. A route
Rt ⊆ I is a sequence of connected-disjointed itineraries which the train t will travel in the
station. To simplify the notation, we define with h(Rt) ∈ S the first track segment of the route
and with l(Rt) ∈ S the last. The sequence of itineraries Rt = (i1, i2, ..., in), with ik ∈ I , which
the train t will run across have to be connected in the graph G.

Considering a single railway station, there are four possible types of train:

• Origin: the train originates at the controlled station. It is initially at a platform p, and it is
required to leave the controlled station via a specified exit point.

• Destination: the controlled station is the final destination of the train. The train is expected
to reach the destination at a specific time via a given entry point, and is required to reach a
platform to end its trip.

• Transit: the train is moving through the controlled station without making a stop. The
train is expected to reach the destination at a specific time via a given entry point, and is
required to reach a specified exit point without stopping at a platform.

• Stop: the train is making an intermediate stop at the controlled station. The train is expected
to reach the destination at a specific time via a given entry point, and is required to reach a
specified exit point after a stop at a platform for embarking/disembarking passengers.

To every train that travels inside the railway network, an identifier number is assigned. This
identifier number uniquely represents the route of a train. For example, the train that every
day connects the station Genova Piazza Principe with the station Roma Termini has the unique
identifier number of 8623 [Scalzo and Mangione, 2003]. This number will then be used every
day to indicate a train with this route.

When a train reaches a destination, it can remain idle for some time, and then it can change the
number and depart towards a new destination. At the station level this behaviour can be modelled
joining the behaviour of two types of train: a train of type Destination will arrive from an entry
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point and stops at a platform, then, after a scheduled amount of time the train will change its
number and become an origin train that will depart from a platform at a specific instant and leave
the station from an exit point.

A timetable is the schedule that includes information about when trains should arrive at the
controlled station, when they arrive at a platform (arrival time), and the time when they leave a
platform (departure time). The timetable provides some constraints on the movement of trains;
for example, a train can not depart from the station before the departure time defined in the
timetable. If a train has a delay, and it arrives at the platform after the departure time scheduled
in the timetable, it has to wait a minimum amount of time in order to allow the passengers to
board or alight. The time in which the train can depart the station Td is defined by the following
equation:

Td = max{Tdt, Ta + Tmin} (2.1)

where Tdt is the time of departure scheduled in the timetable, Ta is the arrival time of the train at
the platform and Tmin is the minimum time the train has to remain at the platform.

2.3 In-Station Train Dispatching

We are now in the position to define the in-station train dispatching problem as follows: Given
a railway station S, a set of trains T and their current position within the station or their time
of arrival at the controlled station, find a route for every train that allows to respect the provided
timetable, as much as possible.
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Figure 2.4: Example of incompatible itineraries. The itineraries 01-1R and 2L-02 are incom-
patible because they share the track segment af.

The dispatching problem has a series of problems that need to be tackled by an automatic planner:

1. Find a route (a sequence of itineraries) between the originating and destination point of a
train. For example for a train of type Stop a route must guide the train from the specified
entry point to the exit point, passing through a platform in order to allow the train to stop.
For an Origin train instead, it must be guided from the platform to the exit point.
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2. Guarantee the mutual exclusion of the track segments between trains. When a train re-
serves an itinerary it has to also block all the track segments of the itinerary in order to
avoid the occupation of the track segment by another train while moving, causing an inci-
dent. For this reason all the incompatible itineraries are to be tracked and blocked accord-
ingly. In Figure 2.4 it is showed an example of a train that needs to move from the West
entry point (W+) to the platform II and another one that needs to move from the platform
I to the West exit point (W-). The two itineraries share a track segment, and so they are
incompatible; for this reason a train needs to move before the other.

3. The mutual exclusion defined at the previous point will rapidly block all the track segments
of the station with just a small amount of trains. Looking back at Figure 2.1 it can be
seen that a lot of itineraries share a small subset of track segments. For example all the
itineraries that bring from the West entry point (W+) to all the platform share the track
segment aa. By blocking all the segments of an itinerary until the train has completed the
movement in it quickly brings a station to a halt. For this reason the planner has to allow
other trains to move earlier by individuating the times after which it is safe for the train to
move in an incompatible itinerary. Again in Figure 2.4 the train that moves first doesn’t
need to complete the whole itinerary in order for the second train to begin its movement,
but it only needs to complete the itinerary until the track segment af, which is shared
between the two itineraries.

4. Guarantee the constraints imposed by the timetable: a train cannot leave the station before
the departure time expressed in Equation 2.1.
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Chapter 3

Planning Domain Definition Language

In Artificial Intelligence, automated planning concerns the task of finding a sequence of steps
(actions) to reach a predefined goal from a set of initial conditions. In the in-station train dis-
patching domain the initial conditions can be represented by the number and positions of trains
inside the station, the goal could be the successful departure of all the trains from the station and
the action are the possible movements that a train can perform inside a station (i.e., entering and
leaving the station, stopping at a platform, reserve an itinerary). In this chapter the main con-
cepts behind automated planning are presented following the development history of one of the
most important languages for describing planning domains, i.e., the Planning Domain Definition
Language (in short PDDL) [Mcdermott et al., 1998]. Examples will be provided in the in-station
train dispatching domain in order to clarify how the language has been exploited to model the
problem at hand. Section 3.1 introduces the definition of a Classical Planning problem which
consists in finding a sequence of action that allow to reach a goal from some initial conditions;
at the end of the section, some motivations on why Classical Planning is not able to successfully
model the in-station train dispatching problem are discussed and followed by the introduction of
Temporal and Hybrid Planning, in Section 3.2, which addresses and resolves these problems. In
Section 3.3 a formal definition of PDDL+ is introduced. Finally, in Section 3.4, an explanation is
given on why PDDL+ was chosen among other planning languages is presented.

A more complete and precise formulation of the encoding will be provided in Chapter 5. The
domain of in-station train dispatching can be described as fully observable (meaning that the
planning agent is able to fetch any information available) and deterministic (meaning that every
action the autonomous agent can take have predetermined and certain results).
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3.1 Classical Planning

In classical planning, the task of planning is defined as a search problem in a list of states. A
state consists in a conjunction of ground1 predicates (Boolean variables). For example,

hasEnteredStation(T1) ∧ trainInItinerary(T1, I01-4R)

∧ trainIsAtEntryPoint(T2, E+)

represents the state in which the train T1 has entered the station and (∧) is running through
itinerary I01-4R while the train T2 is waiting at the portal E+. From this example it is clear that
in this semantic a state doesn’t represent the status of the train but instead the status of the com-
plete planning world (the station). The closed-world assumption states that every predicate that is
not mentioned in the state is assumed to be false. This simplification allows to better manage the
transition between states, having to explicit only the things that actually change instead of having
to say also which predicates stay the same (Frame Problem [McCarthy and Hayes, 1981]). An
action can be represented by a schema consisting of the action name, the preconditions and the
effects of that action. Preconditions and effects of an action are conjunctions of literals (positive
or negative ground predicates). The precondition defines the states in which the action can be
executed, and the effects define the consequences of applying that action on that state, i.e. how
the state changes by choosing the action.

Consider this example of the action schema described in Figure 3.1: the action entersSta-
tion_T1_I01-1R allows the train T1 to enter the station through the itinerary I01-1R. The
precondition states that for this action to happen the train should be at the entry point W+, should
not have entered the station yet, and all the track segments of the itinerary 01-1R should not
be occupied by any train. The effects instead state that, if this action is chosen, the resulting
state will no longer have a train at the endpoint W+, the train should have entered the station
(with the aim of avoiding an infinite applicability of this action), the train should reserve and
enter the itinerary 01-1R and all its track segment should be blocked. The action was speci-
fied in the Planning Domain Definition Language (PDDL). The syntax is Lisp-like with fully
parenthesized prefix notation. The use of the not keyword allow to specify a negative literal
which in the preconditions means that a predicate should be false (or undefined, under the closed
world assumption) in order for an action to be applicable and, in the effects, that the result of the
application of the action should set the predicate to false.

The initial state is a conjunction of positive literals that are true at the beginning of the planning:
this is the first state from which the planner will try to apply actions. A goal state instead is a
conjunction of positive and negative literals that represents a test to assess if the planning should
end. The goal state can be seen as a special action with only precondition that, if applicable,

1A ground predicate is a predicate in which no variable appears. For example hasEnteredStation(?t)
could represent the concept for a generic train t to have entered the station, while hasEnteredStation(T1)
states that the particular train T1 has entered it.
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(:action T1_entersStation_I01-1R
:precondition (and

(trainIsAtEntryPoint T1 W+)
(not (trainHasEnteredStation T1))
(not (trackSegBlocked aa))
(not (trackSegBlocked ac))
(not (trackSegBlocked af))
(not (trackSegBlocked ai))
...
(not (trackSegBlocked az))

)
:effect (and

(not (trainIsAtEntryPoint T1 W+))
(trainHasEnteredStation T1)
(itineraryIsReserved I01-1R)
(trainInItinerary T1 I01-1R)
(trackSegBlocked aa)
(trackSegBlocked ac)
(trackSegBlocked af)
(trackSegBlocked ai)
...
(trackSegBlocked az)

)
)

Figure 3.1: A schema of a PDDL action that allows a train T1 to enter the station through the
itinerary I01_1R

is always preferred and terminates the planning immediately. The problem is solved when the
planner can find a sequence of actions that transform the initial state in one that passes the
condition expressed in the goal state.

In Figure 3.2 an example of initial and goal state is provided. The initial state in which a train
T1 is at the entry-point W+ while another train T2 is stopped at platform II. The goal condition
is that the train T1 and T2 should have left the station from E- and W- respectively.

Classical planning solvers are thus able to find a sequence of actions that, starting from the initial
conditions, lead to the goal state. However, classical planning is not able to completely represent
the in-station train dispatching problem for the following reasons:

1. In classical planning actions are instantaneous; this means that the effects of an action are
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(:init
(trainIsAtEntryPoint T1 W+)
(trainIsStoppingAtPlatform T2 S_II)

)

(:goal
(and

(trainExitsStationAtExitPoint T1 E-)
(trainExitsStationAtExitPoint T2 W-)

)
)

Figure 3.2: The initial state and the goal state expressed in the PDDL language

applied immediately if the preconditions of the action are met and the planner choose to
apply that particular action. In the problem at hand, instead, some actions needs to define
different instants in which the effects have to be applied to the world. Consider an action
which describes a train stopping at a platform: this action needs to take some time in order
to complete, and some effects have to be applied at the beginning and some other at the end
of the action. For example at the beginning of the stop at the platform the train has to signal
that it is stopping and reserving all the track segments of the platform, at the end instead it
has to signal its readiness to continue its journey through the station thus signalling to the
planner that it is able to reserve another itinerary for the purpose of leaving the station.

2. The planner is not obliged to perform an action, even if all its preconditions are met; this
is because it is possible that the action could lead to a dead-end or there is a better action
to apply (the definition of quality of an action and of cost functions will be covered in
the next sections when discussing heuristics). Events, on the other hand, happens when
their preconditions are met, independently of the decisions of the planner: in the in-station
dispatching problem events have to be used in order to correctly model the arrival of trains
at portals, which can not be delayed or overlooked by the planner. Classical planning has
no constructs able to manage events in a simple way.

3.2 Temporal and Hybrid Planning with PDDL+

The modelling incapacity of Classical Planning presented at the end of the previous section were
solved with the introduction of PDDL+ [Fox and Long, 2006a] which is able to describe Temporal
and Hybrid problems: Temporal meaning that it has a native way of dealing with time (in reality
with any type of numeric variable, called functions) and Hybrid meaning it can model mixed
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discrete-continuous domains, thus implementing events and processes. Syntactic elements able
to model temporal domains was already introduced with PDDL2.1 [Fox and Long, 2003], a
more advanced version of PDDL (or PDDL1.0). Since PDDL+ is derived from PDDL2.1, and
it is strictly more expressive than it [Fox and Long, 2006a] the first was preferred for its natural
support for dealing with exogenous events. Notably, PDDL+ has been already successfully ex-
ploited in a number of application domains including UAV manoeuvring [Ramirez et al., 2018],
battery management [Fox et al., 2012], and urban traffic control [McCluskey and Vallati, 2017].

