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Abstract

The problem of scheduling Pre-Operative Assessment Clinic (PAC) consists of assigning
patients to a day for the exams needed before a surgical procedure, taking into account
patients with different priority levels, due dates, and operators availability. Realizing a
satisfying schedule is of upmost importance for a clinic, since delay in PAC can cause delay
in the subsequent phases, causing a decrease in patients’ satisfaction. In this thesis, we
divided the problem in two sub-problems: in the first sub-problem patients are assigned to
a day taking into account a default list of exams; then, in the second sub-problem, having
the actual list of exams needed by each patient, the results of the first sub-problem are
used to assign a starting time to each exam. Furthermore, we present a solution to the pre-
operative assessment clinic rescheduling problems. This comes into play when the scheduling
solution can not be implemented for some reasons e.g. an operator is suddenly missing,
therefore a new scheduling must be found moving the least possible patients and operators
inside the scheduling period. The solutions presented are based on a rule-based knowledge
representation and reasoning language (Answer Set Programming) and experiments show
that the solutions provide satisfying results in short time. Finally, a web application has been
developed with the aim of supporting the operators in using the solution realized.
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Chapter 1

Introduction

In this chapter, the motivation for which it is important to solve the Pre-Operative Assessment

Clinic (PAC) scheduling problem are �rst presented. Then, a section is devoted to the state

of the art of the PAC problem and of some problems in the digital health domain solved with

Answer Set Programming (ASP). Finally, the thesis objectives and the thesis structure are

presented.

1.1 Context and motivation

In the Digital Health domain, the area in which technologies are applied to the patients

health cares, there are many scheduling problems that are important to solve to improve the

quality of the medical cares offered. One of these problems that is usually not or marginally

considered, is the PAC scheduling problem; instead it is fundamental to guarantee the patient

care as it ensures a proper preparation of patients to their operation and a delay in the PAC

can cause a delay in the subsequent phases. The PAC scheduling problem, objective of this

thesis, is the task of assigning patients to a day, in which the patient will be examined and

prepared to a surgical operation, taking into account patients with different priority levels,

due dates, and operators availability. The PAC consists of several exams needed by patients

to ensure they are well prepared for their operation. This allows patients to stay at home

until the morning of the surgery, instead of being admitted to the hospital one or two days

before the scheduled operation; moreover, reducing waiting time between the exams increase

patient satisfaction (Harnett et al. (2010)) and avoid the cancellation of the surgery (Ferschl

et al. (2005)).

Hospitals, typically, �rst assigns only the day in which patients should have the pre-operative

assessment, since in this moment it is not known the precise list of necessary exams. Then,
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after having a contact with the patient, it is de�ned the �nal list of exams needed and the

appointment is �xed. At this point it is established the precise time for each exam. Thus, we

divided the problem into two sub-problems: in the �rst sub-problem, patients are assigned to

a day taking into account a default list of exams, and the solution has to schedule patients

before their due date and prioritize the assignments to patients with higher priority. In

the second sub-problem, the scheduler assigns a starting time to each exam needed by the

patients, considering the available operators and the duration of the exams. Since in the �rst

sub-problem it is considered a default list of exams that is, in general, an overestimation

of the necessary exams, this solution does not guarantee to �nd the global optimum of the

problem. However, having two sub-problems, the computational part is simpli�ed and good

results are returned.

Moreover, it can happen that, due to unexpected problems (e.g. operators are missing, an

exam area is suddenly unavailable), it is required to do changes in the scheduling. Giving an

automated solution to this problem, that computes a new scheduling with minimal changes,

ensures a proper execution of the pre-operative assessment avoiding delay and a greater

satisfaction of both patients and operators.

Our solution is based on the language Answer Set Programming. Recently, in fact, a number

of scheduling problems in the Digital Health domain have been ef�ciently solved by using

knowledge representation and reasoning language, e.g. the rule-based language ASP, but

none of these problems consider the PAC problem.

Finally, it would be useful for the hospital operators having an intuitive tool, such as a web

application, that allows non expert users to schedule patients graphically and automatically,

and that provides a representation of the results easily readable.

1.2 State of the art

Regarding the PAC problem some studies have been done, but in general the focus is on

how to improve the PAC organization and reduce waiting time, as for example, the work

in Edward et al. (2008) that used two simulation models to analyse the dif�culties of planning

in the context of PAC and to determine the resources needed to reduce waiting times and

long access times.

Currently, despite the importance of having a solution to the PAC scheduling problem to

guarantee appropriate medical cares to patients, there are few solutions for this problem

and some of the languages that have proven to be ef�cient in solving scheduling problems

have not been used yet. For example, the ASP language that has been successfully used for
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solving hard combinatorial and application scheduling problems in several research areas

among which the Healthcare domain (see, e.g., Alviano et al. (2020) for a recent survey).

1.3 Thesis objectives

The general thesis objective is to develop a system able to solve the pre-operative assessment

clinic scheduling and rescheduling problem. Thus, the main objectives of the thesis are:

• to �nd a solution to the PAC scheduling problem: to model the two sub-problems of the

pre-operative assessment using a rule-based language and tools based on a modeling

and solving approach;

• to �nd a solution for the rescheduling problem, studying the possible scenarios for

which it is required and to model the problem using the same approach of the PAC

scheduling problem;

• to perform an experimental analysis of the solutions realized, generating synthetic

data and studying the quality of the results, the performance and the scalability of the

solutions;

• to develop a web application to support non-expert users in using the solutions proposed

with an intuitive graphical interface.

1.4 Thesis structure

In Chapter 2, it is presented a detailed description of the PAC scheduling problem, how

hospitals deal with this problem and consequentially, our solution. Moreover, it is shown an

example of a small problem solved using an approach based on two sub-problems.

In Chapter 3, after a presentation of the ASP language, the language used in this thesis, the

expected input and output are de�ned, and then, the two encodings of the �rst and second

sub-problem are presented with a detailed description of all the rules. Furthermore, it is

proposed an optimized version of the two encodings.

In Chapter 4, we present the results of the experimental analysis of the PAC scheduling

problem. Different scenarios have been considered and we generated data to test our solutions

varying the number of patients to schedule with realistic numbers inspired from data seen

in literature. Then, it is made a comparison between the optimized and non-optimized

encodings.
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In Chapter 5, the rescheduling problem is presented. Firstly, it is given a detailed description

of the problem and the considered scenarios for rescheduling; then it is shown the encoding

realized using ASP and, �nally, the results of the experimental analysis of the considered

scenarios are shown.

In Chapter 6, it is presented the web application developed to support the operators in

using the solutions proposed, its architecture and the frameworks used, then it is shown a

demonstration of the application working.

Finally, in Chapter 7 and Chapter 8, the related work and the conclusions are, respectively,

mentioned.



Chapter 2

Problem description

2.1 PAC problem description

The Pre-Operative Assessment Clinic scheduling problem is the task of assigning patients

to a day, in which the patient will be examined and prepared to a surgical operation, taking

in account patients with different priority levels, due dates, and operators availability. This

problem is typically organized in two phases by hospitals, in the �rst phase it is assigned a

day to patients, based on an estimation of the necessary exams and then, in the second phase,

after having had a contact with the patient, the appointment is �xed, it is determined the

