
Under consideration for publication in Theory and Practice of Logic Programming 1

On the Configuration of More and Less Expressive
Logic Programs∗

CARMINE DODARO

University of Calabria, Italy
(e-mail: dodaro@mat.unical.it)

MARCO MARATEA

University of Genoa, Italy

(e-mail: marco.maratea@unige.it)

MAURO VALLATI

University of Huddersfield, UK

(e-mail: m.vallati@hud.ac.uk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The decoupling between the representation of a certain problem, i.e., its knowledge model, and
the reasoning side is one of main strong points of model-based Artificial Intelligence (AI). This
allows, e.g. to focus on improving the reasoning side by having advantages on the whole solving
process. Further, it is also well-known that many solvers are very sensitive to even syntactic
changes in the input.

In this paper, we focus on improving the reasoning side by taking advantages of such sensitiv-
ity. We consider two well-known model-based AI methodologies, SAT and ASP, define a number
of syntactic features that may characterise their inputs, and use automated configuration tools
to reformulate the input formula or program. Results of a wide experimental analysis involving
SAT and ASP domains, taken from respective competitions, show the different advantages that
can be obtained by using input reformulation and configuration.

KEYWORDS: SATisfiability; Answer Set Programming; Knowledge Configuration.

1 Introduction

Model-based reasoning is one of the most prominent areas of research in Artificial Intel-

ligence (AI). In model-based AI approaches, solvers accept input instances written in a

given logical language and automatically compute their solutions (Geffner 2018).

A pillar of model-based AI is the decoupling between the knowledge model and the rea-

soning side, which is usually referred to as domain-independent reasoning. This supports

the use of knowledge engineering approaches that separate the modelling part from the

reasoning part. The main advantage of such separation is that it is possible to “optimise”

∗ Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

2 Dodaro, Maratea, and Vallati

one of the two parts without changing the other for obtaining overall advantage in the

whole process.

We follow this path, further evidencing that this modular approach also supports the

use of reformulation and configuration techniques which can automatically re-formulate,

re-represent or tune the knowledge model, while keeping the same input language, in

order to increase the efficiency of a general solver (see, e.g. (Vallati et al. 2015) still

for the case of automated planning, where reformulation techniques have been widely

applied). The idea is to make these techniques to some degree independent of domain

knowledge and solver (that is, applicable to a range of domains and solvers technology),

and use them to form a wrapper around a solver, improving its overall performance for

the problem to which it is applied.

In this paper, we investigate how the configuration of knowledge models, i.e., the order

in which elements are listed in the considered model, can affect the performance of general

automated solvers in the wider field of logic programming. In particular, we focus on two

areas that can be considered to end of the spectrum: Propositional Satisfiability (SAT)

and Answer Set Programming (ASP) (Baral 2003; Gelfond and Lifschitz 1988; Gelfond

and Lifschitz 1991; Brewka et al. 2011). In both areas, configuration has been traditionally

exploited to modify the behaviour of solvers to improve performance on a considered

(class of) instance(s) (Eggensperger et al. 2019). With regard to the knowledge models

characteristics, SAT, particularly in its CNF connotation, has a limited expressivity in

terms of the syntax of the models. On the other hand, ASP has instead a great level of

expressivity, having a rich syntax (Calimeri et al. 2020) aiming for better readability.

In fact, the two approaches, while sharing similar aspects, e.g. (i) presence of a somehow

similar input format for the propositional part, (ii) the reasoning part of state-of-the-art

SAT and ASP solvers employ variations of the CDCL algorithm (Mitchell 2005; Gebser

et al. 2012), and (iii) the existence of linear techniques for rewriting ASP programs

falling in a certain syntactic class (cf. tight, (Erdem and Lifschitz 2003)) and solvers

that exploit such property to use SAT as ASP solver, are also very different on several

respects. Among others: (a) ASP is a first order language allowing for variables, that are

eliminated during grounding, and during grounding some kind of reformulation already

happens, (b) ASP rules are somehow more “constrained” than CNF clauses, since they

need to preserve the head-body structure, (c) ASP allows for a number of additional

constructs, like aggregates, and (d) propositional ASP is strictly more expressive than

SAT.

Building on the experience gained in our prior work on SAT (Vallati and Maratea 2019),

the large experimental analysis presented in this paper provides a collection of results

that help to understand the impact of knowledge model configuration on automated

solvers from these two subareas of the logic programming field, and to provide valuable

support to knowledge engineers. In particular, in this work we:

1. define a number of SAT and ASP syntactic features useful for analysing the struc-

ture of the formula/program at hand,

2. introduce a framework that, leveraging on the introduced features, allows the au-

tomated reconfiguration of the input formula/program,

3. employ SMAC (Hutter et al. 2011) as a configuration tool to reformulate the input

formula/program, and

On the Configuration of More and Less Expressive Logic Programs 3

4. compare the performance of state-of-the-art SAT and ASP solvers on basic and re-

formulated formulae/programs coming from well-known benchmark domains taken

for respective competitions (see. e.g. the reports of the last competitions available

(Heule et al. 2019; Gebser et al. 2020).

Results show that SAT solvers can greatly benefit from such reformulation, being able

to solve a consistent number of additional instances or in shorter time, and that same

happens to ASP solvers, to a lesser degrees, despite the limitations (a) and (b), and the

wider degrees of parameters to analyse, cf. (c).

This paper is organised as follows. First, in Section 2, we present needed preliminaries

about SAT and ASP, their input languages, and the configuration techniques we are

going to exploit in the paper. Then, Section 3 is devoted to the configuration of SAT

formulae and ASP programs, by defining the syntactic features we are going to employ

for reformulation. Further, Section 4 presents the results of our experimental analysis on

both SAT and ASP domains. The paper ends in Section 5 and 6 with the analysis of

related literature and conclusions, respectively.

2 Preliminaries

This section provides the essential background with regard to SAT and ASP fields, and

with regard to automated configuration techniques.

2.1 SAT Formulae and Answer Set Programming

We define (ground) disjunctive ASP programs and SAT formulae so as to underline sim-

ilarities, in order to make it easier in later sections to compare the presented techniques.

Syntax. Let A be a propositional signature. An element p ∈ A is called atom or positive

literal. The negation of an atom p, in symbols ¬p, is called negative literal. Given a literal

l, we define l = p, if l = p and l = ¬p, if l = p for some p ∈ A. Given a set of literals

M , we denote by M+ the set of positive literals of M , by M− the set of negative literals

of M , and by M the set {l : l ∈ M}. A clause is a finite set of literals (seen as a

disjunction), and a SAT formula is a finite set of clauses (seen as a conjunction).

Example 1

Let ϕrun be the following SAT formula:

c1 : {p1,¬p3}
c2 : {p2, p3,¬p1,¬p4}
c3 : {¬p5,¬p4}.

where c1, c2, c3 are clauses. C

An aggregate atom is of the form:

sum{w1 : l1, . . . , wn : ln} ≥ b (1)

where n ≥ 1, l1, . . . , ln are distinct literals, and b, w1, . . . , wn are positive integers. For

an atom p of the form (1), elem(p) := {(wi, li)|i ∈ [1..n]}, lits(p) := {l|(w, l) ∈ elem(p)},

4 Dodaro, Maratea, and Vallati

and bound(p) := b. Moreover, count{l1, . . . , ln} ≥ b denotes a shortcut for sum{w1 :

l1, w2 : l2, . . . , wn : ln} ≥ b where w1 = w2 = . . . = wn = 1.

An ASP program Π is a finite set of rules of the following form:

p1 ∨ · · · ∨ pm ← ¬pm+1, . . . ,¬pk, pk+1, . . . , pn (2)

where n > 0 and n ≥ m, p1, . . . , pm are atoms, pm+1, . . . , pn are atoms or aggregate

atoms. For a rule r of the form (2), let H(r) denote the set {p1, . . . , pm} of head atoms,

and B(r) denote the set {¬pm+1, . . . ,¬pk, pk+1, . . . , pn} of body literals. A rule r of

the form (2) is said to be disjunctive if m ≥ 2, normal if m = 1, and a constraint if

m = 0. Moreover, a rule r of the form {p1, p2, . . . , pm} ← ¬pm+1, . . . ,¬pk, pk+1, . . . , pn is

called choice rule and defined here as a shortcut for the following rules: p1 ∨ p′1 ← B(r),

p2 ∨ p′2 ← B(r), . . . , pm ∨ p′m ← B(r), where p′1, . . . , p
′
m are fresh atoms not appearing

in other rules. Note that modern ASP solvers do not usually create any auxiliary atom

to handle choice rules. For an expression (SAT formula or ASP program) γ, atoms(γ)

denotes the set of (aggregate) atoms occurring in γ.

Example 2
Let Πrun be the following program:

r1 : p1 ∨ p4 ←
r2 : p2 ∨ p3 ← ¬p4, p1

r3 : p5 ← sum{1 : p1, 2 : p2, 4 : p4} ≥ 7.

Note that r1 and r2 are disjunctive rules, r3 is a normal rule, and sum{1 : p1, 2 : p2, 4 :

p4} ≥ 7 is an aggregate atom. C

The dependency graph GΠ of Π has nodes atoms(Π), and an arc xy, where x and y

are (aggregate) atoms, for each rule r ∈ Π such that x ∈ H(r) and y ∈ B(r). An atom

is recursive in Π if it is involved in a cycle of GΠ. In the following, every program Π is

assumed to have no recursive aggregate atoms. Note that Πrun has such a property.

Semantics. An interpretation I is a set of (aggregate) atoms. Given an interpretation I,

relation |= is defined as follows:

• for an atom p, I |= p if p ∈ I; while I |= ¬p if p 6∈ I;
• for an aggregate atom p of the form (1), I |= p if

∑
(w,l)∈elem(p), I|=l w ≥ bound(p);

while I |= ¬p if
∑

(w,l)∈elem(p), I|=l w < bound(p);
• for a clause c, I |= c if I |= l for some l ∈ c;
• for a rule r of the form (2), I |= B(r) if I |= l for all l ∈ B(r), I |= H(r) if I |= p

for some p ∈ H(r), and I |= r if I |= H(r) whenever I |= B(r);
• for a SAT formula ϕ, I |= ϕ if I |= c for all c ∈ ϕ;
• for a program Π, I |= Π if I |= r for all r ∈ Π.