PDDL+ introduces two new native constructs: processes and events. Processes model a contin-
uous change in numeric fluents and events allow modelling exogenous happenings that have to
occur as soon as their preconditions are met. Before introducing the concepts of processes and
events, a brief excursus on how the planner deals with continuous problems has to be taken (a
more in depth analysis on how the planner works will be introduced in the next sections). In
order to manage continuous time-dependent processes, the planner has to discretise the time in
multiple discretisation steps (δ) that determines how often an action can be applied, or an event
can be triggered. The value of δ can be given to the solver by the AI expert based on the knowl-
edge on the domain and the granularity by which the solution has to be found. The choice of
the correct discretisation step can be delicate: the choice of a very small δ can exponentially
increase the solving time, since at every discretisation step several actions could be applied, en-
larging the search-space. On the other hand, the selection of a large δ can invalidate the solution:
consider for example an in-station dispatching problem in which a train has to leave the station
before a certain time T ; if all the possible plans allows the train to leave the station at most at
an instant t = T − δ

2
+ ε (with ε arbitrarily small) then no viable plan can be found since the

planner would realise the achievement of the goal only after the time T has passed. In Chapter 6
an algorithm is presented for an adaptive delta that removes the necessity to pick a discretisation
step beforehand.

In Figure 3.3 two examples of processes are presented. The process incrementTime models
the continuos flow of time: having no precondition, the process is triggered at every discretisa-
tion step applying the effects of increasing the numeric function time of the quantity #t which
is grounded by the planner with the defined value of δ. The process incrementTrain-
StopTime instead takes care of counting the time in which a generic train t is stopping at any
platform, increasing the numeric fluent (trainStopTime) of that particular train.

An event has the same schema as an action, but as previously mentioned, represents an occur-
rence in time that is out of the control of the planner and has to happen as soon as its preconditions
are met.

Figure 3.4 presents the schema of an event that takes care of signalling the arrival of a train at an
entry point of the station. The event T1_arrivesAtEntryPoint_W+ triggers as soon the
numeric function time reaches a predetermined value ta which is the time of arrival of the train
at the station, defined in the instance. The two conditions on the boolean predicates train-
HasEnteredStation and trainIsAtEntryPoint allows the event to be triggered only
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(:process incrementTime
:parameters()
:precondition()
:effect (and

(increase time #t )
)

)
(:process incrementTrainStopTime

:parameters(?t - train)
:precondition (and

(trainIsStopping ?t)
)
:effect (and

(increase (trainStopTime ?t) #t )
)

)

Figure 3.3: An example of two processes expressed in the PDDL+ language. The process in-
crementTime models the continuous flow of time. The process incrementTrainStop-
Time counts the stopping time of a train at a platform.

once and signals that a train is waiting at the entry point of the station. Depending on the traffic
inside the station, the planner could decide to have the train wait at the entry point for some time,
before allowing it to enter the station; the coupling of the event arrivesAtEntryPoint and
of the action entersStation allows to correctly model this behaviour by forcing the pres-
ence of the train at the instant ta with an event but leaving to the planner the decision of when to
allow the train to enter the station, with an action.

While in classical planning the result of the planning was a sequence of actions that had to be
performed in sequence as a means to reach a goal from the initial conditions, in temporal planning
the plan produces is a sequence of timestamped actions describing not only the sequence but also
the instance in which the action has to be performed, thus waiting for events to manifest their
effects in between actions.

3.3 PDDL+ formalization

In this section, a more formal definition of PDDL+ is provided. An encoding in PDDL+ is char-
acterized of two parts: the domain and the problem. The domain contains all the information
regarding how the modelled problem works independently on the instance provided; in this file
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(:event T1_arrivesAtEntryPoint_W+
:parameters()
:precondition (and

(>= time 253 )
(not (trainHasEnteredStation T1))
(not (trainIsAtEntryPoint T1 W+))

)
:effect (and

(trainIsAtEntryPoint T1 W+)
(trainHasArrivedAtStation T1)

)
)

Figure 3.4: The schema of a PDDL+ event that takes care of signalling the arrival of a train at an
entry point of the station

is modelled, for example, how a train moves inside a station. The actual list of the trains that
will move through the station, their initial conditions and goals are instead defined in the prob-
lem, together with the topology of the station (the interconnections between itineraries, the track
segments that compose the itineraries and the platforms, etc). This decoupling between the be-
haviour of the model and the actual instance gives the possibility to specify a single domain that
works for multiple scenarios and stations.

PDDL+ Domain Model. A PDDL+ planning domain model D is defined by the following tuple

D : 〈T , C,F ,X ,A, E ,P〉

• T (Types) is a set of types (i.e. train, itinerary, platform, etc).

• C (Constants) is a set of typed objects, each of which is simply a name given to the object,
and its type. For example train T1 or platform I, etc.

• F and X are sets of propositional and numeric fluents, respectively. A more detailed list
of all the predicates and numeric fluents will be introduced in Chapter 5.

• A (Actions), E (Events), and P (Processes) are sets of transition schema. A transition
schema is the tuple 〈σ, pre, eff 〉 where:

– σ is a sequence of objects from C or variables typed in T ,
– pre is a first order formula [Smullyan, 1995],
– eff is a set of Boolean and numeric effects. Boolean effects are assignments 〈p,>,⊥〉

with p ∈ F where numeric effects are assignments 〈p, ξ〉, with ξ being an arithmetical
expression.
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– Both pre and eff only mention fluents from σ or objects from C.

PDDL+ Problem A planning problem is defined combining a planning domain model D with
a set of typed objects, an initial state and a goal. A planning problem asks whether, given a
planning domain model, a set of objects, an initial state and a goal, there is a plan that lets the
agent achieves the goal from such an initial state, considering the constraints imposed by D, and
the actions that can be performed. More formally, let D be a PDDL+ domain model; a planning
problem is the tuple Π : 〈D,O, I,G〉 where:

• O is a set of typed objects (i.e., the objects that compose the instance: train T1, plat-
form I, itinerary I01_53, etc).

• I represent the initial conditions and is a function that assigns i) a truth value to all ground
propositional fluents in F over compatible objects from C ∪ O ii) a rational value to all
ground numeric fluents obtained substituting all numeric fluents in X over compatible
objects from C ∪ O.

• G represent the goal to achieve and is a set of first order formulas over ground propositional
and numeric fluents.

51,00: T1_entersStation_IW1
83,00: T2_entersStation_IE5
101,00: T1_beginStop_IW1_S_I
112,00: T1_overlaps_IW1_I1E
123,00: T1_endOverlap_IW1_I1E
131,00: T2_beginStop_IE5_S_V
141,00: T2_overlaps_IE5_I5W
157,00: T2_endOverlap_IE5_I5W
157,00: T3_entersStation_IE5
169,00: T1_exitsStation_I1E
190,00: T2_exitsStation_I5W
190,00: T4_beginsVoy_S_IV_I4W
201,00: T3_beginStop_IE5_S_V
243,00: T4_exitsStation_I4W

Figure 3.5: An example of a plan for four trains that move inside the station: train T1 enters from
the West entry-point and moves to the East exit-point after stopping at platform I, T2 enters from
east and exits at west stopping at platform V, train T3 is a Destination train which enters from
E+ and ends its voyage in platform V (after T2 has left it), train T4 is an Origin train which
originates at platform IV and leaves the station at exit-point W-
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PDDL+ Plan As previously mentioned, a PDDL+ plan is an ordered timestamped sequence of
actions which have to be executed in those precise moments in order to reach a goal G from
a set of initial conditions I. The order of the action is total, meaning that even actions that
should be applied at the same time need to be applied in order, this because the precondition
of the subsequent action could require the effects of the actions which is applied before. More
formally, a plan is a sequence S = (s1, s2, . . . , sn) where si = 〈ti, ai〉 where:

• ti ∈ R is the timestamp of the action, i.e., the moment in which the action has to take
place. As discussed in the previous section, a discretisation step has to be provided to the
planning engine in order to deal with a finite amount of actions; for this reason ti is always
a multiple of δ.

• ai ∈ A is the action that has to be applied at ti. Processes and events are not under the
direct control of the automatic planner, thus they are not present in the final plan.

In Figure 3.5 an example of a plan for four trains that moves inside the station: train T1 enters
from the West entry-point and moves to the East exit-point after stopping at platform I, T2 enters
from east and exits at west stopping at platform V, train T3 is a Destination train which enters
from E+ and ends its voyage in platform V (after T2 has left it), train T4 is an Origin train which
originates at platform IV and leaves the station at exit-point W-. As it can be seen, actions T2_-
endOverlap_IE5_I5W and T3_entersStation_IE5 happens at the same time, but they
are still ordered since the endOverlap frees the last track segments of itinerary IE5 which are
precondition for the second action. In this case, the timestamp is always an integer since δ was
chosen to be equal to 1.

3.4 Why PDDL+

In this section, an insight will be provided on the reasons why PDDL+ was chosen to model the
problem at hand:

• As described in Section 3.3 a PDDL+ encoding is divided in two parts: the domain and
the problem. This separation allows to describe the movements of trains in the station
independently on the topology of the station and the initial position of the trains inside
the station. This allows to define a set of rules valid for every (medium-sized) station and
then use a different problem for every scenario and railway station. As it will be seen in
Chapter 4, RFI specifies the topology of the station in a well-formed document which can
be processed, and from which the PDDL+ problem formulation can be extrapolated.

• As shown in the examples of this chapter, the schemas of actions, events and processes are
quite easy to read, even without a background in AI and logic. For this reason PDDL+ can
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be shown to experts of the railway domain, who are not experts in AI, in order to validate
the modelling choices made by the AI engineer. Other well-known formulations instead,
like the Mixed Integer Linear Programming, are written in mathematical notation that can
result hard to understand, even to people with some mathematical background. A basic
MILP formulation will be introduced in the Related Work Chapter 8 in order to show the
differences between the two approaches.

• The possibility to specify external events which are outside the control of the planner
permits to natively model the flow of trains coming from the railway network outside the
station.

• One of the most important challenges in knowledge representation is called the Frame
Problem [McCarthy and Hayes, 1981]: the frame problem is the challenge of represent-
ing the effects of actions in logic without having to represent explicitly many intuitively
obvious non-effects. To put it in prospective, the in-station train dispatching "world" has
many variables, but, fortunately, each action changes no more than some small number of
those variables. For this reason, actions are typically specified by what they change, with
the implicit assumption that everything else (the frame) remains unchanged. PDDL+ is an
"action description language" which is able to elude the frame problem. As it will be seen
in Chapter 6, ENHSP solves a PDDL+ problem by copying the state of the world at every
action and then applying the effects on this copied state in order to create a new state in
which everything remained unchanged except for the effects of the action. In other plan-
ning/scheduling languages, like ASP [Lifschitz, 1999] or MILP, the frame problem has to
be specifically addressed by the AI engineer, resulting in a harder-to-read encoding.

• In literature are available several planning engines, each with its own peculiarities, all of
them open-sourced, highly customizable and tested against a high number of benchmarks.
In this thesis the state-of-the-art planning engine ENHSP was utilized in order to solve the
proposed PDDL+ encoding. In the Related Work Chapter (Chapter 8) some of these other
planning engines will be discussed.
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Chapter 4

Input

In this chapter, the data needed in order to plan the correct movements of trains in a station
is discussed. In Section 4.1 the data provided by Rete Ferroviaria Italiana (RFI), the owner of
Italy’s railway network, that provides signalling, maintenance and other services for the railway
network, is presented. An ontology, which allows to formally describe the components of a sta-
tion, and to reason upon it, in order to extract more knowledge on the status of every component,
is presented in Section 4.2. Finally, in Section 4.3, a methodology to predict the duration of
movements of a train inside a station is discussed.

4.1 Data provided by Rete Ferroviaria Italiana

The novelty of this thesis relies on the use of the structure and real data coming from a station in
the North-West of Italy.1 Rete Ferroviaria Italiana2 provided four main files:

1. A CAD file with the drawings of the station complete with information about track seg-
ments, portals and platforms. The visualisation of the station in the drawings was helpful
in order to better understand all the nuances and complications of the movements of the
trains inside the station and most importantly for the correct debug of the planner (covered
in Section 7.1). Figure 2.1 is a dummy station created for better giving visual support of
some concepts of this thesis. Despite not representing a real station Figure 2.1 correctly
represents the structure complexity of a medium-sized station.

2. A JSON-like file containing a structured representation of the station’s topology, for exam-

1Because of confidentiality issues the author cannot report the name of the station and other details regarding the
data that cannot be disclosed by RFI.

2The author sincerely thank Renzo Canepa (RFI) for his support and for providing the data.
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ple, all the track segments that compose itineraries and platforms are listed together with
information about flags, portals and track segments. The real modelled station includes
130 track segments (out of which 34 are track switches), 107 itineraries, 10 platforms, 3
entry points, and 3 exit points.

3. A Flat-File Database containing timestamped logs coming from the Rail Traffic Manage-
ment System (TMS) which controls and monitors the movements of trains in a cluster of
station in the North-West of Italy. In this file some information can be retrieved:

(a) The instant of occupation and liberation of a track segment: as stated in Section 2.1
the status of a track segment is controlled with a track circuit. As stated in Chapter 2,
a track circuit is a physical component that acts as an open circuit with the two rails
of the track. When a rolling stock moves on top of a track segment, its axles shunt the
rails together, closing the circuit and activating a relay which signals the occupation
of the track segment. The track segment becomes free when the last axles of the train
leave the track segment, opening the circuit. The TMS tracks the status of the relay
and logs in the main database the timestamp in which the status of the track circuit
changes.

