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Abstract Disjunctive Temporal Problems (DTPs) with Preferences (DTPPs) extend DTPs
with piece-wise constant preference functions associated to each constraint of the form
l ≤ x−y ≤ u, where x, y are (real or integer) variables, and l, u are numeric constants. The
goal is to find an assignment to the variables of the problem that maximizes the sum of the
preference values of satisfied DTP constraints, where such values are obtained by aggregat-
ing the preference functions of the satisfied constraints in it under a “max” semantic. The
state-of-the-art approach in the field, implemented in the native DTPP solver MAXILITIS,
extends the approach of the native DTP solver EPILITIS. In this paper we present alternative
approaches that translate DTPPs to Maximum Satisfiability of a set of Boolean combination
of constraints of the form l �� x − y �� u, ��∈ {<,≤}, that extend previous work deal-
ing with constant preference functions only. We prove correctness and completeness of the
approaches. Results obtained with the Satisfiability Modulo Theories (SMT) solvers YICES

and MATHSAT on randomly generated DTPPs and DTPPs built from real-world bench-
marks, show that one of our translation is competitive to, and can be faster than, MAXILITIS
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1 Introduction

Temporal constraint networks [2] provide a convenient formal framework for represent-
ing and processing temporal knowledge. Over the years, a number of extensions to the
framework have been presented. Disjunctive Temporal Problems (DTPs) with Preferences
(DTPPs) is one of such extensions. DTPPs extend DTPs, i.e. conjunctions of disjunctions
of constraints of the form l ≤ x − y ≤ u, where x, y are (real or integer) variables,
and l, u are numeric constants, with piece-wise constant preference functions associated
to each constraint. The goal is to find an assignment to the variables of the problem that
maximizes the sum of the preference values of satisfied disjunctions of constraints (called
DTP constraints), where such values are obtained by aggregating the preference functions
of the satisfied constraints in it. The DTPP has been employed in a number of real-world
applications, including scheduling meeting requests and the problem of building automatic
assistants (see, e.g. [3–5]). We consider an utilitarian aggregation of such DTP constraints
values, and a “max” semantic for aggregating preference values within DTP constraints:
given a (candidate) solution of a DTPP, the preference value of each DTP constraint is
defined to be the maximum value achieved by any of its satisfied disjuncts (see, e.g. [6]). The
current state-of-the-art approach that considers such aggregation methods is implemented in
the native DTPP solver MAXILITIS, and is based on an extension of the DTP solver EPILI-
TIS [7] to deal with piece-wise constant preference functions. Various other approaches have
been designed in the literature to deal with DTPPs [6, 8–10], possibly relying on alternative
preference aggregation methods (see, e.g. [11, 12]).

In this paper we present alternative approaches that translate DTPPs to Maximum Satis-
fiability of a set of Boolean combination of constraints of the form l �� x − y �� u, where
��∈ {<, ≤}. In case of unsatisfiable DTPs, our approaches provide a “Max-SAT optimal”
solution (defined precisely later), rather than just reporting the problem to be unsatisfiable
as done by MAXILITIS. The first approach relies on a very natural modeling of the prob-
lem where, for each soft DTP constraint, the generated constraints are mutually exclusive,
and each is weighted by a preference value: the set is constructed in order to maximize the
degree of satisfaction of the DTP constraint. The second solution we propose is, instead,
obtained by extending previous work that dealt with constant preference functions only [13],
and reduces each soft DTP constraint to a set of disjunction of constraints, and a non-trivial
interplay among their preference values to maximize, as before, the preference value of
the DTP constraint. Then, we prove that these translations are correct. In order to test the
effectiveness of our proposals, we have randomly generated DTPPs, following the method
originally developed by Peintner and Pollack [11], and then employed in all other papers
on DTPPs. Moreover, we have also generated non-random benchmarks starting from Job
Shop Scheduling problems already employed in [13]. In our framework, each translated
problem is represented as a Satisfiability Modulo Theory (SMT) formula in the QF RDL
or QF IDL logics (depending on the domain of interpretation of variables) plus optimiza-
tion, and the YICES and MATHSAT SMT solvers, that are able to deal with these logics
and optimization issues, are employed. An experimental analysis conducted on a wide set
of benchmarks, using also the same benchmarks setting already employed in past papers,
shows that our second proposal is competitive to, and can be faster than, MAXILITIS. More-
over, the experiments further show that YICES performs better then MATHSAT on these
benchmarks.