For an expression (SAT formula or ASP program) γ, I is a model of γ if I |= γ.

Example 3
Consider ϕrun of Example 1 and Πrun of Example 2, and I = {p4}. I |= ϕrun and

I |= Πrun. C

The reduct ΠI of a program Π with respect to an interpretation I is {H(r)← B(r) :

r ∈ Π, I |= B(r)} (Faber et al. 2011). A model I is a stable model of a program Π if there

is no model J of ΠI such that J ⊂ I.

On the Configuration of More and Less Expressive Logic Programs 5

p cnf 5 3

1 -3 0

2 3 -1 -4 0

-5 -4 0

Fig. 1. SAT formula ϕrun encoded in the DIMACS format.

8 2 2 3 0 0

8 2 4 5 2 1 2 3

5 6 7 3 0 3 5 2 1 2 4

1 7 1 0 6
...

Fig. 2. ASP program Πrun encoded in the lparse format.

Example 4

Consider Πrun of Example 2 and I = {p4}. The reduct ΠI
run is equal to p1∨p4 ← . Thus,

I is a stable model. C

2.2 Input format

Modern SAT and ASP solvers usually take as input CNF formulae and ASP programs

represented by means of a numeric format. Concerning SAT, the numeric format is called

DIMACS. Figure 1 shows the representation of the formula ϕrun of Example 1 in the

DIMACS format. The first line, starting by p, gives information about the formula: the

instance is in CNF, and the numbers of atoms and clauses, respectively, are provided.

In the DIMACS format each atom is uniquely identified by a number. After the initial

descriptive line, clauses are listed. Each clause is a sequence of distinct non-null numbers

ending with 0 on the same line. Positive numbers denote the corresponding positive

literals, while negative numbers represent negative literals.

Concerning ASP programs, they are usually represented in the lparse format (Syrjänen

2002). As in the DIMACS format, each atom is uniquely identified by a number and each

rule is represented by a sequence of numbers. Rules are listed, and each rule starts with

an identifier of the rule type, as follows:

• 1 represents normal rules and constraints;

• 2 represents aggregate atoms of the type count;

• 3 represents choice rules;

• 5 represents aggregate atoms of the type sum;

• 8 represents disjunctive rules.

Figure 2 shows the representation of the program Πrun of Example 2 in the lparse

format. In particular, consider line 8 2 4 5 2 1 2 3 representing the disjunctive rule

r2. The first number, 8, is the identifier of the rule type, the number 2 represents |H(r2)|,
and 4 and 5 are the numeric identifiers of atoms p2 and p3, respectively. Then, 2 and

6 Dodaro, Maratea, and Vallati

1 represent |B(r2)| and |B(r2)−|, respectively. Finally, 2 and 3 are the identifiers of the

atoms p4 and p1, respectively. Concerning the aggregate atom appearing in rule r3, this

is represented by the line 5 6 7 3 0 3 5 2 1 2 4, where 5 is the identifier of the rule

type, the number 6 represents the numeric identifier of the aggregate atom, 7 is the

bound of the aggregate atom, then 3 and 0 represent the number of literals and negative

literals in elem(), respectively. Then, literals p1, p2 and p4 are listed followed by their

corresponding weights. Note that rule r3 is represented by 1 7 1 0 6, where 7 and 6 are

the identifiers of p5 and of the aggregate atom, respectively.

2.3 Automated Configuration Techniques

Many algorithms have parameters that can be adjusted to optimise performance (in

terms of, e.g. solution cost, or runtime to solve a set of instances). Formally, this problem

can be stated as follows: given a parameterised algorithm with possible configurations C,
a benchmark set Π, and a performance metric m(c, π) that measures the performance of

a configuration c ∈ C on an instance π ∈ Π (the lower the better), find a configuration

c ∈ C that minimises m over Π, i.e., that minimises

f(c) =
1

|Π|
∑
π∈Π

m(c, π). (3)

The AI community has developed dedicated algorithm configuration systems to tackle

this problem (Hutter et al. 2009; Ansótegui et al. 2009; Yuan et al. 2010). In this work we

exploit the sequential model-based algorithm configuration method SMAC (Hutter et al.

2011), which represents the state of the art of configuration tools and, differently from

other existing tools, can handle continuous parameters. SMAC uses predictive models of

algorithm performance (Hutter et al. 2014) to guide its search for good configurations.

It uses previously observed 〈configuration, performance〉 pairs 〈c, f(c)〉 and supervised

machine learning (in particular, random forests (Breiman 2001)) to learn a function

f̂ : C → R that predicts the performance of arbitrary parameter configurations, and

is used to select a promising configuration. Random forests are collections of regression

trees, which are similar to decision trees but have real values (here: CPU-time perfor-

mance) rather than class labels at their leaves. Regression trees are known to perform

well for categorical input data. Random forests share this benefit and typically yield

more accurate predictions; they also allow to quantify the uncertainty of a prediction.

The performance data to fit the predictive models are collected sequentially.

In a nutshell, after an initialisation phase, SMAC iterates the following three steps:

(1) use the performance measurements observed so far to fit a random forest model

f̂ ; (2) use f̂ to select a promising configuration c ∈ C to evaluate next, trading off

exploration of new parts of the configuration space and exploitation of parts of the space

known to perform well; and (3) run c on one or more benchmark instances and compare

its performance to the best configuration observed so far.

In order to save time in evaluating new configurations, SMAC first evaluates them

on a single training instance; additional evaluations are only carried out (using a dou-

bling schedule) if, based on the evaluations to date, the new configuration appears to

outperform SMAC’s best known configuration. Once the same number of runs has been

On the Configuration of More and Less Expressive Logic Programs 7

evaluated for both configurations, if the new configuration still performs better then

SMAC updates its best known configuration accordingly.

SMAC is an anytime algorithm (or interruptible algorithm) that interleaves the ex-

ploration of new configurations with additional runs of the current best configuration to

yield both better and more confident results over time. As all anytime algorithms, SMAC

improves performance over time, and for finite configuration spaces it is guaranteed to

converge to the optimal configuration in the limit of infinite time.

SMAC has been used for configuring knowledge models in the fields of AI Planning

(Vallati et al. 2015; Vallati and Serina 2018) and Abstract argumentation (Cerutti et al.

2018).

3 Knowledge Configuration

In both SAT formulae and ASP programs, clauses and rules are usually not ordered

following a principled approach, but they are ordered according to the way in which the

randomised generator has been coded, or following the way in which information from

the application domain has been collected, or deliberately shuffled to prevent potential

biases. This is also generally true for the order in which literals of a given clause are

presented in the formula, or in the program, with some differences among SAT clauses

and ASP rules. However, we should consider that rules must preserve the head-body

structure, so only rule’s bodies are amenable to configuration; moreover, literals in the

positive and negative parts of the body can not be mixed. On the other hand, ASP

programs contain further degrees of freedom given that the ASP language allows for a

number of additional constructs, like aggregates.

In this section we focus on the following question: given the set of clauses/rules, and

the set of corresponding literals, in which order should they be listed to maximise the

performance of a given solver, taking into account for ASP existing constraints above-

mentioned and more constructs? The underlying hypothesis is that the order in which

clauses, rules and literals are listed can be tuned to highlight elements that are important

for satisfying, or demonstrating the unsatisfability, of the considered instance by the

considered solver. To answer the above question, here we explain how we have configured

SAT formulae and ASP programs, i.e., what features have been considered, and how

related scores have been computed. Noteworthy, there is a significant body of work in

both SAT and ASP that deal with features selection and computation, and they are

outlined in Section 5; they are mainly concerned at instance-level, while our goal is to

analyse the structure also at clause/rule level, for ordering among those elements.

3.1 Configuration of SAT Formulae

The CNF configuration has to be performed online: as soon as a new formula is provided

as input, the formula has to be configured before being presented to the solver. In a

nutshell, given a set of parameters that can be used to modify the ordering of some

aspect of the CNF formula, and given the value assigned to each parameter, the online

configuration is performed by re-ordering clauses and literals accordingly. Notably, the

value of each parameter has to be provided, and can be identified via an appropriate

off-line learning step.

8 Dodaro, Maratea, and Vallati

Given the depicted online scenario, we are restricted to information about the CNF

that can be quickly gathered and that are computationally cheap to extract. Furthermore,

the configuration must consider only general aspects that are common to any CNF. As

it is apparent, the use of a computationally expensive configuration of a single CNF,

that considers elements that are specific to the given CNF, would nullify the potential

performance improvement, by drastically reducing the time available for the solver to

find a solution (or to demonstrate unsatisfiability).

In this work, we consider the possibility to order clauses according to the following

criteria, denoted as Fc:

(c1) the number of literals of the clause (size);

(c2) the fact that the clause is binary (bin);

(c3) the fact that the clause is ternary (ter);

(c4) the number of positive literals of the clause (positive);

(c5) the number of negative literals of the clause (negative);

(c6) the fact that the clause is binary, and both literals are negative (bin neg);

(c7) the fact that the clause has only one negative literal (only one neg).

Atoms can be listed in clauses according to the following criteria, denoted as Fm:

(m1) the number of clauses in which the atom appears (occ);

(m2) the average size of the clauses in which the atom is involved (occ avg);

(m3) the number of binary clauses in which the atom in involved (occ bin);

(m4) the number of ternary clauses in which the atom is involved (occ ter);

(m5) the number of times the atom appears in clauses as positive (occ pos);

(m6) the number of times the atom appears in clauses as negative (occ neg);

(m7) the number of times the atom is involved in clauses where all literals are positive

(occ all pos);

(m8) the number of times the atom is involved in clauses where all literals are negative

(occ all neg).

Moreover, we also include two additional categorical selectors, denoted as Fs:

(s1) to enable/disable the ordering of literals in the clauses (ord lit);

(s2) to order clauses according to the ordering (direct or inverse) followed by the involved

literals (ord cl);

The set of proposed ordering criteria, denoted as F = Fc ∪ Fm ∪ Fs, is aimed at being

as inclusive as possible, so that different characterising aspects of clauses and atoms can

be taken into account, at the same time, for the configuration process.