(b) The instant of reservation, occupation and liberation of an itinerary: as stated be-
fore, the itinerary represents a sequence of track segments which the train will move
through. An itinerary needs to be reserved in advance in order to signal to the con-
trolling system that all the track segments of that itinerary are to be left clear until the
train has finished its movement. This will also give to the operators a clear picture
of the future movements of the trains inside the station. The itineraries’ logs are the
only ones containing information about the trains which are moving in the station (in
particular the trains’ identification number). Track circuits instead, being physical
components, are unable to identify the train but only signal its presence.

(c) The start and end of a stop in a platform by a train. This information becomes helpful
when analysing the time spent by the train in boarding/alighting operations.

The logs captured the movements of trains in the period of February 2020 to May 2020.
This period encapsulates the COVID-19-related lockdown in Italy which started in March
2020. The lockdown effects on the mobility are reflected in the logs: the average number
of trains per day was 130 before the lockdown and 50 after movement restrictions were
enforced in Italy.

4. The timetable of the station which contains information about the type of train (Stop,
Transit, Destination, Origin), the nominal time of arrival at the platform and the minimum
allowed time of departure from it.
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4.2 Ontology

An ontology is a formal explicit description of concepts (classes) in a domain: it allows to list
the properties of each concept, assigning to it various features and attributes. An ontology,
together with a set of individual instances (i.e. instantiations of classes in to objects) constitutes
a knowledge base, which represent what is currently known of the domain at hand. By defining a
set of rules and restrictions which connects properties and classes together, it is possible to apply
reasoning techniques in order to expand the knowledge base of the domain.

The introduction of an ontology, given the complicated structure of the station, is necessary
in order to derive new knowledge on the state of the station’s components given the rules of
interactions between them, provided by experts of the domain. For example, the reservation of
track segments can be deduced by the status of the itineraries, incompatibility between itineraries
can be deduced by intersecting the set of track segments that compose them, the connection
between itineraries allows to define a set of routes that connect an entry point to an exit point.

4.2.1 Classes

The classes of the ontology are the following:

• Topology Component: A topology component is an abstract parent class that contains all
the components mentioned in Chapter 2: Flag, Itinerary, Platform, Portal, Station and
TrackSegment. The entity Portal has two children, EntryPoint and ExitPoint.

• Train: A Train represents a physical object that will move through the station.

4.2.2 Object properties

• allowsToStopAt(Itinerary i, Platform p): if an itinerary i brings to a
platform p (i.e. the flag at the end of the itinerary is coincident with a platform).

• belongsTo(TopologyComponent a, TopologyComponent b): if a compo-
nent a is part of a component b (i.e. a track segment is a part of an itinerary or a platform,
an itinerary is part of a station, etc). The inverse is isComposedOf(b,a).

• blocks(Train t, TopologyComponent c): if a train t is physically occupying
a component (that can be a track segment, an itinerary or a platform). The inverse is
isBlockedBy(c,t).

• bringsTo(Itinerary i, Flag f): if an itinerary i directs a train to a flag f . The
inverse is isDestinationOf(f,i).
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• startsFrom(Itinerary i, Flag f): if an itinerary i originates from a flag f .
The inverse is isOriginOf(f,i).

• entersFrom(Train t, EntryPoint e) (or the similar property exitsFrom(t,
ExitPoint e)) if a train twill enter (or exit) the station from the EntryPoint (ExitPoint)
e.

• isConnectedWith(Itinerary a, Itinerary b): if the itinerary a is connected
with the itinerary b (i.e. if the destination flag of a is the origin flag of b).

• isIncompatibleWith(Itinerary a, Itinerary b): if the itinerary a shares
a track segment with itinerary b.

• reserves(Train t, TopologyComponent c): if a train t has reserved a com-
ponent c. The reservation starts when the operator declares that the train will move through
the component.

• stopsAt(Train t, Platform p): if a train t needs to stop at the platform p for
embarking/disembarking operations.

• allowsToExitFrom(Itinerary i, ExitPoint e: if an itinerary i is a viable
route in order to exit the station through the exit point e.

• reachableFrom(Itinerary i, EntryPoint e: if an itinerary i can be reached
from the entry point e.

• canTravel(Train t, Itinerary i): if a train t, which needs to move from an
entry point to an exit point, can use itinerary i in order to reach its goals.

4.2.3 Expanding the knowledge base with Semantic Web Rules

Semantic Web Rules [Horrocks et al., 2004] enables Horn-like rules to be combined with an
OWL knowledge base in order to reason upon it. These rules are of the form of an implication
between an antecedent (body) and consequent (head). The intended meaning can be read as:
whenever the conditions specified in the antecedent hold, then the conditions specified in the
consequent must also hold. Both the antecedent (body) and consequent (head) consist of zero or
more atoms. An empty antecedent is treated as trivially true (i.e. satisfied by every interpreta-
tion), so the consequent must also be satisfied by every interpretation; an empty consequent is
treated as trivially false (i.e., not satisfied by any interpretation), so the antecedent must also not
be satisfied by any interpretation. Multiple atoms are treated as a conjunction.

When specifying the properties of Section 4.2.2, some information can be deduced from other
properties without having to manually specifying it. A set of Semantic Web Rules were intro-
duced in order to increase the knowledge base of the ontology.
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Incompatible Itineraries. If two itineraries i1 and i2 share a segment s then they are incompat-
ible:

Itinerary(i1) ∧ TrackSegment(s) ∧ Itinerary(i2)

∧belongsTo(s, i1) ∧ belongsTo(s, i2)→ isIncompatibleWith(i1, i2) (4.1)

Incompatible Occupancy. If a train t has reserved an itinerary i then every other itinerary i′

that is incompatible with i is blocked until the reservation is lifted:

Itinerary(i) ∧ Itinerary(i′) ∧ Train(t) ∧ reserves(t, i)
∧isIncompatibleWith(i, i′)→ block(t, i′) (4.2)

Itinerary Connections. If an itinerary i1 brings to a flag f and an itinerary i2 starts from that
flag, then they are connected:

Itinerary(i1) ∧ Itinerary(i2) ∧ Flag(f) ∧ bringsTo(i1, f)

∧ startsFrom(i2, f)→ isConnectedWith(i1, i2) (4.3)

Platform. An itinerary i brings to a platform p if the itinerary brings to a flag f which belongs to
the platform p. Iteratively, an itinerary i1 brings to a flag f if it is connected to another itinerary
i2 which brings to the flag f itself.

Itinerary(i) ∧ Platform(p) ∧ Flag(f) ∧ bringsTo(i, f)

∧ belongsTo(f, p)→ allowsToStopAt(i, p) (4.4)
Itinerary(i1) ∧ Itinerary(i2) ∧ Platform(p) ∧ allowsToStopAt(i2, p)

∧ isConnectedWith(i1, i2)→ allowsToStopAt(i1, p) (4.5)

Reservation of an itinerary. If a train t reserves an itinerary i then it also reserves all the track
segments s that are part of the itinerary:

Itinerary(i) ∧ Train(t) ∧ TrackSegment(s) ∧ reserves(t, i)
∧ belongsTo(s, i)→ reserves(t, s) (4.6)

Itinerary brings to exit point. An itinerary i allows exiting from an entry point if it brings to
a flag f which belongs to the exit point. Iteratively, an itinerary i1 allows exiting from an entry
point if it is connected to another itinerary which allows it.

Itinerary(i) ∧ Flag(f) ∧ ExitPoint(e) ∧ belongsTo(f, e)
∧ bringsTo(i, f)→ allowsToExitFrom(i, e) (4.7)

Itinerary(i1) ∧ Itinerary(i2) ∧ ExitPoint(e) ∧ allowsToExitFrom(i2, e)

∧ isConnectedWith(i1, i2)→ allowsToExitFrom(i1, e) (4.8)
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Itinerary arrives from entry point. An itinerary i arrives from an entry point e if it’s directly
connected to it or it is iteratively connected to another itinerary which does.

Itinerary(i) ∧ Flag(f) ∧ EntryPoint(e) ∧ belongsTo(f, e)
∧ startsFrom(i, f)→ reachableFrom(i, e) (4.9)

Itinerary(i1) ∧ Itinerary(i2) ∧ EntryPoint(e) ∧ reachableFrom(i1, e)

∧ isConnectedWith(i1, i2)→ reachableFrom(i2, e) (4.10)

Itineraries traversable by a train A train t, which moves from the entry point a to the exit point
b, will only move through itineraries that brings to the exit point b and that arrives from the entry
point a.

Itinerary(i) ∧ Train(t) ∧ EntryPoint(a) ∧ ExitPoint(b)
∧ entersFrom(t, a) ∧ exitsFrom(t, b) ∧ allowsToExitFrom(i, b)

∧ reachableFrom(i, a)→ canTravel(t, i) (4.11)

The ontology will result useful in the next chapter as a means to remove unhelpful actions and
events from the encoding. For this reason, depending on the initial conditions and goal of every
single train, the ontology is used to reason on the itineraries which will actually be useful to the
planner in order to plan. All the actions that concerns itineraries that will not help a train in
reaching his goals are automatically pruned.

4.3 Estimation of the duration of trains movements

In order to realistically plan the movements of trains inside a railway station, the time it takes
for a train to move between points inside the station is of paramount importance. In the model
presented in this thesis, since trains are not equipped with a GPS, these times were predicted
based on the logs coming from the Rail Traffic Management System (TMS) which records the
occupation and liberations of track segments in the station [Theeg and Vlasenko, 2009]. The
whole dataset of historical tracks’ travel times were clustered by a variety of features, such as
train characteristics (e.g. passengers, freight, high speed, intercity, etc.), station transit charac-
teristics (i.e. overall train trip inside the rail-network, and entry and exit points), weekdays, and
weather conditions. According to the characteristics of the problem at hand, it is then possible
to estimate the travel times of every train by assigning the average value of the times inside the
corresponding cluster. These purely statistical methods are able to give an estimate on the time
needed by the train to complete a track segment with a MAE of 19.3 ± 5.1. The high average
error requires the need for the introduction of a deep-learning based multiscale model able to
take into account the relationship between trains in the station, automatically learn the represen-
tation and improve the accuracy of the statistic model. This thesis straight-forwardly implements
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the models trained by [Boleto et al., 2021] which, in their paper, adopted a two-step approach
to address the problem of predicting the duration of in-station train movements by firstly lever-
aging on state of the art shallow models based on Random Forests (RF), fed by domain experts
(i.e., operators of RFI) with domain specific features, to improve the current predictive systems.
Then, custom deep multiscale models are introduced based on Temporal Convolutional Network
(TCN) able to automatically learn a rich and expressive representation directly from the data and
to improve the accuracy of the shallow models. Benchmarks on real-world data coming from
the same station discussed on this thesis shows an improvement to a MAE of 7.8 ± 2.5 for the
shallow models and 6.9± 2.1 for the deep models.
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Chapter 5

Encoding

In this chapter, we introduce and specify the PDDL+model designed for dealing with the problem
described in the previous chapters.

In Section 5.1 a brief and more informal introduction to all the actions, events and processes of
the encoding is presented in order to provide a basic idea on how the movements of the trains are
modelled. In Section 5.2 the grounding in the preprocessor is introduced, which is able to reduce
the search-space and make easier the specification of the encoding. In Section 5.3 all the fluents
that compose the encoding are presented which will be used in Section 5.4 which thoroughly
defines all the actions, events and processes of the encoding.

5.1 Introduction to the encoding

Figure 5.1 provides a graphical representation of how actions and events are interleaved in regard
to different potential states of a train: Rectangles represent events and squared rectangles repre-
sent actions. Processes are omitted for clarity. Train states are not explicitly represented in the
PDDL+ model, but they can help to understand the structure and the dynamics of the encoding.
As already defined in Section 2.2 a train can be: Stop, ready to enter the controlled station from
an entry point, stop at a platform and exit from an exit point; Origin, a train that originates from
the controlled station – the train is stopped at a platform and needs to be moved towards an exit
point; Destination, the train enters from an entry point and then, after stopping at a platform,
terminates its trip at the station.