�nal list of the necessary exams and �nally, the time of each exam. This solution, organized

in two phases, does not guarantee to �nd the global optimum of the problem, having to do

an estimation of the exams needed, however accurate, we have to consider more exams of

those needed (overestimation), so that the two phases are aligned and avoiding unsatis�able

solution in the second phase due to too many patients assigned in the same day. However,

the two phases are required by hospitals, thus we divided the problem in two sub-problems:

in the �rst sub-problem, since, as said before, the clinics do not know which exams each

patient will require, we consider that each patient requires a default list of exams according

to his specialty, i.e. the lists of exams are equal for patients requiring the same specialty

but differ among specialties, and the scheduler assigns the day of PAC. Thus, in the �rst

sub-problem, the solution assigns patients overestimating the duration and the number of

exams needed. In particular, all the optional exams, such as exams required by smokers

or patients with diabetes, are assigned to all the patients in the �rst phase. Then, when the

operation day is closer, the hospital knows exactly the exams needed by each patient and can

assign the starting time of each exam. Going in more details, the �rst sub-problem consists

of scheduling appointments in a range of days for patients requiring surgical operation. Each
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patient is linked to a due date, a target day, and a priority level: the due date is the maximum

day in which (s)he can be assigned, the target day is the optimal day in which schedule the

appointment, while the solution prioritizes patients with higher priority level. There are

several exam areas, corresponding to the locations in which patients will be examined. Each

exam area needs operators to be activated and has a limited time of usage. Each operator

can activate three different exam areas, but they can be assigned to just one exam area for

each day. The solution must assign the operators to the exam areas, to activate them, and

the day of PAC to patients, ensuring that the total time of usage of each exam location is

lower than its limit. Since in this �rst sub-problem the list of exams needed by patients

is not the �nal list, i.e. just the �rst and the last exam are the same for every patient, and

in the second sub-problem some exams could be added, the solution schedules patients

leaving some unused time to each exam area. An optimal solution minimizes the number of

unassigned patients, giving priority to patients with higher priority levels, and ties are broken

by minimizing the difference between the day assigned and the target day of each patient,

giving again precedence to patients with higher priority.

In the second sub-problem, patients are linked to their real exams, so the solution has to

assign the starting time of each exam, having the �rst sub-problem already assigned the day.

The input consists of registrations, exams needed by patients and the exam areas activated.

Exams are ordered, so the solution must assign the starting time of each exam respecting

their order and their duration, by considering that each exam area can be used by one patient

at a time. Finally, the solution minimizes the difference between the starting time of the �rst

exam and the last exam of each patient.



2.2 Demonstration of a problem solved 7

Patient id Priority Due date
0 2 9
1 1 6
3 1 3
4 3 11
5 1 3
6 3 12
7 2 9
8 2 7
9 3 12
10 4 15
11 4 12
12 4 13
13 1 6
14 3 12
15 3 12
16 3 9
17 2 7
18 1 5
19 3 12

Table 2.1 Input list of patients

2.2 Demonstration of a problem solved

It is following reported an example of a small problem solved with the two phases solution.

In the �rst sub-problem, as said before, we have in input a list of patients, in this case 20, to

be assigned in 4 days. Each patient has his/her relative information about priority and due

date as shown in table 2.1. Moreover, it is de�ned for each patient his/her speciality, so that

we can also specify the linked overestimated list of exams. The solution of this sub-problem

assigns to each patient a day out of the 4 available, in which the pre-operative assessment is

done; therefore, once the day is established, it is, then, drawn up the �nal list of exams and

this becomes the input of the second sub-problem. As result, it is �xed the starting time and

ending time of each exam, ensuring that there are no overlaps between exams provided by

the same exam areas.

In �gure 2.1, it is reported the �nal result of the problem presented, on the y-axis we have the

patients id, on the x-axis the time line and each colored block represents an exam identi�ed

by the id of the exam area that provides it. However, as said before, this solution does not

guarantee to �nd the global optimum of the problem. In fact, as results show, one patient out
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

Figure 2.1 Representation of a �nal scheduling

of the 20 in the input list has not been assigned due to the overestimation done in the �rst

sub-problem, but looking at the �nal results, the patient could be assigned, for example, in

day 1. In effect, the exams requested by the patient were with id 0, 1, 4, 6, 10, 11, 23 that

were possible to be scheduled without overlapping with the other exams with the same id.



Chapter 3

PAC problem solution

3.1 Answer Set programming

Answer Set Programming (ASP) is a well-known declarative programming language, devel-

oped in the �eld of reasoning and logic programming (Calimeri et al. (2020)). We recall that

an ASP program is made of (a combination of):

1. facts of the formhead.;

2. normal rules of the formhead :- body. ;

3. choice rules of the formlowerBound {atoms} upperBound :- body. ;

4. constraints of the form:- body. ;

5. weak constraints of the form: � body. [weight@level,terms]

wherehead is an atom,atoms is a set of atoms, andbody is a set of (possibly negated) atoms,

also including aggregate functions, such as#sum, andterms is a sequence of terms, i.e.,

variables (strings starting with uppercase letter) or constants (non-negative integers or strings

starting with lowercase letters). Atoms can be made over terms. The semantics is given

in terms of itsanswer sets, that is, setsA of ground atoms, where atoms inA are said to

be true (false, otherwise), such that: (1.)head is in A; (2.) whenever thebody is true (i.e.,

all positive atoms are inA and all negated atoms are not inA), head is in A; (3.) whenever

thebody is true, a range, between lower bound and upper bound, of atoms inatoms are in

A (if the lower bound is equal to the upper bound, the choice rule can be also written as

{atoms} == bound :- body. ); (4.) thebody must be false. Moreover, weak constraints of

the form (5.) allow expressing preferences among answer sets, wherelevel represents the



3.1 Answer Set programming 10

priority andweight is a numerical costs that is paid whenever the body of a weak constraint

is true w.r.t. an answer set. Overall, the preferred weak constraints are the ones with the

lowest costs at the highest levels.

Example of fact (1).

As example of fact, it is reported an instance of thereg(RID,PR,TARGET,TOTDUR,DUEDATE)

atom:

reg(1,4,9,36,12).

the reg atom represents a registration characterized by an id (1), a priority (4), a target day

(9), the total duration of the exams (36) and the due date (12).

Example of normal rules (2.).

As example of normal rule, we imagine we have assigned to each patient a day and we want

to assign the same day to his or her exams:

res(RID,FORNID,DAY,DUR) :- x(RID,PR,_,DAY), exam(RID,FORNID,DUR).

the head,res(RID,FORNID,DAY,DUR), is true whenever the body is true; in this example,

the body is made byx(RID,PR,_,DAY) andexam(RID,FORNID,DUR), therefore, for each

examFORNIDof a personRIDit is assigned the dayDAY.

Example of choice rules (3).

Consider that we want to assign a day to each patient. In the following choice rule:

0 {x(RID,PR,TOTDUR,DAY) : day(DAY), DAY < DUEDATE} 1 :-

reg(RID,PR,TARGET,TOTDUR,DUEDATE).

for each patient (reg(RID,PR,TARGET,TOTDUR,DUEDATE)), we assign a day from those

that are possible (day(DAY)), such thatDAYis less then (before) the due date of the patient.

In this rule the lower bound is zero, and upper bound is equal to 1.

Example of constraints (4).

In the following constraint:

:- x(RID,_,_,DAY), exam(RID,FORNID,_), not examLoc(FORNID,_,_,DAY,_).
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Figure 3.1 Resolution methodology schema

we state that we cannot assign a patient on a dayDAYif an exam location required by his/her

exams (FORNID), is not true, in other words, if the exam location is not working on a day, we

cannot assign on that day a patient that requires an exam provided by that exam location.

Example of weak constraints (5).

: � x(RID,1,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]

This weak constraint minimize the difference between the patient assigned dayDAYand the

target dayTARGET, in this way each patient is assigned as near as possible to his/her target

day. This is expressed by[|DAY-TARGET|@4,RID], where|DAY-TARGET|corresponds to

theweight (what we want to minimize),4 is thelevel , useful to give a priority when we

have more weak constraints, andRID to apply the weak constraint for each patient with

different id.
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3.2 Solving methodology

In �gure 3.1, it is reported a representation of a solution based on a declarative programming

approach as our ASP solution. It is made up of �ve steps:

• Problem: it is the problem formulation to be modelled and solved.

• Encoding: it is the formal representation of the problem, using ASP. It is made up of a

set of rules as presented above.

• Solver: it takes in input the encoding of the problem and generate the answer set.

• AnswerSet: it is the output of the solver and it corresponds to the set of atoms that

satisfy all the rules of the encoding.

• Solution: it is the solution of the problem.