It is easy to notice that many of the introduced criteria focus on aspects of binary

and ternary clauses. This is due to their importance in the search process. For instance,

binary clauses are responsible, to a great degree, of unit propagation. There are also

criteria that aim at identifying potentially relevant aspects. For instance, criterion (c7)

aims at identifying clauses that may represent implication relations between literals.

There are different ways for encoding the identified degrees of freedom in CNFs as

parameters. This is due to the fact that orders are not natively supported by general

configuration techniques (Hutter et al. 2011; Kadioglu et al. 2010a). Results presented

by (Vallati et al. 2015) suggest that purely categorical parametrisations are not indicated

On the Configuration of More and Less Expressive Logic Programs 9

for the configuration of models, as they tend to fragment the configuration space and

to introduce discontinuities. Those combined aspects make the exploration of the config-

uration space particularly challenging for learning approaches. For this reason, here we

generate 7 continuous parameters for configuring the order of clauses, and 8 continuous

parameters for configuring the order of variables in clauses. Each parameter corresponds

to one of the aforementioned criteria, and they have to be combined to generate different

possible orderings of clauses and literals in CNFs. Each continuous parameter in Fc and

Fm has associated a real value in the interval [−10.0,+10.0] which represents (in abso-

lute value) the weight given to the corresponding ordering criterion. Concerning selectors,

ord lit can assume a Boolean value, 0 or 1, whereas ord cl can be 0 if clauses must be

ordered using only the features of the literals appearing in the clause, 1 if clauses must be

ordered using only the features of the clause, 2 if clauses must be ordered using both the

features of the literals and the features of the clauses. Thus, the configuration space is

C = [−10.0,+10.0]15 × {0, 1} × {0, 1, 2}. A (total) function ω : F 7→ [−10.0,+10.0] maps

parameters in F to a weight, where ω(ord lit) is restricted to be in {0, 1} and ω(ord cl)

is restricted to be in {0, 1, 2}, respectively.

The configuration criteria mentioned above can be used to order any CNF. In par-

ticular, given a CNF ϕ and a weight function ω, the corresponding configuration of the

formula is obtained as follows. For each atom p occurring in ϕ, an ordering score of p is

defined as:

Oat(p, ϕ, ω) =
∑
c∈Fm

(value(p, ϕ, c) · ω(c)) (4)

where c is a criterion for configuring literals’ order in the set Fm (i.e., from (m1) to

(m8)), and value(p, ϕ, c) is the numerical value of the corresponding aspect for the atom

p. If ω(ord lit) = 1, then, for every clause, the involved literals are ordered (in descending

order) following the score Oat. Ties are broken following the order in the original CNF

configuration. As it is apparent from equation (4), a positive (negative) value of ω(c) can

be used to indicate that the aspect corresponding to the parameter c is important for the

SAT solver, and that literals with that aspect should be listed early (late) in the clause

to improve performance. If ω(ord lit) = 0, literals follow the order as in the provided

initial CNF.

Similarly to what is presented in equation (4) for literals, clauses are ordered according

to a corresponding score Ocl(cl , ϕ, ω), defined as follows:

Ocl(cl , ϕ, ω) =


∑
p∈cl+∪cl− Oat(p, ϕ, ω) if ω(ord cl) = 0∑
c∈Fc

(value(cl , ϕ, c) · ω(c)) if ω(ord cl) = 1∑
p∈cl+∪cl− Oat(p, ϕ, ω) +

∑
c∈Fc

value(cl , ϕ, c) if ω(ord cl) = 2

(5)

Example 5
Let us consider again the CNF ϕrun of Example 1 and reported, using the DIMACS

format, in Figure 3. Suppose that we are interested in listing clauses according to their

length (criterion (c1)) and to the number of involved negative literals (criterion (c5)).

Similarly, we are interested in listing the literals of a clause according to the number of

clauses in which they appear (criterion (m1)). In this case, we have to set ω(size) = 10.0,

ω(negative) = 10.0, ω(occ) = 10.0, ω(ord lit) = 1, and ω(ord cl) = 1, whereas ω(c) = 0.0

10 Dodaro, Maratea, and Vallati

p cnf 5 3 p cnf 5 3

ϕrun: 1 -3 0 ϕconf : 3 -1 -4 2 0

2 3 -1 -4 0 -4 -5 0

-5 -4 0 1 -3 0

Fig. 3. The example CNF formula non configured (ϕrun), and the configured version (ϕconf).
Configuration has been done by listing clauses according to their length and the number of
negative literals. Literals are listed following the number of clauses they are involved.

for all other criterion c in F . Then, Ocl(”2 3 -1 -4 0”, ϕrun, ω) = 60.0, since it involves

4 literals, and 2 of them are negative, thus 4 · 10.0 + 2 · 10.0 = 60.0. According to

the same criteria, Ocl(”1 -3 0”, ϕrun, ω) = 30.0. In a similar way, but considering the

corresponding criterion, the score of literals can be calculated, and literals are then

ordered accordingly in each clause. Result is ϕconf reported in Figure 3. Note that the

first line of the considered CNF formula is unmodified, as the DIMACS format require

it to be the first, and to present information in a given order. C

The way in which the considered ordering criteria are combined, via equations (4)

and (5), gives a high degree of freedom for encoding and testing different configurations.

Very specific aspects can be prioritised: for instance, it would be possible to present first

clauses that are binary, and where both literals are positive, by penalising criterion (c5)

and giving a high positive weight to criterion (c2). Furthermore, additional criteria can

be added, with no need to modify or update the overall configuration framework.

3.2 Configuration of ASP Programs

In this subsection, instead, we turn our attention to the configuration of ASP programs.

Similarly to SAT, we generate 23 continuous parameters for configuring the order of rules

and aggregates. Each parameter corresponds to a feature that is syntactic and easy to

compute, and they have to be combined to generate different possible orderings of rules

and aggregates. Each continuous parameter has an associated real value in the interval

[−10.0,+10.0] which represents (in absolute value) the weight given to the corresponding

ordering criterion. The continuous parameters are detailed in the following:

(k1) occurrences of a literal in heads (head occ)

(k2) occurrences of a literal in bodies (body occ)

(k3) occurrences of a literal in positive part of bodies (pos body occ)

(k4) occurrences of a literal in negative part of bodies (neg body occ)

(k5) occurrences of a literal in bodies of ”short” size (short body occ)

(k6) occurrences of a literal in positive part of bodies of ”short” size (short pos body occ)

(k7) occurrences of a literal in negative part of bodies of ”short” size (short neg body occ)

(k8) occurrences of a literal in aggregates (aggregate occ)

(k9) constraints (constraints)

(k10) normal rules (normal)

(k11) disjunctive rules (disjunctive)

On the Configuration of More and Less Expressive Logic Programs 11

Function Ol(Literal l, Program Π, Weight function ω)

1 s := 0;

2 s += |{r : r ∈ Π, l ∈ H(r)}| ∗ ω(head occ);

3 s += |{r : r ∈ Π, l ∈ B(r)}| ∗ ω(body occ);

4 s += |{r : r ∈ Π, l ∈ B(r)+}| ∗ ω(pos body occ);

5 s += |{r : r ∈ Π, l ∈ B(r)−}| ∗ ω(neg body occ);

6 s += |{r : r ∈ Π, l ∈ B(r), |B(r)| ≤ 2}| ∗ ω(short body occ);

7 s += |{r : r ∈ Π, l ∈ B(r)+, |B(r)| ≤ 2}| ∗ ω(short pos body occ);

8 s += |{r : r ∈ Π, l ∈ B(r)−, |B(r)| ≤ 2}| ∗ ω(short neg body occ);

9 s += |{p : p ∈ atoms(Π), p is an aggregate atom, l ∈ lits(p)}| ∗ ω(aggregate occ);

10 return s;

Function Or(Rule r, Program Π, Weight function ω)

1 s := 0;

2 if |H(r)| = 0 then s += ω(constraint);

3 if |H(r)| = 1 then s += ω(normal);

4 if |H(r)| > 1 then s += ω(disjunctive);

5 if r is choice then s += ω(choice) ∗ t1;

6 s += |B(r)| ∗ ω(body) + |B(r)+| ∗ ω(p body) + |B(r)−| ∗ ω(n body);

7 if |B(r)−| 6= 0 then s += (|B(r)+| ÷ |B(r)−|) ∗ ω(ratio pos neg) ;

8 if |B(r)+| = 1 then s += ω(horn) ;

9 s += |{p ∈ H(r)| p is recursive}| ∗ ω(rec head);

10 s += |{l ∈ B(r)| l is recursive}| ∗ ω(rec body);

11 if |H(r)|+ |B(r)| ≥ 2 and |H(r)|+ |B(r)| ≤ 3 then s+= ω(short);

12 s += (
∑
l∈H(r)∪B(r) Ol(Π, l, ω)) ÷ (|H(r)|+ |B(r)|);

13 return s;

(k12) choice rules (choice)

(k13) literals in the body (body)

(k14) literals in the positive part of the body (p body)

(k15) literals in the negative body of the body (n body)

(k16) ratio between positive and negative body literals (ratio pos neg)

(k17) Horn bodies (horn)

(k18) recursive atoms in heads (rec head)

(k19) recursive atoms in bodies (rec body)

(k20) binary or ternary rules (short)

(k21) aggregates (aggregate)

(k22) aggregate size (aggregate size)

(k23) ratio between aggregate size and bound (aggregate ratio bound size)

Given the structure of ASP programs, richer than SAT formulae, it is not as straight-

forward and compact to calculate scores as for SAT formulae; in order to calculate the

final score, we have introduced three functions Ol, Or and Oa for calculating scores

12 Dodaro, Maratea, and Vallati

Function Oa(Aggregate atom p, Program Π, Weight function ω)

1 s := t2 ∗ ω(aggregate) + |lits(p)| ∗ ω(aggregate size);

2 s += (bound(p)÷
∑

(w,l)∈elem(p) w) ∗ ω(aggregate ratio bound size);

3 s += (
∑
l∈lits(p) Ol(Π, l, ω)) ÷ |lits(p)|;

4 return s;

for literals, rules and aggregate atoms, respectively, that take as input a program, an

element (a literal, a rule or an aggregate atom, respectively), and a weight function

ω : F 7→ [−10.0, 10.0], where F = {head occ, body occ, . . . , aggregate ratio bound size},
i.e., it includes all the features reported from (k1) to (k23). The output of the three func-

tions is the score of the element, computed as a sum of individual contributions brought

by the features linked to the element. The score of rules and aggregates is later on used

to order the rules of ASP programs.