The core of the proposed PDDL+ encoding is the way in which the movement of trains in the
railway station is modelled and controlled. The operators EnterStation, BeginsVoyage,
and BeginsOverlap are all allowing the corresponding train to reserve an itinerary and to
start moving on it. They have differences in terms of preconditions and effects, as they deal with
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Figure 5.1: A flow chart showing the movements of the train inside the station based on its type.
Rectangles represent events and squared rectangles represent actions. Processes are omitted for
clarity.

trains in different logical states. For instance, the EnterStation operator can be used only
by a train that is at an entry point: one of the effects is that the train is no longer approaching the
train station, but is navigating through the controlled station. The use of these operators trigger a
process that is used to model the time needed by the train to reach the end of the itinerary. Over
time, track segments of the itinerary that are not occupied by the train any more, are released via
the CompletesTrackSegment event. When the train has completed all the track segments
of the itinerary, the event CompletesItinerary is triggered. Notably, when a train reaches
the end of an itinerary, it is still occupying part of its segment tracks: the precise number depends
on the type of train, and on the length of the segments. The BeginOverlap operator is used
by a train moving between two subsequent itineraries of the station, to take into account the
“overlapping” time needed by a train to completely leave the previous itinerary.

Figure 5.1 also shows the ExitStation operator, that is used to allow a train that reached an
exit point to actually leave the station and release the occupied track segments, and the Begin-
Stop operator, that is used to stop a train at a platform to allow the disembarking/embarking
of passengers. The duration of the stop is variable: each type of train has a minimum time that
is required to stop to safely allow the movement of passengers; further, a train is not allowed to
leave a platform before its timetabled leaving time. This is encoded in the corresponding action
using appropriate preconditions. Finally, if the train is of type Destination, after the event of
EndsStop which signals that a train has completed the disembarking process, a predicate is
used to model the fact that a destination train has terminated, and should not move any further.

Dedicated processes, not shown in Figure 5.1 for the sake of readability, are used to keep track
of the time spent by a train: (i) navigating an itinerary; (ii) overlapping, i.e., moving from one
itinerary to the next; and (iii) stopping at a platform. Further, in order to encode an explicit notion
of the time that is passing, in our model a dedicated timePassing process is employed. This
helps when dealing with the time-related aspects of the problems to be solved, by avoiding the
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need to use timed initial literals.

5.2 Preprocessor and Grounding

Instance Preprocessor
Optimised
Planning
Engine

Grounded PDDL+ 
Problem and Domain Plan

ML
Predictions

Station
Structure

TimetableOntology

Figure 5.2: The architecture that produces the grounded PDDL+ Domain and Problem

As discussed in Chapter 3 a PDDL+ domain and problem are transformed internally by the plan-
ning engine in a search problem in a search-space. In order to achieve this a procedure, called
grounding, has to be made in advance in order to substitute all the variables with the constants
of the domain, for example by creating sets of actions for every train (e.g., the action enter-
Station which deals with a generic train has to be created for every train). It’s easy to see
that with the number of trains inside the station growing, it also increases, in an exponential
fashion, the dimension of the search-space in which a solution has to be searched. The curse of
dimensionality [Bellman, 1966] is intrinsic in planning problems, but something can be done in
order to cut waste and reduce the number of possible states that are already known to be unreach-
able. The planning engine ENHSP already has a grounding system inside it able to substitute the
variables and create grounded actions, events and processes. Besides substituting variables with
constants, the ENHSP grounder is able to reduce the set of actions by performing a static analy-
sis method [Scala and Vallati, 2021] which is able to identify actions/events which preconditions
will never be satisfied and remove them from the search-space. However, being a static analysis,
the system is unable to identify actions/events that could in theory be activated but will never
have their preconditions activated because of the structure of the problem at hand. A practical
example is a train that needs to move from the West entry-point to the East exit-point; as it can
be seen in Figure 2.2 some itineraries will never contribute to reaching the goal: for this reason
the action that involves these itineraries can be straightforwardly pruned and removed from the
search-space. In Figure 5.2 a block diagram of the architecture used to produce the grounded
PDDL+ problem and domain is shown. The preprocessor takes as input (i) the instance (i.e., the
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list of trains with their types, initial condition and goals), (ii) the station structure, formalized
with the ontology presented in Chapter 4, (iii) the timetable of the day in which the planning take
place. The preprocessor elaborates this data in the following way:

1. using the ontology, based on the initial conditions and goal of every single train, to reason
on the itineraries which will actually be useful to the planner in order to plan. All the
actions that concerns itineraries that will not help a train in reaching his goals are automat-
ically pruned.

2. querying the machine learning model for predicting the time of occupancy of itineraries,
track segments and stopping times at platforms for every train.

3. pruning all the actions that are not required by the type of the train (e.g., an Origin will not
need an action entersStation).

4. listing all the track segments of the itineraries: when an itinerary is reserved all the track
segments that compose it have to be blocked in order to achieve mutual exclusion; in order
to do this in the PDDL+ encoding all the track segments have to be explicitly stated (an
example of this grounding can be seen in Figure 5.3a.

5.3 Fluents to model the flow of time

The travel times information are encoded in the PDDL+ model using the following fluents:

1. arrivalTime(t): the time at at which the train t arrives at the controlled station. This
time is provided by the instance.

2. timetableArrivalTime(t) (timetableDepartureTime(t)): the time in which
the train t should arrive at (departure from) a platform, according to the official timetable.

3. segmentLiberationTime(t,s,i): the amount of time it takes for train t to free
segment s ∈ i since it starts moving on itinerary i.

4. timeToRunItinerary(t,i): the amount of time it takes for train t to move through
itinerary i.

5. stopTime(t,p): the expected amount of time it takes for train t to embark/disembark
passengers or goods at platform p.

6. timeToOverlap(t,in,im): the time it takes for train t to completely leave itinerary
in and move to itinerary im.
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The fluents from 3 to 6 are given by the machine learning model which, based on the features of
the train, predicts a duration of the action by the train. All these fluents are already known in the
preprocessing phase and so are automatically grounded, leaving their integer value in the final
encoding.

5.4 Actions, events and processes to model the movement of
trains

In this section, we focus on the PDDL+ structures used to model the movement of trains per type.
For the sake of readability, we say that a Boolean predicate is activated (de-activated) when its

(:action entersStation
:parameters(

T1 - train
W+ - entryPoint
I01-4R itinerary

)
:precondition (and

(trainIsAtEP T1 W+)
(not (trainHasExited T1))
(not (trainHasEntered T1))
(not (trackSegBlocked aa))
...
(not (trackSegBlocked ba))
)

:effect (and
(not (trainIsAtEP T1 W+))
(itineraryIsReserved I01-4R)
(trainInItinerary T1 I01-4R)
(trainHasEnteredStation T1)
(trackSegBlocked aa)
...
(trackSegBlocked ba)

)
)

(a) Action entersStation

(:process incrementTime
:parameters()
:precondition ()
:effect (and
(increase time #t )

)
)

(:event arrivesAtEntryPoint
:parameters (
T1 - train
W+ - entryPoint

)
:precondition (and
(>= time 242)
(not (trainHasEnteredStation T1))
(trainEntersFromEntryPoint T1 W+)

)
:effect (and
(trainIsAtEntryPoint T1 W+)
(trainHasArrivedAtStation T1)

)
)

(b) Process incrementTime and event
arrivesAtEntryPoint

Figure 5.3: The grounded action entersStation which enable a train T1 to enter from an
entry-point W+ through itinerary 01-4R. (right) The process incrementTime which keep
track of the flowing of time and the grounded event arrivesAtEntryPoint which signals
that a train T1 has reached the endpoint W+
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value is made True (False).

Transit train. If a train is of type Transit it will traverse the station without stopping to em-
bark/disembark passengers or goods at any of the platforms. The movement of the train through
the station is regulated using the following PDDL+ constructs (listed in application’s order):

• A process incrementTime (Figure 5.3b) encodes an explicit notion of passing time by
increasing the fluent time

• An event arrivesAtEntryPoint(t,e+) (Figure 5.3b) is triggered when the fluent
time reaches the value of the predicate arrivalTime(t), and it requires that the pred-
icate trainEntersFromEntryPoint(t,e+), indicating the entry point for the train,
is active. The event makes true the predicate trainHasArrivedAtStation(t) sig-
nalling that the train is at the gateway of the station ready to enter.

• An action entersStation(t,δ+,i) (Figure 5.3a) can be used by the planning en-

(:event completeTrackSeg
:parameters(

T1 - train
aa - trackSeg
ac - trackSeg
I01-4R itinerary

)
:precondition (and

(>= (timeReservedIt I01-4R) 29)
(trainInItinerary T1 I01-4R)
(trackSegBlocked aa)
(trackSegBlocked ac)

)
:effect (and

(not (trackSegBlocked aa))
(not (trackSegBlocked ac))

)
)

(a) Event completeTrackSeg

(:process increaseTrainStopTime
:parameters(T1 - train)
:precondition (and
(trainIsStopping T1)

)
:effect (and
(increase (trainStopTime T1) #t)

)
)

(:process increaseReservedTimeIt
:parameters(I01-4R - itinerary)
:precondition (
itineraryIsReserved I01-4R

)
:effect (
increase (reservedTime I01-4R) #t)

)
)

(b) Processes increaseTrainStopTime and
increaseReservedTimeIt

Figure 5.4: (left) Grounded event completeTrackSeg which signals that a train T1 has
finished his run through the track segments aa and ac. (right) The process increaseRe-
servedTimeIt which keeps track of how long a train is reserving itinerary I01-4R and the
process increaseTrainStopTime which counts the time passed for a train T1 which is
stopping at a platform.
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gine to let the train t enter the station from the entry-point δ+, using the itinerary i. The
precondition that must hold in order for this action to be taken are: (i) the entry point is
connected to the itinerary i, and (ii) the itinerary i is free, i.e., none of its track segments
are occupied by a train. As a result of this action i is reserved by t by blocking all the track
segments in it via dedicated predicates trackSegBlocked(s), and by the predicate
trainInItinerary(t,i).

• A process incrementTimeReservedItinerary(i) (Figure 5.5b) keeps track of
how many seconds have passed since the reservation of an itinerary i by any train, updating
the fluent reservedTime(i) accordingly.

• The event completesTrackSeg(t,s,i) (Figure 5.4a) is triggered when a train t has
left the track segment s. This is triggered when reservedTime(i) has reached the
value specified in the fluent segmentLiberationTime(t,s,i), and as a result the
segment s is freed by de-activating the predicate trackSegBlocked(s).

• As soon as the train has reached, with its head, the end of the itinerary (so when re-

(:action beginStop
:parameters(

T1 - train
I04-3L - itinerary
SIII - platform

)
:precondition (and

(trainHasCompletedIt T1 I04-3L)
(not (stopIsOccupied SIII))
(not (trainIsStopping T1))

)
:effect (and

(trainIsStoppingAtStop T1 SIII)
(trainIsStopping T1)
(assign (trainStopTime T1) 0 )
(stopIsOccupied SIII)
(not (itineraryIsReserved I04-3L))
(not (trackSegBlocked aa))
...
(not (trackSegBlocked am))

)
)

(a) Action beginStop

(:event endStop
:parameters(
T1 - train
S_III - platform

)
:precondition (and
(>= (trainStopTime T1) 300)
(>= time 421)
(trainIsStoppingAtStop T1 SIII)
(stopIsOccupied SIII)

)
:effect (and
(not (trainIsStoppingAtStop T1 SIII))
(not (trainIsStopping T1))
(trainHasStoppedAtStop T1 SIII)
(trainHasStopped T1)
(not (stopIsOccupied SIII))

)
)

(b) Process increaseTrainStopTime and
event endStop

Figure 5.5: (left) The grounded action beginStop which allows the train to stop at platform
SIII coming from itinerary I04-3L. (right) Ground event endStop which, when the time
has come, signals that the stop has come to an end.
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servedTime(i) is greater than timeToRunItinerary(t,i)), the event com-
pletesItinerary(t,i) is triggered. It activates a predicate trainHasComplete-
dItinerary(t,i).

• An action beginsOverlap(t,in,im) can be used by the planning engine to encode
the movement of train t from itinerary in to itinerary im. This action can be used only if
trainHasCompletedItinerary(t,in) is active and all the track segments s ∈ in
are not occupied by another train.

• A process incrementOverlapTime(t,in,im) keeps track of the time a train t is
taking to move all its carriages through the joint that connects in to im by increasing the
value of the fluent timeElapsedOverlapping(t,in,im).

• An event endsOverlap(t,in,im) is triggered when the fluent that counts the time
of overlap timeElapsedOverlapping(t,in,im) is greater than the fluent time-
ToOverlap(t,in,im). The event signals that the train is no longer on itinerary in deac-
tivating the predicates trainInItinerary(t,in) and resetting the value of function
timeToRunItinerary(in) to 0.

• Finally, when a train has completed its routes of itineraries, and with the last itinerary i
has reached the segment leading to an exit point of the station δ−, the action exitsSta-
tion(t, i, e-) allows the train to exit the station activating the predicate train-
HasExitedStation(t).

The goal for a train t of type Transit is to reach the state in which the predicate trainHasEx-
ited(t) is active.