3.3 First sub-problem

3.3.1 Input

The input of the �rst sub-problem is the following:

• Instances ofreg(RID,PR,TARGET,TOTDUR,DUEDATE)represent the registrations, char-

acterized by an id (RID), the priority level (PR), the ideal day in which the patient

should be assigned (TARGET), the sum of the durations of the exams needed by the

patient (TOTDUR), and the due date (DUEDATE).

• Instances ofexam(RID,FORNID,DUR)represent the exams needed by the patients

identi�ed by an id (RID), the exam area (FORNID), and the duration (DUR).

• Instances ofexamLoc(FORNID,NOP,NHOURS,DAY,N)represent the exam areas, char-

acterized by an id (FORNID), which requiresNOPoperators to be activated, which is

active for a certain time (NHOURS) in a day (DAY), and can be concurrently assigned up

to Npatients.

• Instances ofoperators(ID,FORNID,DAY) represent the operators, characterized by

an id (ID), who can be assigned to the exam ares (FORNID) in a day(DAY).

• Instances ofday(DAY)represent the available days.
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• Two constant oe1 and oe2 used to overestimate the patients assignment and they

represent a trade-off between the risk of having unsatis�able solution in the second

sub-problem and the number of patients assignable (the greater the risk, the greater the

number of patients).

3.3.2 ASP Encoding

Starting from the speci�cations in the previous section, here we present the ASP encoding

for the �rst sub-problem.

For all the patients, assign a day that is at least one day before their due date:

1 0 {x(RID,PR,TOTDUR,DAY) : day(DAY), DAY < DUEDATE} 1 :-

reg(RID,PR,TARGET,TOTDUR,DUEDATE).

In this rule, for all the registrations (reg(RID,PR,TARGET,TOTDUR,DUEDATE)), it is as-

signed a day from those that are possible (day(DAY)) and that is at least one day before the

due date. Thus, a new atomx(RID,PR,TOTDUR,DAY)is de�ned that presents the registration

with the corresponding assigned day.

A patient cannot be assigned in a day in which an exam area that (s)he requires is not

working:

2 :- x(RID,_,DAY,_,_), exam(RID,FORNID,_), not examLoc(FORNID,_,_,DAY,_).

This constraint ensures that in the assigned day of each patient, all the exam areas required

by his/her exams are present; therefore we check that the atom examLoc required by at least

one exam (sameFORNID), is not false.

Save for each exam the corresponding patient assigned day:

3 res(RID,FORNID,DAY,DUR) :- x(RID,PR,_,DAY), exam(RID,FORNID,DUR).
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In this rule it is de�ned an auxiliary atom that is used later in other rules. In particular, the

new atom is used to get the duration of the visit for each patient and for each exam area.

Overestimation of the daily total amount of time used of each exam location:

4 :- #sum{DUR, RID: res(RID,FORNID,DAY,DUR)} > NHOURS/oe1,

examLoc(FORNID,_,NHOURS,DAY,N).

It is ensured that each exam area is used for a total amount of time that is lower than its limit

divided by the oe1 constant, in order to overestimate the required time for the visits.

Overestimation of the daily patients assignment:

5 :- #sum{TOTDUR, RID: x(RID,_,TOTDUR,DAY)} = M, #count{RID: x(RID,_,_,DAY)} =

N, day(DAY), M > ((ts*N)-(oe2*N*(N+1))), N>1.

To be sure to not assign too many patients in the �rst sub-problem to a particular day, there-

fore to avoid to have unsatis�able solution in the second sub-problem because of not enough

time to schedule all the exams without overlapping, it is overestimated the time needed by

each patient. The degree of the overestimation can be changed by using different oe2 values.

Assign operators to the working exam areas:

6 {operator(ID, FORNID, DAY) : operators(ID, FORNID, DAY)} == NOP :-

examLoc(FORNID, NOP, _, DAY,_), res(RID, FORNID, DAY, _).

7 :- operator(ID,FORNID1,DAY), operator(ID,FORNID2,DAY), FORNID1 < FORNID2.

The exam areas, to be activated, require a given number of operators. Thus, in the �rst rule

reported, it is assigned, for each exam area required at least by one patient, the number of

operators needed (NOP). Then, in the second rule, it is checked that the operators are assigned

to just one exam location in every day. This is done stating that FORNID1 cannot be less

then FORNID2, that is a an other way of saying that they cannot be different but with better

performance.
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Count the number of patients that are not assigned:

8 unassignedP1(N) :- M = #count {RID: x(RID,1,_,_)}, N = totRegsP1 - M.

9 unassignedP2(N) :- M = #count {RID: x(RID,2,_,_)}, N = totRegsP2 - M.

10 unassignedP3(N) :- M = #count {RID: x(RID,3,_,_)}, N = totRegsP3 - M.

11 unassignedP4(N) :- M = #count {RID: x(RID,4,_,_)}, N = totRegsP4 - M.

These rules are needed to derive auxiliary atoms that are used later on in optimization. In

particular, they are used to count how many patients with different priorities are not as-

signed to a day. The total registration for each prioritytotRegsP1, totRegsP2, totRegsP3,

totRegsP4 are values given in the input.

Minimization of the not assigned patients:

12 : � unassignedP1(N). [N@8]

13 : � unassignedP2(N). [N@7]

14 : � unassignedP3(N). [N@6]

15 : � unassignedP4(N). [N@5]

These weak constraints are used to minimize the number of unassigned registrations accord-

ing to their priority.

Minimization of the distance between the patient assigned day and his/her target day:

16 : � x(RID,1,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]

17 : � x(RID,2,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@3,RID]

18 : � x(RID,3,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@2,RID]

19 : � x(RID,4,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@1,RID]

Finally, since we want to assign patients as near as their target day (an optimal day in which

schedule the appointment), it is minimized the difference between the assigned and target

day of each patient, giving precedence to higher priorities.
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3.3.3 Output

The output of the �rst sub-problem is an assignment represented by two atoms, one is of the

form x(RID,PR,TOTDUR,DAY), where the intuitive meaning is that the exams of registration

with id RIDand priority levelPRis assigned to the dayDAYand has a total duration of exams

equal toTOTDUR, the other one isoperator(ID,FORNID,DAY) meaning that the operator

with id ID is assigned to the exam locationFORNIDin the dayDAY.

3.4 Second sub-problem

3.5 Input

The assignment patient-day, output of the �rst sub-problem, becomes the input of the second

sub-problem. More formally, the input of the second sub-problem is made by the atoms

exam and time that are the same of the �rst sub-problem and the following atoms:

• Instances ofreg(RID,DAY) represent the registrations, characterized by an id (RID)

assigned to a day (DAY).

• Instances ofexamLoc(FORNID,DAY,FORNST,FORNET,N)represent the exam areas,

characterized by an id (FORNID), which in a day (DAY) has a starting time and closing

time respectively equals toFORNSTandFORNET, which is active for a certain value of

time (NHOURS) in a day (DAY), and can provide the exam toNpatients.

• Instances ofphase(FORNID, ORD)represent the order (ORD) of the exams provided

by the exam area characterized by an id (FORNID).

3.5.1 ASP Encoding

The encoding of the second sub-problem consists of the rules reported following.

For each patient exams, assign a starting time in one of the available time slots:

1 {x(RID,FORNID,ST,ST+DUR,DAY) : examLoc(FORNID,DAY,FORNST,FORNET,_),

time(ST), ST >= FORNST, ST <= FORNET-DUR} = 1 :- reg(RID,DAY),

exam(RID,FORNID,DUR).



3.5 Input 17

In this rules, it is assigned a starting and an ending time to each exam needed by every patient,

it is also checked that the time in which the exam is assigned is inside the opening time of

the required exam area.

Ensure that the order between the exams is respected:

2 :- x(RID,FORNID1,ST1,_,_), x(RID,FORNID2,ST2,_,_), phase(FORNID1,ORD1),

phase(FORNID2,ORD2), ORD2 < ORD1, ST1 < ST2.

Since some exams are needed by others, it has been assigned to each exam an order value

(phase(FORNID,ORD)). Exams with a lower order value must be scheduled before those

with higher order value, thus in this rule, it is ensured, for each patient, that the starting time

of an exam is lower than all the other exams with higher order value.