Function Ol computes the score of a given literal l by summing up, from line 2 to 9, all

single contributions of features (k1)–(k8), by multiplying the number of times l ”falls”

in the category described by the respective feature to the weight of the feature. As an

example, line 4, related to feature pos body occ, gives a contribution to s obtained by

multiplying the number of times literal l occurs in positive bodies of the program Π and

the weight of the feature.

Function Or computes the score of a rule r. Depending of whether r is a constraint, a

normal or disjunctive, or a choice rule, one of the lines from 2 to 5 is activated. If r is

a choice, an additional factor t1 is considered, which is an arbitrary large value, set to

105 in our experiments, and (from the configuration side) means to put priorities to such

rules. Then, lines from 6 to 12 contribute further to the score, as a bonus, for features

(k13)–(k20): lines 6, 9, and 10 work similarly as within function Ol, while lines 7, 8, and

11 behave similarly to lines 2-5 in this function for the respective feature. Finally, line 12

employs function Ol to compute a score that is later on divided by the number of literals

appearing in the rule.

Function Oa computes the score for an aggregate atom a. In particular, line 1 takes

into account features (k21) and (k22), related to the presence of aggregates and its size,

giving a high reward (value t2 set to 105) to the presence of aggregates as for choice rules

before, line 2 considers the ratio between bound and size of the aggregate, while line 3

has a similar behaviour as of line 12 of the function Or.

Example 6

Consider again the program Πrun of Example 2 and its lparse representation, reported

in Figure 4. Suppose that we are interested in ordering the program by giving a high

priority to aggregates and then to give additional priorities to rules according to the

atoms that occur in negative bodies. This can be done by leaving all the parameters

to the default value 0.0, but ω(aggregate) and ω(p body) that are both set to 10.0. In

particular, the atom with id 2 occurs in the negative body of the second rule of Πrun,

while other atoms do not occur in the negative body. Thus, Ol(2, Πrun, ω) returns 10.0,

On the Configuration of More and Less Expressive Logic Programs 13

8 2 2 3 0 0 5 6 7 3 0 3 5 2 1 2 4

Πrun : 8 2 4 5 2 1 2 3 Πconf : 8 2 2 3 0 0

5 6 7 3 0 3 5 2 1 2 4 8 2 4 5 2 1 2 3

1 7 1 0 6 1 7 1 0 6
...

...

Fig. 4. The example ASP program non configured (Πrun), and the configured version (Πconf).
Configuration has been done by preferring aggregates and rules with literals occurring in many
negative bodies.

whereas Ol(l, Πrun, ω) returns 0.0 for l ∈ {1, 3, 4, 5, 6, 7}. Then, Or(”8 2 2 3 0 0”, Πrun,

ω) and Or(”8 2 4 5 2 1 2 3”, Πrun, ω) return 5.0 and 2.5, respectively, whereas Or(”1 7

1 0 6”, Πrun, ω) returns 0.0, and Oa(”5 6 7 3 0 3 5 2 1 2 4”, Πrun, ω) returns 100003.33.

Result is Πconf reported in Figure 4. C

4 Experimental Analysis

This experimental analysis aims at evaluating the impact of the proposed automated ap-

proach for performing the configuration of knowledge models, on state-of-the-art domain-

independent solvers’ performance from SAT and ASP.

4.1 Experimental Settings

In this work we use the state-of-the-art SMAC (Hutter et al. 2011) configuration approach

for identifying a configuration of the knowledge model, that aims at improving the number

of solved instances and the PAR10 performance of a given solver. PAR10 is the average

runtime where unsolved instances count as 10× cutoff time. PAR10 is a metric commonly

exploited in machine learning and algorithm configuration techniques, as it allows to

consider coverage and runtime at the same time (Eggensperger et al. 2019).

For each solver, a benchmark-set specific configuration was generated using SMAC

2.08. A dedicated script, either in Python 2.7 or in C++, is used as a wrapper for

extracting information from a knowledge model and, according to the parameters’ values,

reconfigure it and provide it as input for the solver.

Experiments, on both SAT and ASP instances, were run on a machine executing Linux

Ubuntu 4.4.0-104 and equipped with Intel Xeon 2.50 Ghz processors. Each SMAC con-

figuration process, i.e., for each pair 〈solver, benchmark set〉, has been given a budget of

7 sequential CPU-time days, and run on a dedicated processor.

To compare performance, as mentioned we rely on the number of solved instances, the

PAR10, and the IPC score. For a solver R and an instance p to be solved, Score(R, p) is

defined as:

Score(R, p) =


0 if p is unsolved

1

1+log10(
Tp(R)

T∗p
)

otherwise

where T ∗p is the minimum amount of time required by any compared system to solve the

14 Dodaro, Maratea, and Vallati

instance, and Tp(R) denotes the CPU time required by R to solve the instance p. Higher

values of the score indicate better performance, where the best performing solver obtains

a score equals to 1.

All the executables, benchmarks, instances, and generators used in the experiments

are available at https://www.mat.unical.it/~dodaro/research/aspsatconfig.

4.2 Configuration of SAT Formulae

We selected 3 SAT solvers, based on their performance in recent SAT competitions and

their widespread use: cadical version sc17 (Biere 2017), glucose 4.0 (Audemard et al.

2013), and lingeling version bbc (Biere 2017).

In designing this part of the experimental analysis, we followed the Configurable SAT

Solver Challenge (CSSC) (Hutter et al. 2017). The competition aimed at evaluating to

which extent SAT solvers’ performance can be improved by algorithm configuration for

solving instances from a given class of benchmarks. In that, the CSSC goals are similar to

the goals of this experimental analysis, i.e., assessing how performance can be improved

via configuration, thus their experimental settings are deemed to be appropriate for

our analysis. However, CSSC focused on the configuration of SAT solvers’ behaviour by

modifying exposed parameters of solvers. In this work we do not directly manipulate the

behaviour of SAT solvers via exposed parameters, but we focus on the impact that the

configuration of a CNF formula can have on solvers.

Following CSSC settings, a cutoff of 5 CPU-time minutes, and a memory limit of 8

GB of RAM, has been set for each solver run on both training and testing instances.

This is due to the fact that many solvers have runtime distributions with heavy tails

(Gomes et al. 2000), and that practitioners often use many instances and relatively short

runtimes to benchmark solvers for a new application domain (Hutter et al. 2017). There

is also evidence that rankings of solvers in SAT competitions would remain similar if

shorter runtimes are enforced (Hutter et al. 2010).

We chose benchmark sets from the CSSC 2014 edition (Hutter et al. 2017), and the

benchmarks used in the Agile track of the 2016 SAT competition.1 These two compe-

titions provide benchmarks that can highlight the importance of configuration (CSSC)

even though a different type of configuration than the one considered in this paper and

that include instances that have to be solved quickly (Agile). In particular, CSSC bench-

marks can allow us to compare the impact of the proposed CNF configuration with regard

to the solvers’ configuration.

Selected CSSC 2014 benchmark sets include: Circuit Fuzz (Industrial track), 3cnf, K3

(Random SAT+UNSAT Track), and Queens and Low Autocorrelation Binary Sequence

(Crafted track).2 Benchmark sets were selected in order to cover most of the tracks

considered in CSSC, and by checking that at least 20% of the instances were solvable by

considered solvers, when run on the default CNFs. Benchmarks were randomly divided

into training and testing instances, aiming at having between 150-300 instances for testing

purposes, and a similar amount of benchmarks for training. The size of each testing set

is shown in Table 1.

1 https://baldur.iti.kit.edu/sat-competition-2016/
2 http://aclib.net/cssc2014/benchmarks.html

On the Configuration of More and Less Expressive Logic Programs 15

cadical glucose lingeling

Problem # Def. Conf. Def. Conf. Def. Conf.

K3 150 61 66 78 81 74 75

3cnf 250 31 34 116 119 37 40

Queens 150 140 141 124 125 126 127

Low Autocorrelation 300 182 184 185 191 177 180

Circuit Fuzz 185 166 168 176 176 173 175

Agile16 250 219 221 226 231 195 202

Total 1285 799 814 905 923 782 799

Table 1. Number of solved instances of the selected solvers on the considered benchmark

set when running on the default and on the configured CNFs. Bold indicates the best

result.

Table 1 summarises the results of the selected SAT solvers on the considered benchmark

sets. Results are presented in terms of the number of timeouts on testing instances,

achieved by solvers run using either the default or the configured CNFs. Indeed, all of

the considered solvers benefited from the configuration of the CNFs. Improvements vary

according to the benchmark sets: the Agile16 set is, in general, the set where the solvers

gained more by the use of configured CNFs. Remarkably, the improvements observed in

Table 1 are comparable to those achieved in CSSC 2013 and 2014, that were achieved by

configuring the solvers’ behaviour (Hutter et al. 2017). In fact, these results may confirm

our intuition that the way in which clauses and literals are ordered has an impact on

the way in which solvers explore the search space. Listing “important” clauses earlier

may lead the solver to tackle complex situations early in the search process, making it

then easier to find a solution. In that, it may be argued that a solver’s behaviour can be

controlled internally, by modifying its exposed parameters, and externally by ordering

the CNF in a suitable way.

Interestingly, the overall results (last row of Table 1) indicate that the CNF config-

uration does not affect all the solvers in a similar way, and that can potentially lead

to rank inversions in competitions or comparisons. This is the case of lingeling (on

configured formulae) and cadical on ”default” formulae. This may suggest that cur-

rent competitions could benefit by exploiting a solver-specific configuration, in order to

mitigate any implicit bias due to the particular CNF configuration exploited. Randomly

listing clauses and variables may of course remove some bias, but it can also be the case

that different biases are introduced. In that sense, allowing solvers to be provided with

a specifically-configured CNF may lead to a better comparison of performance. Finally,

it is worth noting that the way in which the CNFs are configured varies significantly

between solvers, as well as according to the benchmark set. In other words, there is not

a single ordering that allows to maximise the performance of all the SAT solvers at once.