Stop train. A train of this type needs to stop at a platform before exiting the station, as it is
making an intermediate stop at the controlled station. Three other PDDL+ constructs are added
with respect to a train of type Transit in order to model this behaviour:

• The action beginStop(t,i,p) (Figure 5.5a) is used to allow the planning engine to
stop the train t at a platform p after having completed itinerary i, and having the platform
at the end of the itinerary. The effect of this action is to signal that the train is at the plat-
form by activating the predicate trainIsStoppingAtStop(t,p) and all the track
segments s ∈ p are blocked in order to achieve mutual exclusion on the platform.

• A process increaseTrainStopTime(t) (Figure 5.5b) keeps track of the time spent
by the train at a platform. This is done by increasing the value of the function train-
StopTime(t) over time.

• The train t can begin its route towards the exit point only after a time stopTime(t) has
passed – this it to allow passengers or goods to embark / disembark. A train cannot leave
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the platform before the timetabled departure, set via the function timetableDepar-
tureTime(t). For this reason the event endStop(t,i,p) (Figure 5.5b) that signals
that the train is ready to leave the platform can be triggered only if the fluent train-
StopTime(t) has reached the value set in the predicate stopTime(t) and the fluent
time is greater than timetableDepartureTime(t). This event activates the pred-
icate trainHasStopped(t).

The train t will then begin its trip towards the exit point with the action beginsOverlap
(t,in,im) where in is the itinerary where the platform is located, and im is a subsequently
connected itinerary. For a train of type Stop the goal is to reach a state in which the predicates
trainHasExitedStation(t) and trainHasStopped(t) are both active.

Origin train. A train of type Origin needs to specify the platform the train is parked at.

For this reason, the predicates trainIsStoppingAtStop(t,p) and trainHasStopped(t)
are activated at the initial state of the problem, indicating the train t is departing from platform p.
This type of train resemble the train of type Stop but without the possibility to enter the station,
since it is already inside it at the beginning of the plan. Only one action is introduced in order to
model the behaviour of an Origin train:

• An action beginVoyage(t,p,i) can be used by the planning engine to allow the
departure of train t from platform p via itinerary i. This action can not be executed before
the timetabled departure time timetableDepartureTime(t).

The goal of a train of type Origin are the same as a train of type Transit: it must have exited the
station.

Destination train. A train of type Destination behaves like a Stop train but, after having reached
the platform, it will remain parked there. For this reason, no additional PDDL+ constructs are
needed. A train of type Destination will simply have as its goal the need to reach a state in which
the predicate trainIsStopping(t) is active, meaning so that the train t has reached its stop.

The interested reader can find the whole PDDL+ problem and domain definition for instances of
different complexities at https://github.com/matteocarde/icaps2021.

38

https://github.com/matteocarde/icaps2021


Chapter 6

Solving

The open-source1 ENHSP planning engine [Scala et al., 2016, Scala et al., 2020] has been used
to solve in-station train dispatching problems, encoded in PDDL+. ENHSP is a modular plan-
ning engine, and includes a range of off-the-shelf search and heuristic techniques; it deals with
continuous processes using the Discretise and Validate approach, where the continuous model
is initially discretised, then solved, and finally the found solution is validated against the orig-
inal continuous model. Discretisation is done on the basis of a given delta, that controls the
execution, planning, and validation processes of the planning engine. The delta for execution
and planning is used to define, respectively, how often the planning engine is updating the state
of the world checking for events and processes, and how often the planning engine is allowed
to take a planning decision. In Section 6.1 a pseudo-algorithm is introduced that shows how
the ENHSP planning engines solves PDDL+ planning problems; afterwords a brief description
of domain-independent heuristics are introduced. The off-the-shelf version of ENHSP, with
domain-independent heuristics and with a Discretize and Validate approach, proved to be ca-
pable of solving prototypical instances, hence demonstrating the feasibility of the approach. To
allow ENHSP to solve large and complex PDDL+ in-station train dispatching problems, leverag-
ing its modularity, the behaviour of the solver was specialised with domain-specific extensions
which leveraged the prior knowledge of the domain in order to guide the search through the
search-space. These extensions are presented in Section 6.2

In the next chapter, an analysis on the contributions made by every modification will be analysed
and compared.

1available at https://gitlab.com/enricos83/ENHSP-Public
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Figure 6.1: An example of a search tree of a dispatching problem in which a train T1 enters
from the Entry Point W+ and has to exit from the Exit Point E-. Rounded rectangles represent
possible states following an action. States dashed border are a visual representation of the result
of applying the no-op action in which no action is chosen.

6.1 Planning As Search

In this section, an algorithm is presented to provide some insights on how a solution for a plan-
ning problem is found in the state-of-the-art PDDL+ planner ENHSP. As previously described
in Chapter 3, a plan consists of a sequence of (timestamped) actions that leads from the initial
state to the goal state. Since at every possible stage of the plan multiple actions could be chosen,
the most natural way to represent a search problem is introducing the concept of a search tree.
In a search tree the root of the tree represents the initial state, nodes correspond to states in the
state space of the problem and the arcs that connect two nodes represent an applicable action that
brings from a state to another. The additional constructs of processes and events introduced in
PDDL+ are not present in the search tree since they are not under the direct control of the planner.
In Figure 6.1 a visual representation of a search tree is displayed.

The solution of a planning problem can thus be seen as an edge-path in the tree that connects
an initial state to a goal state. The structure of a search tree provides with a native algorithm
for searching for a solution: starting from the initial state expand the search tree by applying
one after the other all the actions applicable in the state adding the new generated states in a list
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Algorithm 1 Algorithm for finding a PDDL+ plan
1: Input: Domain D, Problem Π and Discretization Step δ
2: Output: A plan that leads from the initial state to the goal state or ∅ if no viable plan can be

found
3: function FINDPLAN(D,Π, δ)
4: Frontier ← COLLECTION()
5: ADD(Frontier,Π.I)
6: while ISNOTEMPTY(Frontier) do
7: node← CHOOSE(Frontier)
8: APPLYPROCESSES(node, δ,D.P)
9: APPLYEVENTS(node,D.E)

10: if STATE(node) |= Π.G then
11: return EXTRACTPLAN(node)
12: for all action ∈ APPLICABLEACTIONS(node,D.A) ∪ {NoOp} do
13: expNode← APPLYACTION(node, action)
14: ADD(Frontier, expNode)

15: return ∅

(called frontier or open-list), then choose in this list the next state to expand and repeat the process
iteratively until a goal state is reached. This method of building a search tree is called forward
(progression) state-space search solution. This algorithm also implicitly provides a procedure
for back-tracking, when no actions are applicable in a particular state, simply by picking a state
from the frontier which was the result of previous expansions.

In Algorithm 1 a pseudo-code is presented for the FINDPLAN() procedure extended with struc-
ture to manage PDDL+ constructs like processes and events. The functions APPLYPROCESSES()
and APPLYEVENTS() check between all the processes of the domainD.P and eventsD.E which
preconditions are met and apply the effects to node; the two functions are to be called in this pre-
cise order since APPLYPROCESSES() changes the value of all the numeric functions substituting
the value of #t with the value expressed in δ and then APPLYEVENTS() checks the precondi-
tions of the events based on the updated numeric functions’ values. APPLYACTION() instead,
does not change the state of node but creates a new state expNode which is the result of the ex-
pansion with action picked from the set of APPLICABLEACTIONS() in node. Since it is possible
that it is more convenient to not apply any action and wait for events to be triggered, a special
action NoOp is added to the list of applicable actions which does not change the state of node.
When a node is found that entails the goal the search algorithm terminates by calling the function
EXTRACTPLAN() on the node which reached the goal node; in fact, since possible backtracks
could jump between states in an unordered fashion a simple and fast way to store plans is to keep
a parenthood relation between nodes and then extract the plan by looking iteratively at all the
parents of the goal reaching node.
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The most generic function of Algorithm 1, which actually defines the search strategy of the al-
gorithm, is CHOOSE(). Different implementations of this function can produce different plans
with very different planning times. The search strategies are mainly classified in two categories:
uninformed search (also called blind search) and informed search (or heuristic search). In un-
informed search strategies, no additional information is provided beyond that provided in the
problem definition and the algorithm simply expands nodes with no knowledge if the expanded
nodes contribute to reaching the final goal or not. In informed search, instead, the search algo-
rithm tries to pick nodes that look "more promising" in reaching a solution faster.

Examples of uninformed search algorithms are the Breadth-First Search (BFS) or Depth-First
Search (DFS). These algorithms differ simply from the choice of which collection to use to
represent the frontier. For example, if the frontier is represented by a Queue then the CHOOSE()
function implements the functionality of DEQUEUE() and will always retrieve the node with the
lowest level, thus implementing a BFS approach. If instead the frontier is represented with a
Stack, and CHOOSE() is equivalent to POP(), then a DFS strategy is performed. These strategies
work best with a small search-space and with a small branching factor, but when dealing with
huge search-spaces a more intelligent approach is need to guide the planner towards a goal.

For this reason, heuristics have been developed in order to provide a measure on the quality of
the node that estimates how much the node is "near" to a goal state. This quality is specified
using an evaluation function f(n) that maps a state to a real number, with lower values of f(n)
representing states with better quality. The algorithm will then choose the highest quality nodes
first (for example, implementing the frontier with a PriorityQueue ordered on the value of f(n)).
Of course, heuristics do not provide perfect estimations of the distance to the goal states (other-
wise the implementation of heuristics will always produce a plan at the first try), but can reduce
drastically the computation times avoiding spending a lot of time blindly expanding states which
are less probable to lead to a goal state. The heuristics can be of two types:

1. Domain Independent Heuristics which try to fetch information about the distance from the
goal by simply looking at the structure of the problem. In general heuristic functions are
computed in parallel search trees created from relaxed problems which are problems with
fewer restrictions on the actions. In the literature, several relaxations are presented which
are able to provide huge boosts to the discovery of plans. For classical planning, one of
the most famous and pivotal algorithms is GRAPHPLAN() [Blum and Furst, 1997]. For
PDDL+ the interested reader is referred to [Scala et al., 2016, Piotrowski et al., 2016]

2. Domain Dependent Heuristics which instead introduce some additional knowledge on the
domain which cannot be deduced from the planning problem alone. For example in the
in-station train dispatching problem, based on the prior knowledge of the structure of the
station and on the interconnections between track segments, an itinerary can be preferred
to another since it can lead to an exit portal quicker than the others. This type of heuristic
has been successfully implemented in the solver of the in-station train dispatching problem
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Figure 6.2: Example on how two different informed search algorithms, A∗ and Greedy Best First
Search (GBFS), find plans in a euclidean space

and will be covered in the next section.

Two well-known informed search algorithms are the Greedy Best-First Search (GBFS) and the
A∗ algorithm. The GBFS approach simply picks the nodes which look more promising and
nearest to the goal (i.e., with the lowest f(n)) in a greedy fashion. This algorithm, like all greedy
algorithms, can lead to a solution very fast but usually produces longer plans since it doesn’t
take into account the number of already expanded nodes. In Figure 6.2 a visual explanation on
how GBFS (Blue) deals with obstacles is presented: suppose a planning agent has to find a plan
of moving from the circle to the square, which lies behind the red wall. A heuristic is provided
which is simply the euclidean distance between the square (goal) and the current position of the
agent. The GBFS algorithm will quickly move in the direction of the square, but as soon as it
tumbles against the wall it will try to bypass it in a direction which will actually make the path
longer. In the A∗ algorithm instead, the number of steps taken are considered while choosing the
next node to expand. The evaluation function is in fact computed as f(n) = g(n) + h(n) where
g(n) is the number of steps taken from the initial state to the node n and h(n) is the heuristic (or
estimated cost) of going from the node n to the goal state. In this way, as presented in Figure 6.2,
the A∗ algorithm will actually prefer a path that is initially longer, but that will produce a plan in
fewer steps.