Ensure that there are no exam overlapping for each patient:

3 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > 1,

reg(RID,DAY), time(T).

In this rule, it is checked that each patient is assigned to at most one exam for every time slot

stating that the number of exams assigned in a time slot cannot be greater than 1.

Each exam area provides the exam to at mostNpatients for every time slot:

4 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > N,

examLoc(FORNID,DAY,_,_,N), time(T).

Then, since there can be more than one exam areas that can provide an exam (N) we ensure

that for each time slot no more thanNpatients are assigned to an exam area.

Minimize the total duration of the pre-operative assessment:

5 : � reg(RID,_), x(RID,0,ST,_,_), x(RID,23,_,ET,_). [ET-ST@1, RID]
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Finally, this weak constraint minimizes the difference between the ending time of the last

exam and the starting time of the �rst exam of each patient.

3.5.2 Output

The output of the second sub-problem is represented by an atom of the formx(RID,FORNID,ST,ET,DAY),

where the meaning is that the exam of the registration with idRIDis in exam areaFORNID,

starts at timeSTand ends at timeET, on the dayDAY.

3.6 Encoding optimizations

The solutions proposed above is able to assign a good number of patients and to schedule

the exams optimally, and has been presented at the 6th workshop of the Italian planning

and scheduling and published in the post-proceedings of the XXth international conference

Caruso et al. (2021), and to appear in the Volume 13196 of the LNCS post-proceedings of

the AI*IA 2021 conference. However, in the �rst sub-problem solution it is required to set

some constants for which it can be dif�cult to �nd a good trade off between assigning more

patients and the risk to have an unsatis�able solution in the second phase. Recalling that

before the second phase the patients' appointments are �xed, having an unsatis�able solution

in the second phase is not acceptable because this means that the solver is not able to satisfy

all the constraints of this sub-problem, therefore it must be computed a new solution of the

�rst sub-problem and all the appointments could change. This is not acceptable in practice.

Thus, we worked on an optimized version of both the sub-problems encoding. In the �rst

one, we modi�ed how the patients are assigned in order to have an easier way of scheduling

patients (no constants) and more patients scheduled in every day but always ensuring the

satis�ability of the solution, instead in the second sub-problem we worked on improving the

performance.

In the next sections, the two encoding with the new rules and those modi�ed are presented.

3.6.1 Optimized encoding of the �rst sub-problem

In order to improve the patients assignment we have realized an optimized version of the

encoding presented before. More in detail, in this version we introduced the time slots, so

that we can assign a possible starting time and ending time of the PAC for each patient.

In this way, we can ensure that for each assigned patient it is possible to schedule the two

critical exams, i.e the �rst and the last one, without overlapping with the �rst and the last of
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other patients. These two exams are de�ned as critical because they are the only required

by each patient and that must be scheduled in a precise order, i.e as �rst and last. There-

fore, in order to introduce the time slots, the atomday(DAY)becametime(DAY,T) and

represent the time slots in each available day, then we modi�ed the input atomreg(RID,

PR,TARGET,TOTDURATION,DUEDATE)adding the total duration of his/her pre-operative as-

sessment (TOTDURATION). Following, we report the modi�ed rules of the encoding. While,

starting from the encoding reported in 3.3.2, rule 2 and the rules from the rule 6 to rule 19

remain the same, the choice rule (rule 1) has been modi�ed and two more constraints have

been introduced.

For all the patients, assign a day that is at least one day before their due date and a

starting time:

1 0 {x(RID,PR,DAY,ST,ST+TOTDURATION) : time(DAY,ST), DAY < DUEDATE, ST <=

60-TOTDURATION} 1 :- reg(RID, PR, TARGET,TOTDURATION, DUEDATE).

In this rule, for all the registrations (reg(RID,PR,TARGET,TOTDUR,DUEDATE)), it is now

assigned not only a day but also a time slot that represents the starting time of the pre-

operative assessment from those that are possible (time(DAY,ST)). Thus, a new atom

x(RID,PR,DAY,ST,ST+TOTDURATION)is de�ned that presents the registration with the cor-

responding assigned day and the possible starting time and ending time.

Check that the �rst and the last exam can be assigned without overlapping with the

same exams of different patients:

3 :- #count{RID: x(RID,_,DAY,ST,_),exam(RID,0,DUR), T >= ST, T < ST+DUR} > N,

examLoc(0,_,_,DAY,N), time(DAY,T).

4 :- #count{RID: x(RID,_,DAY,_,ET),exam(RID,23,DUR), T < ET, T >= ET-DUR} > N,

examLoc(23,_,_,DAY,N), time(DAY,T).

As said before, in order to ensure that the patient assignment, in this sub-problem, do not

return solutions unsatis�able in the second sub-problem, we check that the �rst and the last

exam, identi�ed with id 0 and 23 (atomsexam(RID,0,DUR)andexam(RID,23,DUR)) can

be assigned in a time slot without overlapping with other exams with the same id. More in

detail, we check that, in each time slots, there are less then N patients assigned to the same
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exam area, where N is the number of available exam areas able to provide the same exam.

These two exams, in fact, are the only one that must be done by every patient and they must

be scheduled respectively as �rst and last while other exams can change the order; thus these

exams are the bottle neck of the problem and giving an assignment to them allow to have an

estimation of the patients assignable without decreasing too much the performance of the

scheduler.

3.6.2 Optimized encoding of the second sub-problem

In this section it is reported the optimization done on the encoding of the second sub-

problem. Starting from the encoding presented in 3.5.1, we performed some domain speci�c

optimizations with the aim of improving performance.

The �rst optimization is the pruning of exams' starting time slots. This optimization rely on

the knowledge of the PAC domain and the possibility of pruning impossible solutions, in fact,

given that the exams must be assigned following an order, it is known the minimum number

of time slots that each patient need to stay before and after each exam. Thus, the guess rule

can be improved by reducing the number of possible starting time slots of each exam with

the following constraints:

• an exam cannot start in a time slot if the remaining time slots are less than the minimum

amount of time slots required to complete all the following exams;

• an exam cannot start in a time slot if the time slots before are less than the minimum

amount of time slots required to complete the previous exams.

Then, a second optimization has been done on the minimization adding a lower bound. As

it can be seen in the encoding in section 3.5.1, we minimized the time spent in the hospi-

tal by each patient, computed as the difference between the ending time of the last exam

and the starting time of the �rst exam. However, the time spent in the hospital by each

patient cannot be lower than the sum of the duration of all the required exams. Therefore,

the minimization rule can be improved by computing the minimum time required by each

patient and using it as a lower bound, so that solutions below this value are pruned. The

optimized encoding of the second sub-problem is following reported. The rules from rule 2

to rule 4 remain the same as in the encoding reported in 3.5.1, while others have been changed.

Pruning of exams' starting time slots:
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5 forbiddenAfter(RID,FORNID1,ST+DUR1) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),

phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2),

phase(FORNID2,ORD2), ORD2 > ORD1 } = ST.

6 forbiddenBefore(RID,FORNID1,ST) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),

phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2),

phase(FORNID2,ORD2), ORD2 < ORD1 } = ST.

In these rules two new atomsforbiddenAfter andforbiddenBefore are de�ned as the

minimum amount of time slots needed by each patient after (before) each exam. The mini-

mum amount of time slots required by the exams after (before) each exam is obtained by

computing the sum of the duration of the exams with the greater (lower) phase value.

For each patient exams, assign a starting time in one of the available time slots using

the pruning of exams' starting time slots:

7 {x(RID,FORNID,ST,ST+DUR,DAY): examLoc(FORNID,DAY,FORNST,FORNET,_),

forbiddenAfter(RID,FORNID,FORB1), forbiddenBefore(RID,FORNID,FORB2),

time(ST), ST >= FORNST, ST <= FORNET-DUR, ST <= lastTimeSlot-FORB1, ST >

FORB2 } = 1 :- reg(RID,PR,DAY), exam(RID,FORNID,DUR).