To sum up, the main contributions of this paper are the following:
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• We design new approaches for solving DTPPs that employ translations to Maximum
Satisfiability of a set of Boolean combination of constraints of the form l �� x −y �� u,
��∈ {<,≤}.

• We prove that the translations are correct.
• We implement the translations, by expressing the resulting formulas in the SMT logics

QF RDL or QF IDL plus optimization.
• We run a wide experimental analysis that shows that one of our encoding, employing

state-of-the-art SMT solvers, can be faster than MAXILITIS.

The rest of the paper is structured as follows. Section 2 introduces preliminaries about
DTPs, DTPPs and Maximum Satisfiability. Then, in Section 3 we present our translations
from DTPPs to Maximum Satisfiability of Boolean combination of constraints. In Section 4
we prove correctness and completeness of the approaches, while the experimental analysis
is reported in Section 5. The paper ends by providing a discussion about related work in
Section 6 and some conclusions in Section 7.

2 Formal background

Problems involving disjunction of temporal constraints have been introduced by Stergious
and Koubarakis [14], as an extension of the Simple Temporal Problem (STP) [2], which con-
sists of finite conjunction of constraints. The problem was referred for the first time as Dis-
junctive Temporal Problem (DTP) by Armando et al. [15], and is presented in the first subsec-
tion. The remaining subsections introduce DTPPs and Maximum Satisfiability of DTPs.

2.1 DTP

Let V be a set of variables. A constraint is an expression of the form l ≤ x − y ≤ u,
where x, y ∈ V , and l, u are numeric constants. A DTP constraint is a finite disjunction of
constraints. A DTP formula, or simply formula, is a finite conjunction of DTP constraints.
A DTP formula (resp. DTP constraint) can be equivalently seen as a conjunctively (resp.
disjunctively) intended set of DTP constraints (resp. constraints).

The semantics of DTP formulas is defined as follows. Let the domain of interpretation
D be either the set of the real numbersR or the set of integersZ . An assignment σ is a total
function mapping variables to D; σ |= φ, i.e. σ satisfies a formula φ, is defined as follows

– σ |= l ≤ x − y ≤ u if and only if l ≤ σ(x) − σ(y) ≤ u;
– σ |= ¬φ if and only if it is not the case that σ |= φ;
– σ |= (∧n

i=1φi) if and only if for each i ∈ [1, n], σ |= φi (n ≥ 0); and
– σ |= (∨n

i=1φi) if and only if for some i ∈ [1, n], σ |= φi (n ≥ 0).

If σ |= φ then σ is also called a model, or a satisfying assignment of φ. We also say that a
formula φ is satisfiable if and only if there exists a model for φ. The DTP is the problem of
deciding whether a formula φ is satisfiable or not in the given domain of interpretation D.

Example 1 The following formula, where D is Z

(5 ≤ x − y ≤ 7 ∨ −30 ≤ z − x ≤ −20) ∧ (5 ≤ z − y ≤ 10)
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is satisfiable, and a model σ for it assigns, e.g. x = 8, y = 2 and z = 10.

Notice that the satisfiability of a formula may depend on D, e.g. the formula

x − y > 0 ∧ x − y < 1

is satisfiable if D is R but unsatisfiable if D is Z . However, the problems of checking
satisfiability inZ and inR are closely related and will be treated uniformly in the following.