6.2 Domain-Specific Improvements

To allow ENHSP to solve large and complex PDDL+ in-station train dispatching problems, lever-
aging its modularity, the behaviour of the solver was specialised in three ways: through the de-
sign of an adaptive notion of execution and planning delta (Section 6.2.1), the introduction of
a domain-specific specialized heuristic (Section 6.2.2), and the insertion of three constraints to
prune unpromising areas of the search-space (Section 6.2.3)
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Algorithm 2 Adaptive Delta Queue
1: function GENERATEINITIALQUEUE(E,A, I)
2: Q = INITQUEUE()
3: for e in E | e = ”AtEntryPoint” do
4: ENQUEUE(Q, e.time)
5: for a in A | a = ”LeaveOrigin” do
6: ENQUEUE(Q, a.earlyT ime)
7: for p in GETACTIVEPROCESSES(I) do
8: for e in IDENTIFYEVENTS(p) do
9: ENQUEUE(e.time)

10: return SORT(Q)
11:
12: function EXTENDQUEUE(Qp, a)
13: Q = Qp

14: TE = CALCTRIGEVENTS(a)
15: for e in TE do
16: ENQUEUE(e.time)
17: return SORT(Q)

6.2.1 Adaptive Delta

As discussed in Chapter 3 in order to manage continuous time-dependent processes, the planner
has to discretise time in multiple discretisation steps (δ) that determines how often an action
can be applied, or an event can be triggered. The value of δ can be given to the solver by the
AI expert based on the knowledge on the domain and the granularity by which the solution has
to be found. The choice of the correct discretisation step can be delicate; the choice of a very
small δ can exponentially increase the solving time, since at every discretisation step several
actions could be applied, enlarging the search-space. On the other hand, the selection of a large
δ can invalidate the solution. In the proposed PDDL+ model, it is possible to know a priori when
events will be triggered. For Approaching trains, the moment in which the At EntryPoint event
will be triggered is given in the ground formulation. All the other events are the result of actions
executed by the planning engine, and the moment in which they will be triggered is only related
to the time in which the corresponding action has been executed. This implies that there is no
need to use a fixed execution and planning delta, but the delta value can be adjusted according to
when the next event will be triggered, or an action will be available. From a planning perspective,
it is useless to consider all the steps in between, because the state of the world does not change.
This is similar in principle to the approach exploited by decision-epoch planning engines for
dealing with temporal planning problems [Cushing et al., 2007].
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An Adaptive Delta Queue was designed in order to manage this behaviour, that is initialised
as shown in Algorithm 2. Taking into account the set of ground events E, ground actions A,
and the initial state description I , it is possible to identify when to stop the execution to take
decisions and update the state of the world. Given the proposed PDDL+ model, in the function
GENERATEINITIALQUEUE() it is straightforward to extract the time at which an At EntryPoint
event will be triggered, and the earliest time at which an action Leave Origin will be available.
Similarly, it is straightforward to check the presence of trains already in the controlled station,
and identify the time of the corresponding events, if any. When an action is executed, a new
queue Q is created, and attached to the resulting search state. The function EXTENDQUEUE(),
shown in Algorithm 2, is used to extend the delta queue of the parent stateQp taking into account
the events TE that will be triggered by the applied action a, and their trigger time.

In each state, the next delta step is identified by considering the corresponding delta queue, and
by picking up the time of the next event that will be triggered. Between two events, nothing will
happen, so there is no need to generate and assess additional states.

6.2.2 Specialised Heuristic

Following the traditional A∗ search settings, the cost of a search state z is calculated as f(z) =
g(z) +h(z), where g(z) represents the cost to reach z, while h(z) provides a heuristic estimation
of the cost needed to reach a goal state from z. In our specialisation, g(z) is calculated as the
elapsed modelled time from the initial state to z. h(z) is a domain-specific heuristic calculated
according to the following equation:

h(z) =
∑
t∈T (z)

ρt(z) + πt(z) (6.1)

where T (z) is the set of trains of the given problem that did not yet achieve their goals at z. ρt(z)
is a quantity that measures the time that, starting from the current position, the considered train
needs to reach its final destination and is computed as follows:

ρt(z) = max
R∈Rt(z)

∑
in∈R

timeToRunItinerary(t, in) (6.2)

where Rt(z) is the set containing all the possible routes R, as sequences of itineraries, that a
train t can run across in order to reach its final destination (i.e., an exit point or a platform) from
the state z. Since the initial and final position of every train is known a-priori and based upon
its type (Origin, Destination, Stop, Transit) the set can be computed beforehand and used in the
search phase.

The penalisation function πt(z) gives a very high penalisation value P for each goal specified
for the considered train t that has not yet been satisfied at state z. For instance, if a train of type
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Stop has not yet entered the station, a penalisation of 2 × P is given to the heuristic since there
are two goals related to the train that has not been satisfied in the initial state, i.e., stopping at a
platform and leaving the station from an exit-point.

6.2.3 Constraints

Finally, the implemented constraints focus on the time spent by the trains. In particular, for every
train t of a given problem to solve, the following constraints are enforced.

stayInStationTime(t) < MaxStayInStation (6.3)

fromArrivalTime(t) < MaxFromArrival (6.4)

stoppingTime(t) < MaxStoppingT ime (6.5)

Equation 6.3 indicates that a train is not allowed to stay in the station more than a given maximum
value. Similarly, Equations 6.4 and 6.5 constraint, respectively, the time passed from the arrival
of the train in the station, and the time spent stopping at a platform. The idea behind such
constraints is to avoid situations where trains are left waiting for long periods of time, occupying
valuable resources. The maximum times are calculated a priori, according to historical data,
and depends on the structure of the railway station. Such constraints are also used to implement
an anytime planning framework, able to generate a solution of increasing quality over time.
Starting from an initial value corresponding to worst case scenarios observed in historical data,
the constraints’ value are then reduced if a plan is generated: this process is repeated until either
the cut-off time is reached, or the planning engine returns that no solution can be found.
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Chapter 7

Evaluation and Analysis

In this chapter, an analysis of the performances and an evaluation of the capacity of the proposed
approach to deal with real problems are presented. Firstly, in Section 7.1 a visualisation tool is
introduced which enables to inspect the topology of the station, debug the produced plans and
visualise the movements of trains inside the station. Then, in Section 7.2 a double validation
is performed by having human dispatchers validate the plans produce by the automatic planner
and then having the automatic planner validate the plans produced by human dispatchers in the
past, thus showing that the proposed AI dispatcher could have taken the same decision a human
operator would have, given the same initial conditions. Then, in Section 7.3, an analysis is pre-
sented to evaluate the capacity of the proposed approach to choose plans that would minimise
the total delay of trains in stations. In Section 7.4, the automatic planning approach is used to
simulate a stress-test in which more and more trains are scheduled to pass through the station;
this simulation provides an evaluation of the limit on how much of the railway station’s available
infrastructure can be exploited and the maximum number of trains over which a renovation of the
station, with the insertion of additional tracks, is required in order to avoid the station to become
a bottle-neck for the whole railway network. Lastly, in Section 7.5, an analysis of the improve-
ments and domain-specific extensions introduced in Chapter 6 is presented to see whether and to
what extents they are beneficial in terms of planning time.

All the tests were run on a 2.5GHz Intel Core i7 Quad-processors laptop with 16 GB of memory
made available and a macOS operating system. The cut-off time was set to 5 CPU-time minutes,
but plans are usually generated in less than 30 seconds. These specifications, which nowadays
is common in most computers, show that the proposed approach can run on a simple laptop and
without the need of a great computing power.
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Figure 7.1: Two screenshots from the visualisation tool capturing the itineraries occupied by
three trains at different time steps. A train is represented by a coloured line, the "head" of a train
is represented with a circle to indicate the direction of the train. Top: The red train is moving
from the West entry point to platform V, the blue train is stopped at platform II and the purple
train is arriving from the East entry point. Bottom: The red train has stopped at the platform and
is moving towards the East exit point, the blue is leaving the station from the West exit point.
The purple train has stopped at platform IV

7.1 Visualisation

As presented in Section 4.1 the CAD file of the station was of particular use in order to understand
the movement of the trains inside the station and to debug the proposed approach discussed in the
previous chapters. For this reason, a visualisation tool was constructed using the state-of-the-art
technology for the visualisation of data: the framework D31. The visualisation tool build has the
following functionalities:

1. Search the components (i.e., track segments, itineraries, flags, platforms) inside the station
via a search-bar, highlighting the component on the map.

2. Highlight the itineraries and see the path of track segments it contains.

3. Show the movements of the trains inside the station by highlighting the occupations of
itineraries described in the logs in order to better visualise how a train moves and how the
movements of multiple trains are coordinated.

4. Display the presence of rolling stocks simultaneously present in the station by visualising
the occupancy of single track segments with the aim of analysing how they interact with
each other.

1Data-Driven Documents https://d3js.org/
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5. Display the result of the AI planned movements inside the station (see Chapter 5) in order
to debug and assess the accuracy of the plans. In Figure 7.1, two screenshots from the
visualisation tool are presented which shows the movements of three trains as planned
from the planning engine.

7.2 Validation Against Historical Data

Validation consists in analysing, inspecting and debugging the plans produced by an AI planning
engine to understand if the proposed approach can successfully model real-world instances of
the in-station train dispatching problem. This validation was performed in two ways: a manual
inspection and an automatic one. For the manual inspection, the visualisation tool presented in
the previous section was utilized for showing the plan to experts of the domain for the purpose
of understanding if the planned movements of the train inside the station are correct; then special
instances, known to be difficult to manage by human dispatchers, were constructed ad-hoc and
the resulted plan inspected and validated.

A second approach was to be able to automatically validate the proposed approach through the
analysis of historical plans produced by human operators. The logs provided by RFI, and pre-
sented in Chapter 4, allows to reconstruct the plan of the trains chosen by human operators. This
plan, together with the PDDL+ domain and problem, is then given as input to the ENHSP internal
validator, which answer the question "Would this plan be a solution of this problem and domain
?" or, in other words, if the PDDL+ formulation is capable of representing how the addressed
in-station train dispatching problem is currently faced by the human operators. This step is fun-
damental for at least two reasons: (i) to ensure that the PDDL+ formulation is realistic and can
capture all the nuances of the real-world application, and (ii) to support the use of historical plans
as baseline for validation and comparison purposes.

To perform this analysis, a day was selected – in February 2020, before the start of the COVID-
19 lockdown in Italy – with the minimum mean squared deviation of recorded train timings from
the official timetable. This was done to guarantee that no emergency operations were executed
by the operators. The recorded happenings of that day were recorded under the form of a single
PDDL+ plan, using the operators introduced in the corresponding section. These plans were
then successfully validated, using the ENHSP validator, against the proposed PDDL+ model.
Notably, the fact that the PDDL+model can correctly model the real-world dynamics, implies that
planning-based tools can be straightforwardly exploited, and the planning engine can provide an
encompassing framework for comparing different strategies to deal with recurrent issues, and for
testing new train dispatching solutions. This result already represents a significant leap forward
for the state of the art of the application field.

In Algorithm 3 a pseudo-code of the internal ENHSP validator, which was used to perform this
analysis, is presented. The function VALIDATE() takes as input the discretization step δ, the
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PDDL+ Domain and Problem together with the plan (which in this case is the plan chosen by
human operators, extracted from the logs); At the beginning, a variable state is initialized with
the initial conditions of the problem. Until the plan is not finished, the algorithm increments the
time of the state by the discretisation step and applies all the appliable processes in order to bring
forward all the time-dependent fluents (i.e., the time of occupation of an itinerary, the stop time,
etc). Then, the events are applied calling APPLYEVENTSUNTILFIXPOINT(), which applies all
events until no more events are applicable, this because cascading events have to be taken into

Algorithm 3 Algorithm for validating a PDDL+ plan
1: Input: Domain D, Problem Π, Plan S and a Discretisation Step δ
2: Output: True if the plan is valid, False otherwise
3: function VALIDATE(D,Π,S, δ)
4: state← Π.I
5: while ISNOTEMPTY(S) do
6: state.time← state.time+ δ
7: state← APPLYPROCESSES(state,D.P)
8: state← APPLYEVENTSUNTILFIXPOINT(state,D.E)
9: nextAction← PEEK(S)

10: if TIME(nextAction) > t then
11: continue
12: if PRECONDITIONS(nextAction) 6|= state then
13: return false
14: state← APPLYACTION(state, nextAction)
15: POP(S)

16: if state |= Π.G then
17: return true
18: else
19: return false
20:
21: Input: state in which the event should be applied and all the events in the domain E
22: Output: a new state in which all the applicable events have been applied
23: function APPLYEVENTSUNTILFIXPOINT(state, E)
24: newState← state
25: for all e ∈ APPLICABLEEVENTS(newState, E) do
26: newState← APPLYEVENT(state, e)

27: if newState 6= state then
28: return APPLYEVENTSUNTILFIXPOINT(newState, E)
29: else
30: return newState
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Figure 7.2: A box and whisker representation of the delay reduction achieved by our approach
(y-axis), with regard to the recorded historical delay (x-axis). Whiskers refer to the highest and
lowest reduction in delay, while the box (in blue) indicates the first, second, and third quartiles.
Red indicates the median value. Negative y-axis values indicate that the planning approach
reduced the delay, with regard to historical records.

account, in which the effect of one event make the preconditions true of another event. Then, as
soon the time of the state reaches the time of the next action, its preconditions are tested against
the current state; if the precondition cannot be applied, then it means that the plan is not valid
since that action could have not been taken at that moment, otherwise the effects of the action are
applied, and the state is updated with the result. After checking all the preconditions of actions
in the plan, the goal has to be tested for the validity of the plan.