In Tables 2 and 3 the performance of a solver run on the default and configured formulae

are compared in terms of IPC score and PAR10. Results indicate that the configuration

provides, for most of the benchmark sets, a noticeable improvement.

To shed some light on the most relevant aspects of the SAT formula configuration,

we assessed the importance of parameters in the considered configurations using the

fANOVA tool (Hutter et al. 2014). We observed that in most of the cases, improvements

16 Dodaro, Maratea, and Vallati

cadical glucose lingeling

Problem Def. Conf. Def. Conf. Def. Conf.

K3 56.7 59.9 71.3 76.3 67.8 68.6

3cnf 27.3 31.6 106.6 107.0 33.6 35.9

Queens 136.5 137.6 119.3 121.1 120.6 122.9

Low Autocorrelation 171.8 173.4 177.2 183.7 171.0 175.3

Circuit Fuzz 156.3 160.8 175.2 175.3 161.3 164.3

Agile16 208.1 211.3 209.1 215.9 188.6 196.6

Total 756.7 774.6 858.7 879.3 742.9 763.6

Table 2. Results of the selected solvers on the considered benchmark sets. For each solver

and benchmark, we show the IPC score achieved when running on the default and on

the configured CNFs. Bold indicates the best result. Results of different solvers cannot be

directly compared.

cadical glucose lingeling

Problem Def. Conf. Def. Conf. Def. Conf.

K3 1788.9 1692.8 1448.7 1391.1 1538.8 1521.5

3cnf 2640.7 2601.8 1660.5 1629.2 2569.9 2534.7

Queens 217.2 196.3 526.3 507.6 495.2 476.1

Low Autocorrelation 1184.8 1166.3 1155.0 1099.6 1236.6 1208.9

Circuit Fuzz 324.7 294.1 159.4 159.5 216.1 199.3

Agile16 417.7 391.0 327.2 277.1 707.6 628.8

Table 3. Results of the selected solvers on the considered benchmark sets. For each solver

and benchmark, we show the PAR10 score achieved when running on the default and on

the configured CNFs. Bold indicates the best result.

are mainly due to the effect of the correct configuration of a single criterion, rather

than to the interaction of two or more criteria together. In terms of clauses, parameters

controlling the weight of criteria (c4) and (c5) are deemed to be the most important: in

other words, the number of positive (or negative) literals that are involved in a clause

are a very important aspect for the performance of SAT solvers. The solver that can

gain the most by ordering the clauses is lingeling. In particular, this solver shows best

performance when clauses with a large number of negative literals are listed early.

Parameters related to criteria (m2), (m6), and (m8) have shown to have a significant

impact with regard to the literals’ ordering in clauses. For glucose and cadical, crite-

rion (m2), i.e., the average size of the clauses in which the literal is involved, is the most

important single criterion that has to be correctly configured. However, it is a bit hard

to derive some general rules, as their impact on orderings vary significantly with regard

to the solver and the benchmark set.

Generally speaking, also in the light of the criteria that are most important for clauses,

the ordering of literals appears to be the most important in a CNF formulae: this is

also because, in many cases, clauses are ordered according to the (separately-calculated)

weight of the involved literals. This behaviour can be due to the way in which data

structures are generated by solvers: usually literals are the main element, that is also

the focus of heuristic search used by SAT solvers. Instead, clauses from the CNF tend

On the Configuration of More and Less Expressive Logic Programs 17

Solver Solved IPC score

Def. Conf. Def. Conf.

cadical 1184 1187 172.7 172.5

glucose 1205 1207 207.5 211.2

lingeling 1176 1177 190.7 191.7

Table 4. Results achieved by the selected solvers on the general testing set. For each

solver, we show the number of solved instances and IPC score achieved when running on

the default and on the CNFs configured using the general configuration. Bold indicates

the best result.

to have a less marked importance during the exploration of the search space, as they are

related to literals mostly via lists, and are exploited only for checking satisfiability and

performing unit propagation. Clauses learnt during the search process are not included

in our analysis, as they are not part of the CNF formula–but are generated online by the

solver.

Finally, we want to test if there is a single general configuration that improves the per-

formance of a solver on any formula, despite of the benchmark and underlying structure.

Therefore, we trained each of the considered solvers on a training set composed by an

equal proportion of instances from each of the 6 benchmark sets. As for previous config-

urations, we gave 5 days of sequential CPU-time for each learning process, and obtained

configurations have been tested on an independent testing set that includes instances

from all the benchmark sets. Results are presented in Table 4.

Results on the independent testing set indicate that this sort of configuration has a

very limited impact on solvers’ performance. This seems to confirm our previous in-

tuition that solvers require differently configured formulae according to the underlying

structure of the benchmark: it is therefore the case that structurally different sets of

instances require a very different configuration. Intuitively, this seems to point to the

fact that, in different structures, the characteristics that identify challenging elements to

deal with, vary. Solvers, when dealing with different sets of benchmarks, are then sensi-

tive to different aspects of the CNF formulae, that should be appropriately highlighted

and configured. On the one hand, this result may be not fully satisfying, as it suggests

that there is not a quick way to improve the performance of SAT solvers. On the other

hand, the results of the other experiments indicate that, for real-world applications of

SAT where instances share some underlying structure, there is the possibility to further

improve the SAT solving process by identifying a specific configuration for the solver at

hand. As a further observation, we remark that the presented results, achieved on testing

set instances, are comparable to those observed on the training set used by SMAC for the

configuration process. This confirms the ability of the learned knowledge to generalise on

different instances.

18 Dodaro, Maratea, and Vallati

Benchmark Choice Rules Recursive Atoms Count Sum

Graceful Graphs X X
Graph Colouring

Hamiltonian X X X
Incremental Scheduling X X X
Sokoban X X

Table 5. List of ASP constructs available for each considered benchmark.

4.3 Configuration of ASP Programs

We selected 3 ASP solvers, based on their performance in recent competitions, on the

different approaches implemented, and for their widespread use: clasp, (Gebser et al.

2012), lp2sat (Janhunen 2018), and wasp (Alviano et al. 2015).

We chose benchmark sets used in ASP competitions for which either a sufficiently

large number of instances or a generator is available. Selected benchmark sets include:

Graceful Graphs, Graph Colouring, Hamiltonian, Incremental Scheduling, and Sokoban.

Concerning Incremental Scheduling and Sokoban, we use all the instances submitted to

the 2015 ASP Competition (Gebser et al. 2017), whereas for Graceful Graphs, Graph

Colouring and Hamiltonian instances were randomly generated. Benchmarks were ran-

domly divided into training and testing instances, aiming at having between 50 and 100

instances for testing purposes, and a 200-500 instances for training. In this setting, we

considered a cutoff of 10 CPU-time minutes, and a memory limit of 8 GB of RAM. Ta-

ble 5 summarises all the ASP constructs that are available for each tested benchmark.

Moreover, concerning lp2sat, there are several levels of configurations. In particular, it

is possible (i) to configure the ASP input and then to configure the SAT formula, (ii)

to configure only the SAT formula, (iii) to configure only the ASP input. We have con-

ducted a preliminary experiment analysis and in the following we report only the results

of (iii) since they are the ones that obtained the best performance. Note that no domain

contains (stratified) disjunction, so in this restricted setting ASP is as expressive as SAT

(i.e., point (d) in the introduction is not leveraged). We are not aware of any publicly-

available benchmark containing disjunctive rules with a huge number of instances and/or

generators, therefore we could not extend our analysis to this kind of programs.

Table 6 summarises the results of the selected solvers on the considered benchmark sets.

Results are presented in terms of number of solved testing instances, achieved by solvers

run using either the default or the configured ASP program. It is interesting to notice

that, also for ASP, solvers are differently affected by the use of the configured knowledge.

On the one hand, clasp does not benefit by the configuration in terms of coverage. On

the other hand, the configuration has a widespread beneficial impact on the performance

of wasp. lp2sat sits between the two sides of the spectrum: the configuration provided

a significant improvement to the coverage performance on a single domain, Sokoban.

In Tables 7 and 8 the performance of a solver run on the default and configured

programs are compared in terms of IPC score and PAR10, respectively. Here it is possible

to observe that the configuration has a beneficial impact on the considered solvers in most

On the Configuration of More and Less Expressive Logic Programs 19

clasp lp2sat wasp

Problem # Def. Conf. Def. Conf. Def. Conf.

Graph Colouring 50 48 48 49 49 43 44

Graceful Graphs 50 24 24 24 24 20 22

Hamiltonian 50 50 50 0 0 50 50

Incremental Scheduling 50 38 39 25 25 36 37

Sokoban 100 44 44 40 44 40 42

Total 300 204 205 138 142 189 195

Table 6. Results of the selected solvers on the considered benchmark set. For each solver

and benchmark, we show the number of solved instances when running on the default and

on the configured ASP programs. Bold indicates the best result.

clasp lp2sat wasp

Problem Def. Conf. Def. Conf. Def. Conf.

Graph Colouring 47.3 47.9 49.0 49.0 41.6 44.0

Graceful Graphs 18.8 22.3 24.0 24.0 18.6 20.0

Hamiltonian 44.8 46.0 0.0 0.0 50.0 50.0

Incremental Scheduling 37.7 38.9 24.6 24.9 35.4 35.6

Sokoban 44.0 44.0 37.6 39.2 38.9 40.5

Total 192.6 199.1 135.2 137.1 184.5 190.1

Table 7. Results of the selected solvers on the considered benchmark sets. For each solver

and benchmark, we show the IPC score achieved when running on the default and on the

configured ASP programs. Bold indicates the best result.

of the benchmark domains. When considering the performance of clasp in Hamiltonian,

for instance, we observed an average runtime drop from 32 to 26 CPU-time seconds.

Similar improvements have been observed also for the other solvers. The presented results

indicate that the configuration of ASP programs can improve the runtime performance

of ASP solvers.

Finally, we also test if there is a single general configuration that improves the per-

formance of a solver on any ASP program, despite of the benchmark and underlying

structure. As in the SAT counterpart, we trained each of the considered solvers on a

training set composed by an equal proportion of instances from each of the benchmark

sets. It should come as no surprise that the results indicate that this sort of configura-

tion has no significant impact on ASP solvers’ performance. For no one of the considered

solvers it has been possible to identify a configuration able to improve the average per-

formance.