2.2 DTPP

We now define our problem of interest, the DTPP. We first extend the concept of DTP
constraint, considering that a DTP constraint can be either hard, i.e. its satisfaction is manda-
tory, or soft, i.e. its satisfaction is not necessary but preferred, and in case of satisfaction it
contributes to the generation of high quality solutions according to the aggregation methods
employed and defined later.

A DTPP is defined as a pair 〈φ, wpc〉, where
• φ := 〈φh, φs〉 is a DTP formula partitioned into a set of hard DTP constraints (denoted

φh) and a set of soft DTP constraints (denoted φs), and
• wpc is a function that maps the constraints appearing in soft DTP constraints in φs to

piece-wise constant preference functions.

As for the semantics, we start by defining how weights, corresponding to values in the
preference functions, are aggregated within a soft DTP constraint d to define the weight
of d. In our work, we consider a prominent semantic for this purpose: the max semantic.
Consider a constraint dc := l ≤ x − y ≤ u, its preference function wpc(dc) is a piece-wise
constant function that can be specified by

– partitioning the interval [l,u] into a finite set of convex interval I1, . . . , In ⊆ [l, u]
(n ≥ 1), called preference intervals of dc, and

– associating a positive integer (the preference value) to each interval Ii , 1 ≤ i ≤ n.

The max semantic [6, 9] defines the weight wc(d) of a satisfied soft DTP constraint d as
the maximum among the possible preference values of satisfied constraints in d, i.e. given
an assignment σ ′

wc(d) = max{wpc(σ
′(x) − σ ′(y)) : dc ∈ d, σ ′ |= dc}.

The semantics of the whole DTPP is based on an utilitarian method for aggregating soft
DTP constraints weights. More formally, given a function wc that maps each soft DTP
constraint in φs to a positive integer number, the goal is to find an assignment σ ′ for φ that

• satisfies φh, and
• maximizes the sum of weights associated to the satisfied soft DTP constraints in φs , i.e.

maximizes the following linear objective function

f =
∑

d∈φs,σ ′|=d

wc(d). (1)
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Example 2 Consider a simple formula consisting of one soft DTP constraint d := dc1∨dc2,
where dc1 : 1 ≤ x − y ≤ 10 and dc2 : 5 ≤ z − q ≤ 15. The piece-wise constant preference
function associated to dc1 is

wpc(dc1) =
⎧
⎨

⎩

1 1 ≤ x − y ≤ 3
2 3 < x − y ≤ 7
1 7 < x − y ≤ 10

(2)

while, regarding dc2, its preference function is

wpc(dc2) =
⎧
⎨

⎩

2 5 ≤ z − q ≤ 8
4 8 < z − q ≤ 10
2 10 < z − q ≤ 15

(3)

Of course both difference constraints can be satisfied at the highest preference value, e.g.
consider a model σ ′ that assigns x = 30, y = 25, z = 10 and q = 1, the optimal value
wc(d) for the satisfaction of the only soft DTP constraint d in the formula is 4.

2.3 Max-DTP

The idea of our paper is to translate DTPPs to Maximum Satisfiability of formulas com-
posed by hard and soft DTP constraints. The translation requires the extension of the syntax
and semantics of DTP formulas in order to allow for arbitrary Boolean combination of
constraints allowing also for strict inequalities.

An Arbitrary DTP constraint, denoted DT P A, is a Boolean combination of constraints
of the form l �� x − y �� u, ��∈ {<, ≤}, and a DT P A formula φ′ = 〈φh, φ

′
s〉 consists of

two sets φh and φ′
s of hard and arbitrary soft DT P A constraints, respectively.

The Partial Weighted Maximum Satisfiability problem of a DTPA formula is formally
defined as a pair 〈φ′, wc〉. In this case, the goal is to find a satisfying assignment σ ′ to the
variables in φ′ that
• satisfies φh, and
• maximizes the sum of the weights associated to satisfied soft DTPA constraints in φ′

s ,
i.e. maximizes a linear objective function with the form (1).

In the following, for simplicity we will use Max-DTP to refer to the Partial Weighted
Maximum Satisfiability problem of mixed (hard) DTP and (soft) DTPA constraints as
defined above.