The two new atoms de�ned before are used in this guess rule, so that the starting time

of each exam is after the value computed inforbiddenBefore and after the difference

betweenlastTimeSlot , that corresponds to the last time slot, and the value computed

in forbiddenAfter , in fact, this value represent the minimum number of time slots re-

quired after an exam (to perform all the remaining exams), therefore the starting time of

an exam must be before the last time slot available minus the duration of the following exams.

Minimization with lower bound:

8 cost(RID, TOT) :- TOT = #sum{DUR,FORNID : exam(RID,FORNID,DUR)},

reg(RID,_,_).

9 : � x(RID,0,ST,_,_),x(RID,23,_,ET,_), cost(RID,TOT), ET-ST-TOT >= 0. [

ET-ST-TOT@1, RID]
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This rule minimizes the time spent in the hospital by each patient, computed as the difference

between the ending time of the last exam and the starting time of the �rst exam. However,

the time spent in the hospital by each patient cannot be lower than the sum of the duration

of all the required exams. Therefore, the minimization rule can be improved by computing

the minimum time required by each patient and using it as a lower bound, so that solutions

below this value are pruned.



Chapter 4

Results of the scheduling

In this chapter, we report the results of an empirical analysis of the PAC scheduling problem

via ASP. For the �rst sub-problem, data have been randomly generated using parameters

inspired by literature and real world data, then the results of the �rst sub-problem have been

used as input for the second sub-problem. After that, it is reported a comparison with the

results obtained with the optimized encodings. The experiments were run on a AMD Ryzen

5 3600 CPU @ 3.60GHz with 16 GB of physical RAM. The ASP system used wasCLINGO

(Gebser et al. (2016a)) 5.4.0, using parameters--restart-on-modelfor faster optimization and

--parallel-mode 6for parallel execution. This setting is the result of a preliminary analysis

done also with other parameters, e.g.,�opt-strategy=usc for optimization. The time limit

was set to 5 minutes for both sub-problems.

PAC benchmarks. Data are based on the sizes and parameters of a typical middle sized

hospital, with 24 different exam areas. For the benchmarks we considered the constantsoe1

andoe2 equal to 2 and 5, respectively. The values of the constantsoe1 andoe2 are used to

overestimate the required resources, by adding limits to the assignments to exam locations,

for avoiding solutions of the �rst sub-problem that could lead to unsatis�able problems in the

second sub-problem. Thus, we set the two variables in a safe range, while a hospital could

decide to decrease the values of oe1 and oe2 to increase the number of patients assignable in

the �rst sub-problem. The solution schedules patients in a range of 14 days, but the target

date, i.e the optimal day in which schedule the appointment, is set among the �rst 7 days. For

each day there are 60 time slots, thus the constant ts is set to 60, corresponding to 5 minute

per time slot. To test scalability we generated 3 different benchmarks of different dimensions.

Each benchmark was tested 5 times with different randomly generated input.
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Figure 4.1 Number of patients assigned to each day by the scheduler with 40 patients as input

In particular, each patient is linked to a surgical specialty, and needs a number of exams

between 5 and 13, according to the specialty, while the duration of each exam varies between

3 and 6 time slots. The priorities of the registrations have been generated from an even

distribution of four possible values (with weights of 0.25 for registrations having priority 1,

2, 3, and 4, respectively). For all the benchmarks, there are 24 exam areas and the operators,

that are 35, can be assigned to 3 different exam areas. So, by increasing the number of

patients while maintaining �xed the number of operators, we tested different scenarios with

low, medium and high requests.

For the second sub-problem, we used the results of the �rst sub-problem as input. Thus, the

number of patients and the exam locations activated depend on the assignment of the solution

of the �rst sub-problem. Patients require all the same �rst and last exam, while the other

exams required by each patient are linked to an order that is randomly assigned and that

must be respected by the scheduler. In the second sub-problem clinics know the actual list of

exams needed by patients: To simulate this scenario, we randomly added and discarded the

optional exams assigned to patients in the �rst sub-problem. For example, optional exams

are needed by patients that are over 65 years old or smokers. 5 instances for each benchmark

have been generated, each corresponding to the assignment of 14 days.

4.1 Results of the scheduling
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Table 4.1 Solver time in computing the tested instances

Total #Patients Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
40 11s 24s 74s 120s 1s
60 300s 3s 265s 300s 300s
80 300s 300s 300s 300s 300s

Table 4.2 Percentage of assigned patients according to their priority level

Total #Patients %P1 assigned %P2 assigned %P3 assigned %P4 assigned
40 94% 85% 77% 66%
60 90% 74% 22% 16%
80 94% 30% 13% 15%

Results for the �rst sub-problem. The �rst optimization criteria in the PAC scheduling

sub-problem is to assign as many patients as possible, starting from patients with higher

priority. In Table 4.1, it is reported the time spent by the solver to compute the solutions.

As it is shown, the solver is able to �nd the optimum, on average, in less than 60 seconds

with instances with 40 patients, instead with a higher number of patients, it is still able to

�nd a solution but the time limit is reached. In particular, it can be noticed that instance 2

with 60 patients is solved in few seconds, instead other with the same dimension took longer.

This happened because of synthetic data, and, more in details, in 8 days out of 14 it was not

possible to schedule any patients due to not enough operators to activate the required exam

areas. On average, the number of scheduled patients per instance is 30, even in instances with

more patients. On instances with a higher number of patients the performance decreases, the

time limit is reached and the number of assigned patients remain, on average, 30. Instances

with 80 patients are more dif�cult, since in this scenario the number of operators is not

enough to deal with the high number of patients.

Overall, our solution is able to assign a day to 201 patients out of 217 patients with highest

priority; moreover, the scheduler is able to assign all or all but one patients with the highest

priority in 12 out of 15 instances tested.

In Table 4.2 are summarized the results obtained in this �rst sub-problem, in particular, the

table shows the average number of patients from the 5 instances assigned with 40, 60, and 80

patients according to their priority level.

The second optimization criteria is to have an assigned day that is as close as possible to

the target day. This optimization criteria is able to assign patients with higher priority near

to their target day while; instead, for patients with lower priorities, quality decreases. This

is due to two reasons: The �rst one is that there are more optimization criteria with higher
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Figure 4.2 Representations of the assignments of the starting time of the different exam
locations of each patient in a single day

priorities, then, the scheduler already tries to assign as many patients as possible, without

taking into account the target days of the patients, and the second one is that some patients

have a target day in a day without their exam locations available, so, even in an optimal

solution the assigned day to some patients would not be in the target day.

Figure 4.1 reports the result obtained by the scheduler with one of the instances with 40

patients as input. What can be seen from the graph is that some patients are assigned in days

11 and 12, while in days 9 and 10 there are no patients assigned. This can be explained by the

fact that the scheduler tries to assign as many patients as possible and do not try to assign as

soon as possible the patients. Moreover, in some days patients can not be assigned due to the

unavailability of the exam locations required. In particular, in the assignments in Figure 4.1,

patients that are assigned in day 11 could not be assigned to another day, because that day is

the only day with the exam locations they required.

Results for the second sub-problem. In the second sub-problem the solution assigns the

starting time of each exam of the patients. The input is taken from the results obtained in the

�rst sub-problem. The solution minimizes the difference between the ending time of the last

exam and the starting time of the �rst exam. While minimizing this value the solution tries to

minimize the time spent in the hospital by all patients. In this sub-problem, the scheduler is

able to reach an optimal solution in 14 out of 15 instances tested. While the average total

duration of the exams for each patient is 31 time slots, the solution �nds a schedule that

allows patients to have an average time in hospital that is just 32 time slots.
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Table 4.3 Comparison of the solver time in computing the tested instances with the two
versions of the encoding

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
Tot #Patients BASE OPT BASE OPT BASE OPT BASE OPT BASE OPT

40 11s 0.5s 24s 0.7s 74s 0.6s 120s 6.4s 1s 1.2s
60 300s 300s 3s 2.6s 265s 300s 300s 300s 300s 300s
80 300s 300s 300s 300s 300s 44s 300s 300s 300s 9s

The results are obtained on average in 122, 154, 141 seconds in the instances with 40, 60

and, 80 patients, respectively. The time does not grow with the number of patients, in fact, as

said before, the total number of patients assigned in the �rst sub-problem (which is the input

of this sub-problem) is, on average, 30 also in instances with 60 or 80 patients. Figure 4.2

represents the starting times assigned to each patient in a particular day. The patients that

must be scheduled are the same that are assigned by the �rst sub-problem in this day; the

scheduler of the second sub-problem minimizes the waiting times of each patient.