7.3 Minimisation of Delays

The next step is to focus on the benefits that the proposed PDDL+-based approach can deliver
when dealing with delayed trains. Here, two different sets of experiments were performed: firstly,
it was assessed how the plans generated with the proposed technique compares with the strategies
currently implemented in the considered train station, in order to assess the improvement over the
state of the art; secondly, an extensive analysis was performed aimed at quantifying the ability
of the approach to cope with increasingly large, widespread delay. In order to deal with the first
aspect, the data collected between January and March, prior to the COVID-19 related lockdown,
was examined and all cases where at least one train was delayed with regard to the official
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timetable were identified. For the planning scenario, a time window centred on the delayed
train(s) and bounded by the first time in which no trains are in movement in the controlled station
was considered. What fell inside such time window was encoded in the considered planning
problem. This allows to consider the entirety of the context in which the delayed trains have
to operate, thus maximising the comparability of the results. In total, 311 scenarios, including
one or more delayed trains, were identified using the described technique. Overall results are
presented in Figure 7.2, where scenarios are clustered, in bins of 30 seconds, according to the
average recorded delay (x-axis). The clusters’ size vary between 2 (300 seconds delay) and 59
(30 seconds delay on average) instances; the number of trains per instance ranges between 1
and 12. Whiskers refer to the highest and lowest reduction in delay from the relative clustered
recorded delay, while the box indicates the first, second, and third quartiles. Red is used to
represent the median value. A value of 0 indicates that our approach performed exactly as the
human operator in the recorded historical data; negative values on the y-axis indicate that we
improved over the historical record. Results indicate that the PDDL+-based approach is never
worse than the current strategy exploited at the controlled railway station, and that instead it is
usually able to reduce the average delay.

For instance, taking the clustered bin of 90 seconds, i.e., historical cases where trains were de-
layed by 90 seconds, the proposed approach reduced the delay by up to 40 seconds. This is
remarkable if it is also taken into account that the delay can be reduced only for trains that ter-
minate or do an intermediate stop at the controlled station: there is no way to reduce the delay of
trains that originate at the station – as they leave the platform late. By looking at the generated
plans, the intuition is that the delay reduction is due to a better use of the available infrastructure,
leading to shorter waiting times for trains entering the station.

To quantify the ability of the proposed approach to handle delays, the following peak hours
time slots for the controlled railway station were considered: (i) 06.30-09.30, with 24 moving
trains, (ii) 12.00-14.30 with 17 trains, and (iii) 17.00-20.30 with 29 trains. Time slots (i) and
(iii) include the commuters trains, while (ii) has numerous trains used by students going home
from school. Focusing on these three time slots, a day was selected, before the COVID-19 travel
restrictions were put in operation, with the minimum mean squared deviation of recorded timings
from the official timetable to be sure to have a levelled ground for performing the analysis.
After that, every train was delayed of the considered time slot using a Gaussian-distributed delay
N(µ, σ) with an increasing mean µ and a fixed standard deviation σ of 5 minutes. µ ranged
from −10 to +30 minutes, with 5 minutes steps; in the analysis, a negative delay is used to
model a train that is early with regard to the official timetable. For each value of µ, 10 planning
instances were randomly generated using a Monte Carlo approach to inject delays to all the trains
of the instance. Average results over the 10 instances are then considered. Figure 7.3 shows
the achieved performance, as the relationship between the injected delay and the final observed
average delay, on the time slot 17.00-20.30. Results on the other time slots are analogous. The
behaviour can be interpolated by a straight line with an angular coefficient of 0.72; in other words,
the proposed approach is able to plan the movement of trains absorbing 28% of the injected delay.
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Figure 7.3: The relation between the injected Gaussian delay (x-axis) and the average mitigated
delay obtained by exploiting the generated plans (y-axis), when considering the evening peak
hours (17.00-20.30) on the controlled station.

For example, considering an injected Gaussian delay of 500 seconds, the final measured average
delay is of 350 seconds: the proposed approach is able to absorb almost two minutes of the initial
delay. These results are of particular relevance since in the considered scenarios all the trains are
delayed (which is a worst-case scenario) and the approach is still capable of reducing the average
delay by almost a third.

7.4 Increment of the Railway Station Capacity

For this scenario, a stress test was conducted with the aim of understanding if the proposed ap-
proach can lead to an increment of the railway station capacity. Using the same settings exploited
for the previous scenario, an increasingly large number of synthetically generated trains was
added as follows: (i) considering historical data, a train is selected that originates, terminates,
or does an intermediate stop at the station, (ii) the arrival/departure time of this synthetically
generated train is then scheduled in between of existing trains in the time slot, (iii) the already
discussed (in the previous section) Gaussian distributed delay is injected, (iv) the instance is
tested and the relationship between the injected delay and the final observed average delay is
logged. This process is repeated ten times. Afterwords, another train is synthetically generated
and added, restarting the aforementioned procedure.

The results of this set of experiments are presented in Figure 7.4. Surprisingly, results presented
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Figure 7.4: The relation between the injected Gaussian delay (x-axis) and the average mitigated
delay obtained by exploiting the generated plans, in the presence of an increasingly large number
of additional trains, when considering the evening peak hours (17.00-20.30) on the controlled
railway station.

in Figure 7.4 are very similar to those shown in Figure 7.3: the fact that the station is serving up
to 25% more trains does not result in a reduced capacity of the proposed approach of mitigating
the injected delay. Consequently, the proposed approach seems to be very robust. When more
than 7 trains are added in the considered time slot, the limited availability of entry/exit points
and platforms makes it impossible to generate in-station dispatching plans that allows to satisfy
even very loose constraints on the maximum time a train is allowed to stay in the station, or to
wait at an entry point. Even a visual inspection performed by RFI experts, and some attempts to
manually generate some reasonably timed dispatching plans, did not lead to the generation of any
sensible solution. This suggests that the approach is able to exploit the available infrastructure
up to a very high level, possibly close to the physical limit of the railway station.

7.5 Importance of the Domain-specific Extension

As presented in Chapter 6, some domain-specific extensions were introduced in the planning
engine ENHSP to increase the capacity of the planner to deal a large amount of trains. A natural
question that needs an answer is: what is the impact of the designed domain-specific extensions
on ENHSP? For this purpose, the performance improvement that can be obtained by using ev-
ery introduced domain-specific optimisations considering planning tasks involving an increasing
number of trains to be controlled needs to be analysed. To perform this analysis, a day was
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Figure 7.5: The CPU-time needed for planning instances with an increasing number of trains
using different combinations of domain-specific optimisation techniques.

selected – in February 2020, before the start of the COVID-19 lockdown in Italy – with the mini-
mum mean squared deviation of recorded train timings from the official timetable. This was done
to guarantee that no emergency operations were executed by the human operators. The peak hour
of the day, 17:00-20:00, when commuters return home was considered in which 31 trains move
through the station. Different time windows of the considered 3-hours period were considered
for the purpose of generating instances with an increasing number of trains to be controlled.

These instances are then tested using the planning engine with different combinations of the
domain-specific optimisations techniques. Figure 7.5 shows the CPU planning time required
by the 8 combinations to deal with increasingly large instances. The combination labelled All-
Off considers ENHSP run using the default settings, and none of the optimisation techniques
introduced in this thesis. The All-On label indicates instead the planning engine run using all the
optimisations. Finally, labels AD, Heu, and Const are used to indicate the use of, respectively,
adaptive delta, domain-specific heuristic, and constraints. The analysis was performed with a
cut-off time of 60 CPU-time seconds.

According to the results in Figure 7.5, the All-Off combination can plan no more than 5 trains.
Inspecting the instances with more that 5 trains, it can be seen that, while the first 5 trains are
close to each other, the 6th train arrives at the station a couple of minutes after the others. This
gap of time, in which nothing happens, causes the planning engine to waste a significant amount
of time in trying to identify actions to apply to reach the goal, at every discretisation delta. The
use of the adaptive delta allows the planning engine to skip between times in which nothing
happens, therefore it significantly reduces the amount of computations made by the planning
engine, solving up to 8 trains. The use of the domain-specific heuristic alone can solve instances
up to 11 trains, included. Notably, there is a significant synergy between the heuristic and the
adaptive delta. When these two optimisations are activated, the planning engine performance
are significantly boosted, given that with these two techniques enabled we are able to solve all
instances, as for the All-On label. On the other hand, the use of the constraints can provide some
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performance improvement, but limited. With regard to the shape of the generated solutions, all
the approaches lead to similar solutions: there are no major differences from this perspective.
We further experimented with other peak hours (07:30-10:00 and 12:00-14:30), and results are
similar to the ones shown.

Summarising, the performed experiments indicate that the use of the specialised heuristic is the
single most important component of the domain-specific planning engine. The adaptive delta
plays an important role as well, but their synergic combination allows to solve all evaluated
instances. The use of constraints provides some improvement, but not as significant as the other
elements.
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Chapter 8

Related Work

In this chapter, an overview of other research work dealing with the in-station train dispatching
problem is presented. Then, other problems in the railway domain are listed together with re-
search works aimed at solving them. Lastly, some other domains which were solved with PDDL+
are described, showing that the language can also model a vast range of problems.

8.1 In-Station Train Dispatching

For what concerns in-station train dispatching, [Mannino and Mascis, 2009] introduced a mixed-
integer linear programming (MILP) model for controlling a metro station. Their experimental
analysis demonstrated the ability of the proposed technique to effectively control a metro station,
but also highlighted scalability issues when it comes to control the much larger and more complex
railway stations. More recently, [Kumar et al., 2018] introduced a constraint programming model
for performing in-station train dispatching in a large Indian terminal: this approach demonstrates
to be able to deal with a large railway station, at the cost of considering very short time horizons
(less than 10 minutes) and station-specific optimisations.

Given the complexity of the train dispatching problem, many works focused on related sub-
problems or on a more abstract formulation of the overall problem. For example, [Rodriguez,
2007] formulated a constraint programming model for performing train scheduling at a junc-
tion, which shares some characteristics of a station, but does not include platforms and stops.
Differently from [Rodriguez, 2007], a number of works [Cardillo and Mione, 1998, Billionnet,
2003, Chakroborty and Vikram, 2008] focused on the problem of assigning trains to available
platforms, given the timetable and a set of operational constraints. Taking another perspective,
[Caprara et al., 2010] focused on the identification and evaluation of recovery strategies in case
of delays. These strategies include actions such as the use of different platforms or alterna-
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tive paths. In [Li et al., 2021] a solution is presented to efficiently manage dense traffic on
rail networks based on Multi-Agent Path Finding (MAPF) which can plan collision-free paths
for thousands of trains, but doesn’t take into account safety mechanism of mutual exclusion of
resources or the need of a train to stop at platforms.

8.2 Line Dispatching
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Figure 8.1: The graph representing the railway network around the Metropolitan City of Genova.
Stations are nodes and edges represents connection between them.

Line dispatching (also called Line Planning Problem or Train Pathing) considers the overall
railway network, or a subset of it (called railway nodes) and consists in establishing routes and
precedence between trains in order to cope with normal operations but, also, to recover from
deviations from the timetable and minimise the delays. In Figure 8.1 a graph illustrating the
railway network around the Metropolitan City of Genova is shown. Stations are represented
by nodes, and edges are railway tracks that connect them. As it can be seen by the figure, the
majority of stations have only two entry points and two exit points (as the modelled station in
Figure 2.1), for this reason, since the stations are connected by single tracks (one track for one
direction and another for the opposite direction), overtaking can only happen inside a station.
In line dispatching, a large amount of trains needs to move through the network respecting the
timetable and the safety constraints.

With respect to line dispatching, [Lee and Chen, 2009] introduced a heuristic-based approach for
tackling the problem of finding routes for trains while generating an overall timetable. [Böcker
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et al., 2001] explored the use of a multi-agent scheduling system, considering the railway trans-
port system as a case study. On the topic of multi-agent, more recently [Atzmon et al., 2019]
exploited multi-agent path finding to search for a route for a set of trains from a given origin point
to a required individual destination. A different line of work takes advantage from the decompo-
sition of the problem, where a master-slave algorithm is used to control the train traffic of large
railway networks [Lamorgese and Mannino, 2013, Lamorgese and Mannino, 2015, Lamorgese
et al., 2016].

8.3 Timetabling

In-Station Train Dispatching Problems and Line Dispatching Problems all concern moving trains
inside a station, or the railway network, in order to respect an already known timetable con-
structed beforehand. For this reason, in the proposed approach of this thesis and in the related
works, the peak hours of the day, in which a vast amount of passengers need to take a train
in the station, were not modelled, since they simply signify a large or small number of trains
which are scheduled to move inside the station (or network), based on the flow of passengers.
The Timetabling Problem consists instead in finding a timetable which (i) is able to guarantee
a correct amount of trains in order to supply to the peak hours of the day (ii) is resistant, to
a certain degree, to possible delays that can occur during the day (iii) allows the passenger to
move through the network taking multiple connecting trains without having to wait long times in
station.