Also for ASP solvers, we used the fANOVA tool to identify the most relevant aspects

of the configuration process. The lack of a general configuration that allows to improve

average performance of the solvers, suggests that the importance of a configuration pa-

rameter depends on the benchmark domain. In other words, the same element can be

more important in a domain, but almost irrelevant in another, according the the struc-

ture of the instances to be solved. Looking at the configured ASP program identified for

lp2sat in the Sokoban domain, it appears that features related to occurrences of literals

in heads (k1), and to occurrences of literals in bodies are among the most relevant crite-

20 Dodaro, Maratea, and Vallati

clasp lp2sat wasp

Problem Def. Conf. Def. Conf. Def. Conf.

Graph Colouring 262.3 261.7 4.6 4.6 850.8 734.8

Graceful Graphs 3138.5 3136.4 3126.2 3126.2 3618.7 3487.6

Hamiltonian 32.3 26.3 6000 6000 63.9 63.9

Incremental Scheduling 1466.1 1352.7 3020.6 3015.3 2089.6 1981.1

Sokoban 3401.2 3401.2 3621.0 3410.7 3620.5 3502.5

Table 8. Results of the selected solvers on the considered benchmark sets. For each solver

and benchmark, we show the PAR10 score achieved when running on the default and on

the configured ASP programs. Bold indicates the best result.

rion. In particular, the 5 most important parameters identified by the fANOVA tool are:

(k1), (k23), (k7), (k15), and (k13). By analysing the configurations obtained for wasp it

is possible to derive that, for this solver, most of the important criteria are different than

those of lp2sat. Considering a domain where the configuration allowed wasp to obtain

a significant improvement, Graph Colouring, the 5 most important parameters identified

by the fANOVA tool are: (k16), (k1), (k13), (k14), and (k9). Only (k1), that focuses on

the importance of the occurrences of a literal in heads, is shared between the configu-

ration of lp2sat and wasp. This suggests that different solvers are more sensitive to

different aspects of the ASP program, and therefore require different configurations. To

shed some light into the relevant parameters for the same solver across different domains,

we analysed the configuration of wasp on the Graceful Graphs domain. In this case, the

5 most important parameters identified by the fANOVA tool are: (k8), (k2), (k9), (k18),

(k7). In this case, it is easy to notice that (k1) is not deemed to be relevant for improv-

ing the performance of the solver, and only (k9) is relevant for wasp on both Graceful

Graphs and Graph Colouring. It is worth reminding that the fANOVA analysis does not

provide information on the actual value of the parameters, but only on the impact that

a parameter can have on the performance of a solver. On this regards, we observed that

also in cases where the same parameter is identified as very important by the fANOVA

analysis, its best selected value by SMAC can be different in different domains.

Note that it is difficult to find a high level explanation on why the solvers benefit of

this different order, since they present a complex structure, where each (small) change

in the order of input might have an impact on several different components. However, in

our view, this represents one of the strengths of our approach, since tools for automatic

configuration might understand some hidden properties of the instances that are not

immediately visible even to developers.

Discussion. ASP solvers are more complex than SAT solvers, since they have to deal with

many additional aspects that are not present in SAT, such as the minimality property

of answer sets, and additional constructs, as for example the aggregates. Albeit this

additional complexity, we observed that reordering is beneficial for both lp2sat and

wasp, while the impact on the performance of clasp is less noticeable. We conducted

an additional analysis on the implementation of the solvers and we identified several

reasons that can explain the results:

• The considered solvers do not work directly on the input program, since they use a

On the Configuration of More and Less Expressive Logic Programs 21

technique, called Clark’s Completion, that basically produces a propositional SAT

formula which is then used to compute the answer sets of the original program.

In this context, the impact of the reorder might be mitigated by the additional

transformation made by the solvers.

• Data structures employed by the ASP solvers might deactivate some of the pa-

rameters used for the configuration. As an example, wasp uses a dedicated data

structure for storing binary clauses which are then checked before other clauses,

independently from their order in the input program. clasp extends this special

treatment also to ternary clauses. Concerning SAT solvers, as far as we know, only

glucose has a similar data structure, whereas lingeling and cadical have an

efficient memory management of binary clauses but they do not impose an order

among the clauses.

• Our tool considers the solvers as black boxes and uses their default configurations.

Most of them employ parameters that were tuned on instances without specific

reordering. Different results might be obtained by employing other configurations

or by tuning the heuristics with instances processed by our reordering tool. How-

ever, from our perspective, the configuration tool can be already incorporated into

grounders/preprocessors as an additional feature, to have a configured instance

given to the solvers.

• Differently from other ASP and SAT solvers, the default configuration of clasp

uses the Maximum Occurrence of clauses of Minimum size (MOMS) heuristic to

initialize its heuristic parameters. This led to a more uniform behaviour when it is

executed on the same instance with different orders. We observed that the behaviour

of wasp is much more dependent on the order of the instances as confirmed in our

experiment and as also shown in Section 4.4.

4.4 Synthetic Experiment

In this section, we report the results of an experimental analysis conducted on a synthetic

benchmark. Goal of the experiment is to give an explanation of the different performance

between CLASP and WASP, and investigate the different qualitative results achieved in

SAT and ASP. As a side effect, we show that it is possible to improve the performance

of the ASP solver wasp using a proper ordering of the input program.

In particular, we focused on the following (synthetic) problem:

r1 : {in(i, j) | j ∈ {1, . . . , h}} ← ∀i ∈ {1, . . . , p}
r2 : ← #count{in(i, j) | j ∈ {1, . . . , h}} 6= 1 ∀i ∈ {1, . . . , p}
r3 : ← in(i1, j), in(i2, j), i1 < i2 ∀i1, i2 ∈ {1, . . . , p}, j ∈ {1, . . . , h}
r4 : col(i, c1) ∨ col(i, c2) ∨ . . . ∨ col(i, ck)← ∀i ∈ {1, . . . , n}
r5 : ← edge(i1, i2), col(i1, c), col(i2, c) ∀i1, i2 ∈ {1, . . . , n}, c ∈ {c1, c2, . . . , ck}
r6 : edge(i, j)← ∀i, j ∈ {1, . . . , n}, i 6= j

where rules r1, r2 and r3 encode the pigeonhole problem with p pigeons and h holes,

rules r4 and r5 encode the k-graph colouring problem, and r6 encodes a complete graph

with n nodes provided as input to the graph colouring problem. It is possible to observe

that r1, r2, and r3 admit no stable model when p > h, whereas r4, r5, and r6 admit no

22 Dodaro, Maratea, and Vallati

stable model when n > k. Concerning the pigeonhole problem, it is well-known that the

performance of CDCL and resolution-based solvers are poor when p > h and p is greater

than a given threshold (Biere et al. 2009; Haken 1985). For instance, clasp terminates

after 1.51 seconds when h = 9 and p = 10, after 17.81 seconds when h = 10 and p = 11,

and it does not terminate within 5 minutes when h = 11 and p = 12. Similarly, concerning

the k-graph colouring problem, large values of k (e.g. k ≥ 10) with n > k are associated

with poor performance of the solver. Such properties are important in our case, since we

are now able to control the hardness of the instances by properly selecting values of h,

p, k, and n. In particular, if the two sub-problems are combined, i.e., when the solver is

executed on rules from r1 to r6, then we are able to create hard and easy sub-programs.

For instance, if we consider the case with h = 11, p = 12, k = 5, and n = 100, then we

have that the rules from r1 to r6 admit no stable model, which is hard to prove for rules

from r1 to r3 and easy to prove for rules from r4 to r6. In this case the performance of

the solver depends on the sub-program considered at hand. As noted in Section 4, the

heuristic of clasp is not dependent on the ordering of the input program and, in this

case, it is able to automatically focus on the easy subprogram. On the other hand, we

observed that the performance of wasp depends on the processed order of the variables.

This behaviour of wasp can be explained by looking at its branching heuristic, which

first selects literals with the lowest ids and then it focuses on the sub-problem related

to such literals. Clearly, this might lead to poor performance on the programs described

above if the hard sub-problem is considered first.

In the following we show that the performance of wasp can be improved by performing

an additional step after that the program has been configured, i.e., ids of the literals can

be sorted according to the value of Ol in descending order. In particular, we report

the results of an experimental analysis conducted on instances of the rules r1–r6, where

h = 10, k = 5, p = [20, . . . , 40] and n = [7, . . . , 29]. Overall, we considered 483 instances,

where 433 were used for the configuration and 50 were used for the testing. Results show

that wasp without configuration solves 33 instances out of 50 with a PAR10 equal to

2108.63, whereas wasp after the configuration solves 39 instances out of 50 with a PAR10

equal to 1351.94.

It is important to emphasise that the results are obtained without changing the im-

plementation of the solver. Such changes might be directly included in the grounders

(e.g. as additional parameter of the system dlv (Alviano et al. 2017)) or in specific tools

dedicated to preprocess the input programs.

5 Related Work

In both SAT and ASP there have been numerous papers where machine-learning-based

configuration techniques based on features computation have been employed. Tradition-

ally, such approaches aimed at modifying the behaviour of the solvers by either config-

uring their exposed parameters, or by combining different solvers into portfolios. In this

work we consider an orthogonal perspective, where we configure the way in which the

input knowledge, i.e., formula or program, is presented to the solver. This is done with

the idea that the way in which instances are formulated and ordered can carry some

knowledge about the underlying structure of the problem to be solved. In the following,

we present main related literature in SAT and ASP, in two different paragraphs.

On the Configuration of More and Less Expressive Logic Programs 23

SAT. A significant amount of work in the area has focused on approaches for configuring

the exposed parameters of SAT solvers in order to affect their behaviour (Eggensperger

et al. 2019). Well-known examples include the use of ParamILS for configuring SAPS

and SPEAR (Hutter et al. 2009), and of ReACTR for configuring lingeling (Fitzgerald

et al. 2015). Some approaches also looked into the generation of instance-specific con-

figurations of solvers (Kadioglu et al. 2010b). This line of work led to the development

of dedicated tools, such as SpySMAC (Falkner et al. 2015) and CAVE (Biedenkapp

et al. 2018), and to the organisation of the dedicated Configurable SAT Solver Chal-

lenge (Hutter et al. 2017). It also lead to the design and development of solvers, such

as SATenstein (KhudaBukhsh et al. 2016), that are very modular and natively sup-

port the use of configuration to combine all the relevant modules. A large body of works

also focused on techniques for automatically configuring portfolios of solvers, such as

satzilla (Xu et al. 2008), based on the use of empirical prediction models of the per-

formance of the considered solvers on the instance to be solved (Hutter et al. 2014).