Example 3 The following formula φ, where D is Z

d1 : (x − y ≤ 7 ∨ z − x ≤ −20) ∧
d2 : x − y ≥ 10 ∧

d3 : z − x ≥ 0

is not satisfiable if each constraint is hard.
If the DTP constraints are, instead, soft with wc(d1) = 3, wc(d2) = 1 and wc(d3) = 1,

σ of Example 1 is an optimal solution for φ as well as, e.g. σ ′ that assigns x = 30, y = 2
and z = 10, given that for both assignments the corresponding value of f is 4.
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3 Translating DTPPs to Max-DTPs

As we said before, our main idea is to reduce the problem of solving DTPPs to solving Max-
DTPs, for which we can rely on efficient solvers, e.g. SMT solvers. Hard DTP constraints
remain unchanged in our translation, while soft DTP constraints need special treatment. In
the following, given an interval I = [l, u], we write x − y ∈ I as a shorthand for the
constraint l ≤ x − y ≤ u (and similarly for the related open, left-open and right-open
intervals) with preference function wpc, and preference intervals I dc

1 , . . . , I dc
n (n ≥ 1).

Given a soft DTP constraint d, we partition each constraint dc of the form l ≤ x −y ≤ u

in d into a set of maximal sub-intervals having the same preference value. More formally,
let ldc be the number of different preferences values v1 . . . vldc

appearing in the preference
function of dc, we partition dc into ldc sets defined through the following function

f (dc, v) = {x − y ∈ I dc
i : wpc(I

dc
i ) = v, 1 ≤ i ≤ n}.

If there is only one preference interval, i.e. the preference function is a constant v′, only
one pair f (dc, v′) is defined consisting of the interval [l, u], i.e. it represents the constraint
l ≤ x − y ≤ u, and its preference value is v′.

We now need to “aggregate” the preference values corresponding to different levels of
the piece-wise constant functions in the various constraints in order to implement our trans-
lation. The idea is to “merge” sets f (dc, v) in the same soft DTP constraint; intuitively, this
means that, if the candidate solution satisfies at least one of the constraints in f (dc, v), then
a possible preference value for d is v.

More formally, consider a soft DTP constraint

d := dc1 ∨ ... ∨ dck. (4)

Let v1 . . . vld be the different preference values appearing in the preference functions of
d (of course, ld ≥ ldci

, 1 ≤ i ≤ k). Then, d and its preference functions are represented by
ld sets defined by the following function

g(d, vj ) =
⋃

dc∈d

f (dc, vj ) (5)

1 ≤ j ≤ ld .
In the remaining part of the section we present, in separate subsections, the two encodings

that we considered. The first corresponds to a very natural modeling of the problem, while
the second extends previous work that dealt with constant preference functions only [13].

For simplicity, in the following if we write g(d, vi) and g(d, vj ) with i < j , we assume
vi < vj .

3.1 The first translation

The first solution we considered for our encoding is to express a soft DTP constraint d

using soft DTPA constraints that force the highest preference value associated to satisfied
constraints in d to be assigned as weight for d.

A soft DTP constraint d and its preference value are expressed by a set of ld soft DTPA

constraints: for each z = 1 . . . ld

cz(d) : ∧z−1
i=1¬(∨p∈g(d,vi ) p) ∧ (∨p∈g(d,vz) p) (6)

where p is an interval, and
wc(cz(d)) = vz (7)
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is the weight associated to cz(d).
The set of constraints is mutually exclusive: considering an assignment, at most one of

the constraints in the set is satisfied, and the relative weight is assigned to d. If a constraint
in (6) is satisfied, this is the constraint leading to the maximum value (according to the
candidate solution considered), whose weight is defined in (7).

Example 4 Consider the soft DTP constraint of Example 2. wpc(dc1) is represented with

f (dc1, 1) = {1 ≤ x − y ≤ 3, 7 < x − y ≤ 10}
f (dc1, 2) = {3 < x − y ≤ 7}.