As can be seen in Figure 4.2 the scheduler is able to assign all patients optimally; indeed,

all patients have no waiting time between each exam and thus the time spent in the hospital

is reduced to the minimum, while respecting the constraints of the sub-problem, e.g., each

exam location is assigned to at most one patient for each time slot.

4.1.1 Results of the optimized encodings

The same instances presented before have been used to test the optimized encodings. Results

show that there is a high improvement in the quality of the results and in the performance

with the optimized encodings. In the following, we present the results obtained.

In Table 4.3 it is reported a comparison of the solver time in computing the instances between

the two versions of the encoding of the �rst sub-problem: the basic encoding (BASE in the

table), i.e the one without optimizations, and the optimized encoding (OPT). The average

time is 2s, 241s, 191s for instances with 40, 60 and 80 patients respectively, that is a small

improvement with the results obtained with the non-optimized encoding.

However, the quality of the results is clearly improved, as table 4.4 shows: the percentage of

patients assigned is higher for all the instances, in particular the problem scales better with

the growing of the number of patients. In fact, instances with 60 and 80 patients still have a

percentage greater than the 70% even for patients with low priority (priority 3 and 4) and

the average of the number of patients scheduled has increased from 30, obtained with both

the instances with 60 and 80 with the non-optimized encoding, to 45 for instances with 60

patients and 60 for instances with 80.
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Table 4.4 Comparison of the percentage of assigned patients according to their priority level
with the two versions of the encoding

Priority 1 Priority 2 Priority 3 Priority 4
Tot #Patients BASE OPT BASE OPT BASE OPT BASE OPT

40 94% 94% 85% 88% 77% 84% 66% 84%
60 90% 92% 74% 80% 22% 77% 16% 77%
80 94% 97% 30% 92% 13% 74% 15% 74%

(a) Basic encoding

(b) Optimized encoding

Figure 4.3 Comparison between the average of number of daily assigned patients, in instances
of 40 patients, with non-optimized and optimized encodings

In �gure 4.3 it is reported a comparison between the basic and optimized encoding on the

number of daily scheduled patients with instances of 40 patients. As it is shown, the number

of patients assigned daily is clearly higher and the patients are more concentrated in the �rst

7 days due to the fact that we generated the patients' target dates in the �rst week and one

optimization level is to assign patients as close as possible to their target day.
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Figure 4.4 Patients distribution with the new target day generation

Furthermore, following the good results obtained, we tested an other possibility of assigning

the target day. It is also used in practice to put the target day some days before the due date of

the patient. We put 3 days before. Therefore, we generated and tested, 5 more instances with

40, 60 and 80 patients. As it is shown in �gure 4.4 in this way patients are more distributed

among the 14 days, while the total number of assigned patients is similar. All the instances

presented since now, have been generating with a number of exam areas able to provide the

same exam equal to one, so, we generated 15 more instances to test how the solution was

able to deal with more exam areas providing the same exam.

Instance Priority 1 Priority 2 Priority 3 Priority 4
1 16% 14% 19% 45%
2 100% 88% 100% 94%
3 77% 85% 95% 89%
4 100% 100% 100% 100%
5 100% 86% 83% 94%

Table 4.5 Percentage of assigned patients, with two exam areas for each different exam and
80 patients

In table 4.5, it is reported the percentage of assigned patients with two exam areas for each

different exam. The scheduler is able to assign almost all the patients in all the instances,

but the �rst one that, due to a unlucky generation, in 10 out of the 14 available days it is not

possible to schedule any patients because there are not enough operators able to work on
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Table 4.6 Solver time in computing the tested instances

Total #Patients Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
40 1.7s 2.2s 17s 10s 2.7s
60 23s 40s 21s 14s 12s
80 21s 35s 13s 0.5s 33s

necessary exam areas. In conclusion, as the results show, the solution of the �rst sub-problem

is able to assign a good number of patients, and has a good scalability with the increase of

the number of total patients (it has been tested up to 80 patients) and with the number of

same exam areas available.

Finally, all the instances above presented and used to test the solution of the �rst sub-problem,

have been used as input of the second one. As the number of patients is increased, thanks to

the optimized encoding of the �rst sub-problem, the performance of the basic encoding of

the second sub-problem decreased. In fact, the encoding without any optimization reached in

all the instances the time limit of 300 seconds and produced low quality results, with several

time slots of waiting time between the exams. Instead, the optimized encoding is able to �nd

the optimum in all the instances in few seconds, as shown in table 4.6, without waiting time

between the exams.



Chapter 5

Rescheduling

5.1 Problem Description

A solution to the Pre-Operative Assessment Clinic rescheduling problem is vital in a hospital

context. In fact, it can happen that, due to some reasons, it is not possible to implement

a scheduling. Therefore, it is necessary to �nd a solution in order to guarantee the proper

execution of the pre-operative assessment for every patient assigned in that scheduling. We

considered three different scenarios in which rescheduling can be required:

• some patients can't be present on the assigned day,

• some operators are missing for some days,

• exam locations are unavailable for some days.

Thus, given a scheduling and the information of why it is not possible to implement it, the

PAC rescheduling problem consists in moving patients and operators in order to �nd a new

assignment that takes into account the new information and the constraints of the initial

problem, i.e the PAC scheduling problem (Chapter 2.1) or, in particular, we considered the

rescheduling after the second sub-problem.

The optimization of the rescheduling problem consists in minimizing the changes done to the

initial scheduling, according to some criteria: the priority is not to change the day in which

patients were assigned and, in case it is not possible, to minimize the distance between the

new and the old assigned day. Then, if a patient is rescheduled in the same day than we want

not to change the exams starting time, otherwise, since the day is changed it is not important

to maintain the same exams starting time, thus it is minimized the patient's total length of the

pre-operative assessment as it was done in the second sub-problem of the PAC scheduling
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problem (Chapter 3.4). Finally, if possible, operators are assigned in the same exam areas

they were initially assigned.

5.1.1 Speci�cation of the problem

Input

The input data is the same of the PAC scheduling problem for the atoms exam, examLoc (of

the second sub-problem), operators and phase, while other atoms are changed:

• Instances ofreg(RID,PR,DUEDATE)represent the registration of a patient, character-

ized by an id (RID), the priority level (PR), and the duedate (DUEDATE).

• Instances ofx(RID,FORNID,ST,ET,DAY)represent a planned exam, characterized by

a patient id (RID), the exam location (FORNID), the starting time and ending time of

the exam (STandET), and the day (DAY).

• Instances ofoperator(ID,FORNID,DAY) represent assigned operator, characterized

by an id (ID), the exam location in which is assigned (FORNID) and the day (DAY).

• Instances offorbidden(RID,DAY) represent a patient (RID) cannot be present in a

day (DAY).

• Instances ofnotAvailableExamLoc(FORNID,DAY)represent an exam location (FORNID)

is not available in a day (DAY).

• Instances ofnotAvailableOperator(ID,DAY) represent an operator (ID) is not

available in a day (DAY).

• Instances oftime(DAY,T) represents the available time slots (T) in a day (DAY).

Output

The output is a new assignment represented by two atoms, one is of the formy(RID,PR,TOTDUR,DAY),

where the meaning is that the exam of registration with idRIDand priority levelPRis as-

signed to the dayDAYand has a total duration of exams equal toTOTDUR, the other one is

operatorY(ID,FORNID,DAY)meaning that the operator with idID is assigned on the exam

locationFORNIDin the dayDAY.
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5.2 ASP Encoding

The ASP encoding of the PAC rescheduling problem we realized is made by: the rules 5 and

6 presented in the optimized encoding of the second sub-problem (Chapter 3.6.2) and not

reported again, and the rules presented in the following.