The problem of generating train timetables can so be divided into two different levels. The first
one, the planning level, consists in generating the railway network timetable over a long period
of time (in general seasonal), these are the timetables that, once planned, are then visible to the
passengers when booking a travel; The second one, the operational level, focus on timetable
rescheduling which is the daily task of the operators of adjusting the timetable in case of disrup-
tions, maintenance, or addition of trains (usually freight trains). Problems at the first level can be
naturally expressed as constraint satisfaction problems. The vast majority of works on this topic
exploits MILP models, while considering different set of constraints and different levels of detail
[Caprara et al., 2002, Barrena et al., 2014, Cacchiani et al., 2016]. A number of domain-specific
approaches have also been introduced, and the interested reader is referred to [Cacchiani and
Toth, 2012] for an extensive review of the field.

The literature on the second level is much more variegated but less extensive, given the multi-
faceted nature of the problem to be addressed. [D’ariano et al., 2007] introduced a branch and
bound algorithm to recompute a conflict-free and feasible timetable, given the current network
conditions. A method to avoid conflicts and to early identify unfeasible timetable schedules is
presented by [D’Ariano et al., 2007]. Finally, given a timetable and a current set of delayed
trains, [Corman et al., 2012] focused on algorithms to explore the trade-off between cancelling
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trains reducing congestion and delays, and the inconvenience caused to passengers due to missed
connections and limited service. In [Abels et al., 2021] a hybrid approach that extends Answer
Set Programming (ASP) [Lifschitz, 1999] is used to tackle real-world train scheduling problems,
involving routing, scheduling, and optimisation.

8.4 Other domain’s problems solved with PDDL+

PDDL+ has been already successfully exploited in a number of application domains, ranging
from defence, physics, healthcare and transportation. For example, in [Ramirez et al., 2018] an
encoding is proposed to manage the automatic generation of tactical intercepts for Unmanned
Aerial Vehicles (UAV) in air combat. In [Fox et al., 2012] a PDDL+ model is able to manage
the efficient use of multiple batteries which led to construction of policies that, in simulation,
significantly outperform other systems. In the domain of healthcare, [Alaboud and Coles, 2019]
describe an application of planning with the aim of scheduling patient’s medication needs and
daily activities; in this domain, the usage of PDDL+ allowed to solve a problem which was
unsolvable by previous state-of-the-art planners. In [McCluskey and Vallati, 2017] a PDDL+
formulation of urban traffic control, where continuous processes are used to model flows of
cars, shows how planning can be used to efficiently reduce congestion of specified roads by
controlling traffic light green phases. Several works utilise also the planning engine ENHSP for
the production of plans formalized in PDDL+. For example, in [León et al., 2020] a model is
presented for the automatic path planning for ultralight aircraft; and in [Kiam et al., 2020] a
PDDL+-based planning framework is introduced for planning missions for multiple high-altitude
pseudo-satellites.

8.5 Other PDDL+ planning engines besides ENHSP

Since the definition of PDDL+ in [Fox and Long, 2006b] several planning engines have been
presented in order to solve temporal and hybrid planning domains. The first planning engines
introduced to tackle the solving of PDDL+ planning problems are the TM-LPSAT [Shin and
Davis, 2005] and UPPAAL/TIGA [Behrmann et al., 2007] which could solve PDDL+ prob-
lems only on linear domains. The first planning engine actually able to solve complex mixed
continuos-discrete instances is called UPMurphi [Della Penna et al., 2009] and it introduced the
use of explicit model-checking based techniques to solve universal planning problems on hardly-
approachable domains like hybrid systems and nonlinear systems. UPMurphi was the first to
introduce an internal parser able to decode native PDDL+ domain and problem specifications,
without the need to translate them manually in a different formalism. Following a different ap-
proach, dREAL [Bryce et al., 2015] tried to solve PDDL+ plans in which action (but not events)
preconditions and effect are transformed into SAT formulas and then applying the well-known
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techniques of resolution of SAT formulas (like DPLL [Davis et al., 1962]) and heuristics de-
veloped in the Satisfiability Modulo Theories field [Barrett and Tinelli, 2018]. Then, in 2016,
several other approaches emerged to move forward the research on PDDL+ universal planning
engines: the planner used on this thesis, ENHSP, was presented in [Scala et al., 2016] and in-
troduced a new heuristic called Additive Interval-Based Relaxation (AIBR); the same year the
planner DiNo [Piotrowski et al., 2016], built on top of UPMurphi, introduced a heuristic as well,
called Staged Relaxed Planning Graph+ (SRPG+). The new heuristics allowed both planners to
scale and solve more complicated instances, and both outperformed UPMurphi in all instances.
In [Cashmore et al., 2016] the planner SMTPlan was introduced, which built on top of the idea
of dREAL of solving PDDL+ via means of SMT, but extending it with an automatic compila-
tion from PDDL+ to SMT logic and dealing with events, which were not covered in dREAL.
In [Balduccini et al., 2017] an encoding from PDDL+ to CASP is presented; CASP [Baselice
et al., 2005] is an extension of ASP [Lifschitz, 1999] that allows the modelling of numerical
constraints. The paper introduced extensions to the ezcsp CASP solver which allowed solving of
CASP programs arising from PDDL+ domains. It is of notable mention, even if it’s not a plan-
ning engine per se, the validator VAL [Howey et al., 2004] which, for example, is internally used
by UPMurphi to check the validity of the produced plans. The capabilities of VAL can be critical
in understanding the structures of large plans, with its visualisation and reporting facilities. VAL
can additionally report if the plan is flawed, and give advice on how the plan should be fixed.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, an automatic solution to the in-station train dispatching problem was presented.
The problem was modelled in PDDL+, and a set of domain-specific enhancements were de-
signed which allow the ENHSP planning engine to quickly solve large and complex instances.
Results on real-world historical data of a medium-sized railway station from North-West of Italy,
provided by RFI, show the potential of the presented approach on a wide range of scenarios. In
particular, the proposed approach demonstrated the ability to reduce delays and to better exploit
the available infrastructure – with the potential of allowing a station to serve a larger number of
trains without the need for structural modifications.

Parts of this thesis has been published on [Cardellini et al., 2021a], [Cardellini et al., 2021b]
and [Cardellini et al., 2021c]. In [Cardellini et al., 2021b] the main objective of the paper was
to show the feasibility of the approach giving more focus on the results and analysis which are,
in this thesis, presented in Chapter 7. In [Cardellini et al., 2021a] instead, a more in-depth
formulation of the in-station train dispatching problem was provided together with a thorough
description of the framework which was used to solve it; in addition, in this paper the analysis
on the contribution of the different optimizations techniques (described here in Chapter 6) were
presented.

9.2 Future Work

This thesis moves a step forward in the resolution of the in-station dispatching problem and more
in general in the introduction of artificial intelligence deductive methods in the railway domain.

62



In this section, some open problems which remain to be tackled are introduced. The author plans
to work on some or all of these problems in the future.

9.2.1 Modelling of more realistic aspects

Some aspects of real life in-station train dispatching were left out of this thesis for the purpose
of reducing the complexity of the problem. These problems need to be addressed and further
analysed in order to be able to solve more complicated scenarios and to increase the realism
level of the modelled solution.

Shunting operations. In railway operations, shunting consists of two different classes: (i) the
process to move a whole train inside the station with the aim of freeing some resources, like
platforms, as a means to avoid congesting the station (this process is also called manoeuvring)
(ii) the process of sorting items of rolling stock into complete trains or to disassemble a train in
multiple parts. it is easy to see that the separation of the shunting process in these two classes
reflects a different complexity in the movements of the train inside the station: in the proposed
modelling of the problem at hand, the train is always considered as an indivisible unit. For
this reason the two problems can be tackled separately and in different orders: the process of
manoeuvring a rolling stock throughout the station, once modelled, can indeed be reused for
moving the disjointed rolling stocks after the separation of a train (or before the union) covered
in the more complex shunting operation.

Shunting is a pivotal operation in a railway station for its ability to greatly increase the capacity
of a station (and sequentially reduce the delay) by moving idle trains outside platforms (which
in stations are scarce resources).

Long-distance train interconnections. A railway connection is formed when two long-distance
passenger trains intersect their route in a station. To support passengers that needs to travel in
both of these connecting trains, it is important that the trains stops in adjacent platforms. This
because passengers travelling long distances are more prone to carry heavy bags and luggage
which are difficult to transport throughout the station, moving from the arriving platform to the
departure one. In the model presented in this thesis, a train is able to stop in all the platforms
which are free when the train arrives at the station. The introduction of a coupling between trains
that forces them to stop at adjacent platforms doesn’t change the structure of the search-space in
which a solution is searched but drastically invalidates a lot of solutions (i.e., all the solutions in
which the coupled train doesn’t stop at an adjacent stop). For this reason, the planning time of a
solution risks exploding even with a small set of trains, since a lot of time would be invested in
finding solutions that doesn’t take care of the coupling between the train. For this reason, a new
set of heuristic has to be investigated and developed with the aim of guiding two coupled trains
in reaching two adjacent platforms without exploring all the possible combinations of invalid
platforms.
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9.2.2 Extension to bigger stations

As seen in Chapter 2 the station analysed in this thesis is a medium-sized station in the North
West of Italy, classified as Gold by RFI. While the proposed formalization of a railway station
covers a vast amount of stations in Italy (almost 95% according to [Moscarelli et al., 2017] are
classified as Gold, Silver or Bronze) some larger stations can fall outside the proposed modelling.
Unfortunately these big stations, with a high flow of traffic and passengers, are the most respon-
sible for the delaying of trains and, for this, are the one more in need of automatic support. When
dealing with bigger stations, some modelling decision which has been taken by inspecting the
movements of trains in a real medium-sized station may fall. For instance, the hypothesis that the
itinerary graph of the station is acyclic (as depicted in Figure 2.2) has induced the author to not
introduce some guards and complications in the modellings in order to avoid the possibility of
trains moving in loop inside the station. In bigger stations, classified by RFI as Platinum, some
assumptions may fall, and some different constraints should be introduced with the aim of fitting
these stations in the proposed modelling.

9.2.3 Explainability

Explainable Artificial Intelligence (XAI) is a branch of AI that takes care of building, improving
or supporting AI algorithms in which the solutions can be understood by humans. In this thesis
the models provided, and the tools presented, were built with the aim of supporting human
operators in their job of managing the dispatching of trains inside a station. In order to allow the
dispatcher to better understand the generated plans and trust the system, the AI has to provide
some sort of insights on the reasoning process undertaken in order to find a viable solution.
Furthermore, it is possible that, in special conditions, the AI agent is unable to find a solution
that meets all the constraints; this result could arise if, for example, an instance is provided to the
planner with a substantial number of trains, or with a considerable amount of blocked resources.
If the planning fails and no viable solutions is found, it would be helpful to provide to the human
dispatcher some insight on the possible reasons that caused the failure and how to adjust the
instance in order for a solution to be found.

Moreover, in the future, it is possible that an AI planning agent would not only support the
human dispatcher by suggesting some plans but actually acting on the resources of the station
(i.e. switches, signals and traffic lights) in order to improve the traffic flow in the station au-
tonomously. For safety reasons it is then paramount that the AI agent planning is able to provide
some insight on its decisions and actions in order to be trusted by human dispatchers, train oper-
ators, railway companies and the public.

In [Fox et al., 2017] Explainable Planning (XAIP) is presented together with a survey of ques-
tions that an explainable planning agent should be able to answer. For example:
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• ’Why did you do that ?’: In very long plans is difficult to immediately see why a decision
of the planner is beneficial to the whole plan. For example a dispatcher could ask: ’Why
did you force this train to wait at this entry point ?’. The planner should be able to answer
the question with something like ’I had it wait a bit so that this other train could leave
earlier and thus reducing the total delay of x%’.

• ’Why can’t you do that ?’: The expert dispatcher, which is used to deal with the in-station
train dispatching daily, could have some prior bias on how a train should behave inside the
station. This could be determined by previous experiences on how situations have been
dealt in the past. For this reason the human dispatcher could ask why an action was not
performed. The agent should be able to answer that the action could not be taken (and the
reasons why) or prove that, if the action had been chosen, it would have produced a worse
plan than the one provided.

9.2.4 Expansion to group of stations

The work presented in this thesis focuses on a single station and the outside network is modelled
as buffers of infinite sizes from which the trains enter or exit in the station at an instant provided
by the instance given by the operator. The formalization presented can be applied to several sta-
tions separately in order to optimise and better manage the overall flow of trains. This approach
would undoubtedly improve the flow of station in general, but better results could be achieved
by looking at groups of stations as a whole and manage their interaction through lines.

As proposed in [Lamorgese and Mannino, 2015] it is possible to decompose the problem into
smaller sub-problems associated with the line and the stations, managing and keeping track of the
trains inside the lines (the line dispatching problem) and managing the more complex problem
of the train dispatching problem as a sub problem which can be tackled in isolation.
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