Tools for assessing the contribution of different solvers to a portfolio has been introduced

(Xu et al. 2012). With regard to portfolio generation, the interested reader is referred to

(Hurley et al. 2016). The use of configuration techniques to generate portfolios of solvers

has also been extensively investigated: HYDRA (Xu et al. 2010) builds a set of solvers

with complementary strengths by iteratively configuring new algorithms; AutoFolio

(Lindauer et al. 2015) uses algorithm selection to optimise the performance of algorithm

selection systems by determining the best selection approach and its hyperparameters;

finally, in (Lindauer et al. 2017) an approach based on algorithm configuration for the

automated construction of parallel portfolios has been introduced. The approach we fol-

low relates also to the problem of discovering a backdoor, i.e., an ordering that will allow

the problem to be solved faster, see, e.g. (Kilby et al. 2005). However, it has to be noted

that this is not a characteristic of our approach to configuration, but common to many

approaches mentioned above.

ASP. Inspired by the solver satzilla in the area of SAT, the claspfolio system (Geb-

ser et al. 2011; Hoos et al. 2014) uses support vector regression to learn scoring functions

approximating the performance of several clasp variants in a training phase. Given an

instance, claspfolio then extracts features and evaluates such functions in order to

pick the most promising clasp variant for solving the instance. This algorithm selec-

tion approach was particularly successful in the Third ASP Competition (Calimeri et al.

2014), held in 2011, where claspfolio won the first place in the NP category and the

second place overall (without participating in the BeyondNP category). The measp sys-

tem (Maratea et al. 2014; Maratea et al. 2015b) goes beyond the solver-specific setting

of claspfolio and chooses among different grounders as well as solvers. Grounder selec-

tion traces back to (Maratea et al. 2013), and similar to the QBF solver aqme (Pulina

and Tacchella 2009), measp uses a classification method for performance prediction. No-

tably, “bad” classifications can be treated by adding respective instances to the training

set of measp (Maratea et al. 2015a), which enables an adjustment to new problems or

instances thereof. Some of the parameters reported in Section 3.2 were also adopted by

claspfolio and measp, since they were recognised to be important to discriminate the

properties of the input program.In the Seventh ASP Competition (Gebser et al. 2017),

the winning system was i-dlv+s (Calimeri et al. 2020) that utilises i-dlv (Calimeri

24 Dodaro, Maratea, and Vallati

et al. 2017) for grounding and automatically selects back-ends for solving through classi-

fication between clasp and wasp. Going beyond the selection of a single solving strategy

from a portfolio, the aspeed system (Hoos et al. 2015) indeed runs different solvers,

sequentially or in parallel, as successfully performed by ppfolio. Given a benchmark

set, a fixed time limit per instance, and performance results for candidate solvers, the

idea of aspeed is to assign time budgets to the solvers such that a maximum number of

instances can be completed within the allotted time. In other words, the goal is to divide

the total runtime per computing core among solvers such that the number of instances

on which at least one solver successfully completes its run is maximised. The portfolio

then consists of all solvers assigned a non-zero time budget along with a schedule of

solvers to run on the same computing core. Calculating such an optimal portfolio for a

benchmark set is an Optimisation problem addressed with ASP in aspeed. In (Dingess

and Truszczynski 2020), an approach for encoding selection was presented as a strategy

for improving the performance of answer set solvers. In particular, the idea is to create an

automated process for generating alternative encodings. The presented tool, called Au-

tomated Aggregator, was able to handle non-ground count aggregates. Other automatic

non-ground program rewriting techniques are presented in (Hippen and Lierler 2019).

Further, there has been a recent growing interest in techniques for knowledge model

configuration in the areas of AI Planning and Abstract Argumentation. In AI Planning, it

has been demonstrated that the configuration of either the domain model (Vallati et al.

2015; Vallati et al. 2021) or the problem model (Vallati and Serina 2018) can lead to

significant performance improvement for domain-independent planning engines. On the

argumentation side, it has been shown that even on syntactically simple models that rep-

resent directed graphs, the configuration process can lead to performance improvements

(Cerutti et al. 2018).

6 Conclusions

In this paper we proposed an approach for exploiting the fact that the order in which

the main elements of CNF formulae and ASP programs, i.e., literals, clauses and rules,

are listed carries some information about the structure of the problem to be solved, and

therefore affect the performance of solvers. The proposed approach allows to perform

the automated configuration of formulae and programs. In SAT, we considered as con-

figurable the order in which clauses are listed and the order in which literals are listed

in the clauses, while for ASP we considered as configurable similar entities, i.e., literals

and rules, but taking into account that some rule’s structure has to be maintained, and

that other powerful constructs like aggregates come into play. In our experimental anal-

ysis we configured formulae and programs for improving number of solved instances and

PAR10 performance of solvers. The performed analysis, aimed at investigating how the

configuration affects the performance of state-of-the-art solvers: (i) demonstrates that

the automated configuration has a significant impact on solvers’ performance, more evi-

dent for SAT but also significant for ASP, despite the constraints on rule’s structure; (ii)

indicates that the configuration should be performed on specific set of benchmarks for a

given solver; and (iii) highlights what are the main features and aspects of formulae and

programs that have a potentially strong impact on the performance of solvers. Such fea-

On the Configuration of More and Less Expressive Logic Programs 25

tures can be taken into account by knowledge engineers to encode formulae or programs

in a way that supports solvers that will reason upon them.

Our findings can have implications on both solving and encoding side. Given the posi-

tive results obtained, solver’s developers should consider rearranging internally the struc-

ture of the formula/program in order to optimise their performance, and/or users could

their-selves consider these hints while writing the encoding. However, given that such

positive results are obtained per-domain, and varies with solvers, care should be taken

in doing so.

We see several avenues for future work. We plan to evaluate the impact of configuration

on optimisation variants of SAT and ASP, i.e., weighted max SAT, or ASP including soft

constraints, where the weight of the elements can provide another important information

to the configuration process. We are also interested in evaluating if ordering clauses (and

literals) that are learnt during the search process of a SAT solver can be beneficial for

improving performance, given that all of the solvers employed are based on (variant of)

the CDCL algorithm. In this paper we focused on exact solvers based on CDCL, as future

work it can be interesting to consider also SAT solvers based on local search. Concerning

ASP solvers, it can be also interesting to check if reordering the non-ground program

can have a positive impact on the performance. This would also open the combination of

reordering and systems based on lazy-grounding (Weinzierl et al. 2020). Another interest-

ing future work can be to investigate the joint tuning of ordering and solver parameters.

Moreover, in this paper we focused on parameters that are based on our knowledge of

existing solvers, involving parameters, among others, that proved to be important to

characterised input programs; of course, the inclusion of additional parameters is pos-

sible, e.g., taking into account theoretical properties of the input programs (see, e.g.,

(Fichte et al. 2015; Janhunen 2006; Lifschitz et al. 2001; Gebser and Schaub 2013)), or

adding symmetric counterparts of current criteria, e.g., (c6) and (c7) of the input formula.

Finally, we plan to incorporate the re-ordering into existing approaches for configuring

portfolios of SAT solvers, such as SATenstein, which works in a similar way as aspeed,

but differently from aspeed is not tailored on different configurations of the same solver,

in order to further improve performance, and to investigate the concurrent configuration

of formulae/programs and solvers.

Competing interests declaration. The authors declare none.

References

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., and Zangari, J. 2017. The ASP system DLV2. In LPNMR. Lecture Notes in
Computer Science, vol. 10377. Springer, 215–221.

Alviano, M., Dodaro, C., Leone, N., and Ricca, F. 2015. Advances in WASP. In
Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR
2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, F. Calimeri, G. Ianni, and
M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 40–54.

Ansótegui, C., Sellmann, M., and Tierney, K. 2009. A gender-based genetic algorithm for
the automatic configuration of algorithms. In Principles and Practice of Constraint Program-
ming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, September 20-24,
2009, Proceedings, I. P. Gent, Ed. Lecture Notes in Computer Science, vol. 5732. Springer,
142–157.

26 Dodaro, Maratea, and Vallati

Audemard, G., Lagniez, J., and Simon, L. 2013. Improving glucose for incremental SAT
solving with assumptions: Application to MUS extraction. In Theory and Applications of
Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July
8-12, 2013. Proceedings, M. Järvisalo and A. V. Gelder, Eds. Lecture Notes in Computer
Science, vol. 7962. Springer, 309–317.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Biedenkapp, A., Marben, J., Lindauer, M., and Hutter, F. 2018. CAVE: configuration
assessment, visualization and evaluation. In Learning and Intelligent Optimization - 12th
International Conference, LION. 115–130.

Biere, A. 2017. Cadical, lingeling, plingeling, treengeling and yalsat entering the SAT compe-
tition 2017. In SAT competition 2017, Solver and Benchmark Descriptions.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., Eds. 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

Breiman, L. 2001. Random forests. Mach. Learn. 45, 1, 5–32.

Brewka, G., Eiter, T., and Truszczynski, M. 2011. Answer set programming at a glance.
Commun. ACM 54, 12, 92–103.

Calimeri, F., Dodaro, C., Fuscà, D., Perri, S., and Zangari, J. 2020. Efficiently coupling
the I-DLV grounder with ASP solvers. Theory Pract. Log. Program. 20, 2, 205–224.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F., and Schaub, T. 2020. Asp-core-2 input language format.
Theory Pract. Log. Program. 20, 2, 294–309.

Calimeri, F., Fuscà, D., Perri, S., and Zangari, J. 2017. I-DLV: the new intelligent
grounder of DLV. Intelligenza Artificiale 11, 1, 5–20.

Calimeri, F., Ianni, G., and Ricca, F. 2014. The third open answer set programming com-
petition. Theory Pract. Log. Program. 14, 1, 117–135.