De�ne an auxiliary atom representing the possible starting time of each exam:

1 allowedTime(RID,FORNID,ST..ts-ET) :-

forbiddenBefore(RID,FORNID,ST),forbiddenAfter(RID,FORNID,ET).

In this rule, it is de�ned an auxiliary atomallowedTime(RID,FORNID,ST..ts-ET) that

represents all the possible starting time of each exam. This is done starting from the

time slotSTuntil the time slot ts-ET(both de�ned above in the atomsforbiddenBefore ,

forbiddenAfter ), where ts is the total amount of time slots available.

De�ne an auxiliary atom representing the possible day in which each patient can be

assigned:

1 allowedDay(RID,DAY):- reg(RID,_,DUEDATE), time(DAY,_), not forbidden(RID,_),

DAY < DUEDATE.

In this rule, a new atom is de�nedallowedDay(RID,DAY) that represents the days in which

each patient can be assigned. It is computed as the available days (time(DAY,_) ) before the

due date of the patient that are not forbidden (i.e. those in which the patient cannot be present).

For each patient that cannot be present on his/her (old) assigned day, assign a new

starting time and day to all his/her exams:

1 1{y(RID,FORNID,ST,ST+DUR,DAY): allowedTime(RID,FORNID,ST),

allowedDay(RID,DAY)}1 :- reg(RID,_,DUEDATE), exam(RID,FORNID,DUR),

forbidden(RID,_).

In this choice rule, a new starting time and day are assigned to all the exams of patients that

can not be present on their (old) assigned day. These patients are characterized by the atom

forbidden(RID,_) true and their new starting time and day are chosen from those available
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and de�ned in the atomsallowedDay(RID,DAY)andallowedTime(RID,FORNID,ST).

De�ne a new atom that represents the days in which there are changes:

1 changedDay(DAY) :- y(RID,_,_,_,DAY), x(RID,_,_,_,DAY1), DAY != DAY1.

2 changedDay(DAY) :- notAvailableExamLoc(_,DAY).

3 changedDay(DAY) :- notAvailableOperator(_,DAY).

Since the objective of the rescheduling is to minimize the difference between the new and

the starting scheduling, it is convenient, in order to increase performance, to �nd a new

assignment of the exams starting time only in the days with changes (for example in a day in

which a new patient is inserted) and to copy the initial assignments in the other days. Thus, in

rules 7, 8 and 9, a new atom is de�nedchangedDay(DAY)that represents the days in which

there are changes that can be because: it is assigned a new patient (rule 7), an exam location

is not available (rule 8) and an operator is not present (rule 9).

Assign a new starting time and day to each exam of patients assigned in days with

changes:

1 1{y(RID,FORNID,ST,ST+DUR,DAY): allowedTime(RID,FORNID,ST),

allowedDay(RID,DAY)}1 :- reg(RID,_,DUEDATE), exam(RID,FORNID,DUR), not

forbidden(RID,_), x(RID,_,_,_,DAY1), changedDay(DAY1).

In this rule, it is de�ned a new assignment for all the exams of patients that in the initial

scheduling were assigned in days that in the new scheduling have changes, therefore in the

days in which the atomchangedDay(DAY)is true.

Assign the starting time of the exams of patients assigned in day without any changes:

1 y(RID,FORNID,ST,ET,DAY) :- x(RID,FORNID,ST,ET,DAY), not changedDay(DAY), not

forbidden(RID,_).

As said before, in order to increase performance, we want to make the minimum choices

possible, thus in the days without changes we can just copy the initial scheduling. In this
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rule, it is de�ned a new atomy(RID,FORNID,ST,ET,DAY)that is equal to the input atom

x(RID,FORNID,ST,ET,DAY)when the atomchangedDay(DAY)is not true and the patient

does not need rescheduling (not trueforbidden(RID,_) ).

Ensure that, for each patient, all his/her exams are assigned in the same day:

1 :- y(RID,_,_,_,DAY1), y(RID,_,_,_,DAY2), DAY1 > DAY2.

This rule ensures that for each patient all the exams are scheduled in the same day. As said

above, the atomy(RID,_,_,_,DAY) represents an assignment of an exam, therefore there

cannot be twoy atoms with the sameRIDbut different dayDAYor, with the same meaning

but better performance, withDAY1> DAY2.

Common rules with the PAC scheduling problem:

1 :- y(RID,FORNID1,ST1,_,_), y(RID,FORNID2,ST2,_,_), phase(FORNID1,ORD1),

phase(FORNID2,ORD2), ORD2 < ORD1, ST1 < ST2.

2 :- #count{FORNID: y(RID,FORNID,ST,ET,_), T>= ST, T<ET} > 1, reg(RID,_,_),

time(_,T).

3 :- #count{RID: y(RID,FORNID,ST,ET,DAY), T>= ST, T<ET} > N,

examLoc(FORNID,_,DAY,_,_,N), time(_,T).

4 {operatorY(ID, FORNID, DAY) : operator(ID, FORNID, DAY)} == NOP :-

examLoc(FORNID,NOP, DAY,_,_,_), exam(RID,FORNID,SESSION),

y(RID,_,_,_,DAY).

5 :- operatorY(ID, FORNID1, DAY), operatorY(ID, FORNID2, DAY), FORNID1 <

FORNID2.

The rules reported above are in common with the encoding of the second sub-problem of the

PAC scheduling problem (Chapter 3.5.1) but instead of thex(REGID,FORNID,ST,ET,DAY)

atom we havey(RID,FORNID,ST,ET,DAY)and, instead ofoperator(ID,FORNID,DAY)

atom we haveoperatorY(ID,FORNID,DAY).

Compute the amount of changes in the operators assignment after rescheduling:
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1 changedOperators(N) :- #count{ID: operatorY(ID,FORNID1,DAY),

operators(ID,FORNID2,DAY), FORNID1 != FORNID2} = N.

In this rule, it is computed the number of changes in the operators assignment with respect to

the initial scheduling and the new atomchangedOperators(N) is de�ned. This atom will

be used later in the optimization.

Compute, for each patient, the minimal total duration of his/her pre-operative assess-

ment:

1 cost(RID, TOT) :- TOT = #sum{DUR,FORNID : exam(RID, FORNID,DUR)},

y(RID,_,_,_,DAY1), x(RID,_,_,_,DAY2), DAY1 != DAY2.

In this rule, a new atomcost(RID, TOT) is de�ned in which it is reported, for each patient,

the minimum total duration of his/her pre-operative assessment. Since, this atom will be used

later in the optimization only for the patients rescheduled in a different day from the initial

scheduling, it is computed only when the day after rescheduling (DAY1) is different from the

initial scheduled day (DAY2).

Optimization, minimize the difference between the patient assigned day before and

after rescheduling:

1 #minimize{|DAYX-DAY|@4,RID: y(RID,_,_,_,DAY),x(RID,_,_,_,DAYX),

changedDay(DAY)}.

This weak constraint minimizes the difference between the patient assigned day before and

after rescheduling, this is applied only if the atomchangedDay(DAY)is true, otherwise

we just copy the starting scheduling. This weak constraint has the higher priority in the

optimization.

Optimization, minimize the difference between exams starting time before and after

rescheduling:

1 #minimize{|STx-STy|@3,RID,FORNID:

y(RID,FORNID,STy,_,DAY),x(RID,FORNID,STx,_,DAY)}.
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This rule minimizes the difference between exams starting time before and after rescheduling.

This is applied only for the patients assigned, after rescheduling, in the same day of the initial

scheduling.

Optimization, minimize the total duration of the PAC for patients rescheduled in a new

day:

1 #minimize{|ET-ST-TOT|@2,RID: y(RID,0,ST,_,_), y(RID,23,_,ET,_),

cost(RID,TOT)}.

As done for the optimization of the second sub-problem in section 3.5.1, here we apply the

minimization with lower bound. For patients rescheduled in a new day with respect to the

initial scheduling, it is minimized the time spent in the hospital, computed as the difference

between the ending time of the last exam and the starting time of the �rst exam. However,

the time spent in the hospital by each patient cannot be lower than the sum of the duration

of all the required exams. Therefore, the minimization rule can be improved by computing

the minimum time required by each patient and using it as a lower bound, so that solutions

below this value are pruned.

Optimization, minimize the difference in operators assignment:

1 #minimize{N@1: changedOperators(N)}.

Finally, it is minimized the difference between the operators' assigned exam area be-

fore and after rescheduling. More in detail, it is minimized the valueN of the atom

changedOperators(N) computed in rule 17.

5.3 Results of the rescheduling

In this chapter, the results of an empirical analysis of the PAC rescheduling problem are

presented. As for the PAC scheduling problem, the ASP system used wasCLINGO ( Gebser

et al. (2016a) 5.4.0), using parameters--restart-on-modelfor faster optimization and--

parallel-mode 6for parallel execution. The time limit was set to 60 seconds.
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#Patients to rescheduleInstance 1 Instance 2 Instance 3 Instance 4 Instance 5
1 4.861 6.004 6.185 4.932 3.213
2 6.039 8.207 7.465 8.62 2.945
4 8.55 60.06 8.437 60.099 3.342

Table 5.1 Time spent by the solver in computing the instances

Since the rescheduling problem consists of, given a scheduling that cannot be implemented,

move operators and patients to �nd a new assignment, the initial scheduling was taken from

the results of the PAC scheduling problem.

5.3.1 First scenario: Patient requires a new day

In this scenario, it is not possible for one (or more) patient to have the pre-operative assess-

ment on his/her planned day in the initial scheduling. Thus, a new day and a new starting

time for all her/his exams must be found, while other patients should have no changes but, in

principle, they can be moved in order to leave space for the patients to reschedule.

(a) Before rescheduling (assigned to day 2) (b) After rescheduling (assigned to day 1)

Figure 5.1 Representation of a patient moved a day before after rescheduling

In �gure 5.1 it is reported an example of a patient, in this case patient with id 12 (on y-axis),

that in the initial scheduling was assigned in a day in which he could not be present, thus

after rescheduling, it has been moved to the day before.

We tested 5 instances with 1, 2 and 4 patients to be rescheduled and in 13 out of 15 of them,

as shown in Table 5.1, the scheduler was able to assign all the patients optimally in few

seconds respecting all the constraints. In fact, by inspecting the re-scheduling results, in the

new assignment there is no waiting time between the exams and no overlapping, moreover

the patients that did not have to be rescheduled have no changes in their assignment.
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5.3.2 Second scenario: Operators are not present

In this scenario, it is considered the case in which an operator (or more) is not available

for some days. If, in those days, it is possible to replace the operator so that the exam area

in which (s)he was assigned can still be activated then no changes are needed; otherwise,

patients requiring that exam area must be rescheduled in a new day.

(a) Day before rescheduling (b) Day after rescheduling

Figure 5.2 Representation of patients moved because of missing operator

In �gure 5.2 it is reported an example of the changes done in a day, after rescheduling. Since

an operator was missing, it was not possible to activate the exam area with id 6; thus all

the patients requiring that exam area have been rescheduled. As it is shown in �gure 5.2b,

two patients (38 and 30) have been rescheduled in the day shown and both require the exam

area with id 6. Moreover, the �gure shows that there is some free space (i.e. waiting time),

between some exams. This space cannot be reduced because the patients won't be able to

fully complete all their exams without overlapping and they could not be assigned in an other

day because the day distance is the higher priority in the minimization. Furthermore, since

we are using synthetic data, it can happen to have combinations that lead to unsatis�able

instances. In fact, one instance tested in this scenario returned unsatis�able because, due to a

missing operator and, as a consequence, the impossibility to activate all the necessary exam

areas, it was not possible to reschedule some patients.

5.3.3 Third scenario: Exam areas are not available

In this scenario, it is supposed that an (or more) exam area is not available. Thus, the patients

requiring it must be rescheduled in a new day. As in the previous scenario, patients not
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interested by the unavailability should not be moved. However, since we want all the patients

to be assigned, every patient can have changes in their appointment if necessary.

(a) Day before rescheduling (b) Day after rescheduling

Figure 5.3 Representation of patients moved because of an unavailable exam area

In �gure 5.3, it is reported an example of this scenario, in which the exam area with id 4 has

been put unavailable for three days. As it is shown in �gure 5.3b patients requiring that exam

area have been moved, but non-rescheduled patients still have the same starting time for each

exam, as a consequence, in the optimum, one rescheduled patient has some waiting time

between two exams. In fact, higher priority is given to have the same exams starting time for

patients not moved and then minimize the total length of those, instead, moved to a new day.
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Web Application

The solution provided in this thesis should be used by hospital operators, so we developed

a web application to allow to intuitively use the ASP solutions and CLINGO through a

graphical interface.

Figure 6.1 Representations of web application architecture

The system architecture is reported in �gure 6.1. The graphical interface has been developed

using the framework angular, as backend we used nodejs and graphql for data queries and it

is used a wrapper to call the solver (clingo).

The work�ow is the following:
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• the user selects a period to plan; data are shown accordingly to the selection, and

then (s)he can start the �rst planning. This corresponds to the solution of the �rst

sub-problem of the PAC scheduling problem.

• Once the �rst planning is completed, the result is stored and shown. Then, the operator

has to select all the exams necessary for each patient. Now, the detailed planning can

start. This corresponds to the second sub-problem of the PAC problem.

• The �nal, obtained, scheduling is stored and shown with the precise starting time of

each exam.
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Figure 6.2 First planning page

6.1 Demo

6.1.1 First planning page

In �gure 6.2 the �rst page is shown; here the operator can select the period to plan and the

solver timeout. In this page, data are read-only because the application has been thought

integrated with the hospital database, therefore with updated data. Three tabs allow to check

the elements involved in the planning:

• Patients tab, to monitor all the patients with a target date included in the planning

period (Figure 6.2).

• Personnel tab, to monitor the operators available in the selected period (Figure 6.3). A

drop down menu allow to select which operator to inspect.

• Providers tab, to check all the exams area enabled in the selected time period (Figure

6.4). A drop down menu allow to select the exam area to inspect.

Then, clicking on the "START PLANNING" button, the solver is called through the wrapper,

the result is the solution of the �rst PAC sub-problem. A loading screen will appear and once

the solver �nishes the planning (optimum found or timeout reached), the user is redirected to

the detailed planning page in which it is shown the result.
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Figure 6.3 First planning page, personnel tab

6.2 Detailed planning page

In the detailed planning page the user can look at the results of the �rst planning, that can

be selected through a drop down menu. At this point the operator has to select the precise

exams each patient needs. Thus, by clicking on the edit icon a menu will appear listing all

the patient exams where a check box allows to select which one is necessary as shown in

�gure 6.5.

Moreover, a second tab called "Graphics", displays a bar chart (�gure 6.6) in which the bars

represent the number of patient for each day of the scheduled period and four doughnuts

(�gure 6.7) chart that represent the percentage of patient scheduled over the total patient,

grouped by the patients priority.

Finally, clicking on the "START PLANNING" button, again the solver is called and the

detailed planning with the precise starting time of all the exams is computed. Once the solver

terminates, the user is redirected to the �nal page.
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Figure 6.4 First planning page, providers tab

6.2.1 Final schedule page

As shown in �gure 6.8, the �nal schedule page is made up of a drop down menu, from which

it can be selected the scheduled period, and two tabs: patients info tab and graphics tab. In

the patients info tab, patients are sorted in a table and clicking on the icon in the "Show

Exams" column a table will appear listing all the exams and their starting time.

In �gure 6.9 and �gure 6.10 are reported the charts shown in the graphics tab, that are two

gantt chart, where the �rst one reports on the x-axis the timeline and on the y-axis the patients

and each segment corresponds to an exam, instead the second one reports the same chart

with the exam areas on the y-axis.
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Figure 6.5 Detailed planning page, edit patient exams

Figure 6.6 Detailed planning page, bar chart
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