Cerutti, F., Vallati, M., and Giacomin, M. 2018. On the impact of configuration on abstract
argumentation automated reasoning. Int. J. Approx. Reason. 92, 120–138.

Dingess, M. and Truszczynski, M. 2020. Automated aggregator - rewriting with the count-
ing aggregate. In Proceedings 36th International Conference on Logic Programming (Technical
Communications), ICLP Technical Communications 2020, (Technical Communications) UNI-
CAL, Rende (CS), Italy, 18-24th September 2020, F. Ricca, A. Russo, S. Greco, N. Leone,
A. Artikis, G. Friedrich, P. Fodor, A. Kimmig, F. A. Lisi, M. Maratea, A. Mileo, and
F. Riguzzi, Eds. EPTCS, vol. 325. 96–109.

Eggensperger, K., Lindauer, M., and Hutter, F. 2019. Pitfalls and best practices in
algorithm configuration. J. Artif. Intell. Res. 64, 861–893.

Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory Pract. Log. Program. 3, 4-5,
499–518.

Faber, W., Pfeifer, G., and Leone, N. 2011. Semantics and complexity of recursive aggre-
gates in answer set programming. Artif. Intell. 175, 1, 278–298.

Falkner, S., Lindauer, M., and Hutter, F. 2015. Spysmac: Automated configuration and
performance analysis of SAT solvers. In Theory and Applications of Satisfiability Testing -
SAT 2015. 215–222.

Fichte, J. K., Truszczynski, M., and Woltran, S. 2015. Dual-normal logic programs - the
forgotten class. Theory Pract. Log. Program. 15, 4-5, 495–510.

Fitzgerald, T., Malitsky, Y., and O’Sullivan, B. 2015. Reactr: Realtime algorithm con-
figuration through tournament rankings. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, Q. Yang and M. J. Wooldridge, Eds. AAAI Press, 304–310.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., and Ziller, S.

On the Configuration of More and Less Expressive Logic Programs 27

2011. A portfolio solver for answer set programming: Preliminary report. In Logic Program-
ming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancou-
ver, Canada, May 16-19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture
Notes in Computer Science, vol. 6645. Springer, 352–357.

Gebser, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89.

Gebser, M., Maratea, M., and Ricca, F. 2017. The sixth answer set programming compe-
tition. J. Artif. Intell. Res. 60, 41–95.

Gebser, M., Maratea, M., and Ricca, F. 2020. The seventh answer set programming com-
petition: Design and results. Theory Pract. Log. Program. 20, 2, 176–204.

Gebser, M. and Schaub, T. 2013. Tableau calculi for logic programs under answer set seman-
tics. ACM Trans. Comput. Log. 14, 2, 15:1–15:40.

Geffner, H. 2018. Model-free, model-based, and general intelligence. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, J. Lang, Ed. ijcai.org, 10–17.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Logic Programming, Proceedings of the Fifth International Conference and Symposium,
Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), R. A. Kowalski and K. A. Bowen,
Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 3/4, 365–386.

Gomes, C. P., Selman, B., Crato, N., and Kautz, H. A. 2000. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. Autom. Reason. 24, 1/2, 67–100.

Haken, A. 1985. The intractability of resolution. Theor. Comput. Sci. 39, 297–308.

Heule, M. J. H., Järvisalo, M., and Suda, M. 2019. SAT competition 2018. J. Satisf.
Boolean Model. Comput. 11, 1, 133–154.

Hippen, N. and Lierler, Y. 2019. Automatic program rewriting in non-ground answer set pro-
grams. In Practical Aspects of Declarative Languages - 21th International Symposium, PADL
2019, Lisbon, Portugal, January 14-15, 2019, Proceedings, J. J. Alferes and M. Johansson,
Eds. Lecture Notes in Computer Science, vol. 11372. Springer, 19–36.

Hoos, H. H., Kaminski, R., Lindauer, M., and Schaub, T. 2015. aspeed: Solver scheduling
via answer set programming. Theory Pract. Log. Program. 15, 1, 117–142.

Hoos, H. H., Lindauer, M., and Schaub, T. 2014. claspfolio 2: Advances in algorithm
selection for answer set programming. Theory Pract. Log. Program. 14, 4-5, 569–585.

Hurley, B., Kotthoff, L., Malitsky, Y., Mehta, D., and O’Sullivan, B. 2016. Advanced
portfolio techniques. In Data Mining and Constraint Programming - Foundations of a Cross-
Disciplinary Approach. Springer, 191–225.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2010. Tradeoffs in the empirical evaluation
of competing algorithm designs. Ann. Math. Artif. Intell. 60, 1-2, 65–89.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2011. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization - 5th Interna-
tional Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers, C. A. C.
Coello, Ed. Lecture Notes in Computer Science, vol. 6683. Springer, 507–523.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2014. An efficient approach for assessing
hyperparameter importance. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR Workshop and Conference
Proceedings, vol. 32. JMLR.org, 754–762.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. 2009. Paramils: An auto-
matic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306.

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H. H., and Leyton-Brown,
K. 2017. The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25.

28 Dodaro, Maratea, and Vallati

Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. 2014. Algorithm runtime predic-
tion: Methods & evaluation. Artif. Intell. 206, 79–111.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional
theories. J. Appl. Non Class. Logics 16, 1-2, 35–86.

Janhunen, T. 2018. Cross-translating answer set programs using the ASPTOOLS collection.
Künstliche Intell. 32, 2-3, 183–184.

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. 2010a. ISAC - instance-
specific algorithm configuration. In ECAI 2010 - 19th European Conference on Artificial
Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, H. Coelho, R. Studer, and
M. J. Wooldridge, Eds. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS
Press, 751–756.

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. 2010b. Isac-instance-specific
algorithm configuration. In Proceedings of the European Conference on AI. Vol. 215. 751–756.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., and Leyton-Brown, K. 2016. Satenstein:
Automatically building local search SAT solvers from components. Artif. Intell. 232, 20–42.

Kilby, P., Slaney, J. K., Thiébaux, S., and Walsh, T. 2005. Backbones and backdoors in
satisfiability. In Proceedings of the Twentieth National Conference on Artificial Intelligence,
AAAI 2005, M. M. Veloso and S. Kambhampati, Eds. AAAI Press / The MIT Press, 1368–
1373.

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2, 4, 526–541.

Lindauer, M., Hoos, H. H., Hutter, F., and Schaub, T. 2015. Autofolio: An automatically
configured algorithm selector. J. Artif. Intell. Res. 53, 745–778.

Lindauer, M., Hoos, H. H., Leyton-Brown, K., and Schaub, T. 2017. Automatic con-
struction of parallel portfolios via algorithm configuration. Artif. Intell. 244, 272–290.

Maratea, M., Pulina, L., and Ricca, F. 2013. Automated selection of grounding algorithm in
answer set programming. In AI*IA 2013: Advances in Artificial Intelligence - XIIIth Interna-
tional Conference of the Italian Association for Artificial Intelligence, Turin, Italy, December
4-6, 2013. Proceedings, M. Baldoni, C. Baroglio, G. Boella, and R. Micalizio, Eds. Lecture
Notes in Computer Science, vol. 8249. Springer, 73–84.

Maratea, M., Pulina, L., and Ricca, F. 2014. A multi-engine approach to answer-set pro-
gramming. Theory Pract. Log. Program. 14, 6, 841–868.

Maratea, M., Pulina, L., and Ricca, F. 2015a. Multi-engine ASP solving with policy adap-
tation. J. Log. Comput. 25, 6, 1285–1306.

Maratea, M., Pulina, L., and Ricca, F. 2015b. Multi-level algorithm selection for ASP. In
Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR
2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, F. Calimeri, G. Ianni, and
M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 439–445.

Mitchell, D. G. 2005. A SAT solver primer. Bull. EATCS 85, 112–132.

Pulina, L. and Tacchella, A. 2009. A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints An Int. J. 14, 1, 80–116.

Syrjänen, T. 2002. Lparse 1.0 user’s manual.

Vallati, M., Chrpa, L., McCluskey, T. L., and Hutter, F. 2021. On the importance
of domain model configuration for automated planning engines. J. Autom. Reason. 65, 6,
727–773.

Vallati, M., Hutter, F., Chrpa, L., and McCluskey, T. L. 2015. On the effective config-
uration of planning domain models. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
Q. Yang and M. J. Wooldridge, Eds. AAAI Press, 1704–1711.

Vallati, M. and Maratea, M. 2019. On the configuration of SAT formulae. In AI*IA 2019 -

On the Configuration of More and Less Expressive Logic Programs 29

Advances in Artificial Intelligence - XVIIIth International Conference of the Italian Associa-
tion for Artificial Intelligence, Rende, Italy, November 19-22, 2019, Proceedings, M. Alviano,
G. Greco, and F. Scarcello, Eds. Lecture Notes in Computer Science, vol. 11946. Springer,
264–277.

Vallati, M. and Serina, I. 2018. A general approach for configuring PDDL problem models.
In Proceedings of the Twenty-Eighth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, M. de Weerdt, S. Koenig,
G. Röger, and M. T. J. Spaan, Eds. AAAI Press, 431–436.

Weinzierl, A., Taupe, R., and Friedrich, G. 2020. Advancing lazy-grounding ASP solving
techniques - restarts, phase saving, heuristics, and more. Theory Pract. Log. Program. 20, 5,
609–624.

Xu, L., Hoos, H. H., and Leyton-Brown, K. 2010. Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, M. Fox and
D. Poole, Eds. AAAI Press.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2008. Satzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2012. Evaluating component
solver contributions to portfolio-based algorithm selectors. In Theory and Applications of
Satisfiability Testing - SAT 2012. 228–241.

Yuan, Z., Stützle, T., and Birattari, M. 2010. Mads/f-race: Mesh adaptive direct search
meets f-race. In Trends in Applied Intelligent Systems - 23rd International Conference on
Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010,
Cordoba, Spain, June 1-4, 2010, Proceedings, Part I, N. Garćıa-Pedrajas, F. Herrera, C. Fyfe,
J. M. Beńıtez, and M. Ali, Eds. Lecture Notes in Computer Science, vol. 6096. Springer,
41–50.