Regarding dc2, its preference function is represented with

f (dc2, 2) = {5 ≤ z − q ≤ 8, 10 < z − q ≤ 15}
f (dc2, 4) = {8 < z − q ≤ 10}.

We now “merge” the sets (on the three existing levels), whose result is

g(d, 1) = {1 ≤ x − y ≤ 3, 7 < x − y ≤ 10}
g(d, 2) = {3 < x − y ≤ 7, 5 ≤ z − q ≤ 8, 10 < z − q ≤ 15}
g(d, 4) = {8 < z − q ≤ 10}.

Following (6), the reduction is

c1(d) : 8 < z − q ≤ 10

c2(d) : ¬c1 ∧ ((3 < x − y ≤ 7) ∨ (5 ≤ z − q ≤ 8) ∨ (10 < z − q ≤ 15))

c3(d) : ¬c1 ∧ ¬c2 ∧ (1 ≤ x − y ≤ 3 ∨ 7 < x − y ≤ 10)

with

wc(c1(d)) = 4,

wc(c2(d)) = 2,

wc(c3(d)) = 1.

3.2 The second translation

A second translation transforms each soft DTP constraint d to a set of ld soft DTPA

constraints as follows: for each z = 1 . . . ld

c′
z(d) : ∨z

i=z−1 ∨p∈g(d,vi ) p (8)

(we assume that g(d, v0) is empty). The problem is now to define what are the weights
associated to each newly defined soft DTPA constraint, in order to reflect the semantic of
our problem. In the previous translation (4), the DTPA constraints were mutually exclusive;
now, instead, the dependencies between them influence constraints weights adaptation and
definition. Our solution starts from the following fact: if the constraint c′

ld
is satisfied, it is

safe to consider that it contributes for at least the minimum preference value vld , i.e. the
one associated to the set g(d, vld ), from which c′

ld
is constructed. Satisfying the constraint

c′
ld−1 further contributes for vld−1−vld , and given that a constraint c

′
z implies all constraints

c′
z′ , z′ > z, these two soft DTPA constraints together contribute for vld−1. This method is
recursively applied up to the set of constraints in g(d, v1), i.e. c′

1, whose preference value is
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v1 − v2 and, given that c′
1 implies all other introduced soft DTPA constraints, satisfying c′

1
correctly corresponds to assign a weight v1 to d.

More formally, for each z = 1 . . . ld

wc(c
′
z(d)) =

{
vld z = ld
vz − vz+1 1 ≤ z < ld

(9)

and, given an assignment σ , wc(d) = ∑
z∈{1,...,ld },σ ′|=c′

z
vz.

Example 5 Concerning the second translation, the soft DTPA constraints that express the
constraint d with the preference functions in Example 4 are

c′
1(d) : 8 < z − q ≤ 10

c′
2(d) : c′

1 ∨ (3 < x − y ≤ 7 ∨ 5 ≤ z − q ≤ 8 ∨ 10 < z − q ≤ 15)

c′
3(d) : c′

2 ∨ (1 ≤ x − y ≤ 3 ∨ 7 < x − y ≤ 10)

where wc(c
′
1(d)) = 2, wc(c

′
2(d)) = 1 and wc(c

′
3(d)) = 1.

Let us now define the whole translation: given a DTPP 〈φ, wpc〉, with φ := 〈φh, φs〉, and
let REDUCT(d, wpc) being the translation of a single soft DTP constraint d presented in (6)
(called REDUCT1 in the following), with weights definition in (7), or (8) (called REDUCT2
in the following), with weights definition in (9), the resulting Max-DTP formula has

• φh as hard formula,
• ⋃

d∈φs
REDUCT(d,wpc) as soft DT P A formula, and

• wc defined as in (7) or (9).

Such translation works correctly if, considering a formula φ, no repeated DTPA con-
straints appear in the translated formula φ′. If this happens, intuitively, we want each single
occurrence in φ′ to count “separately”, given that they take into account different contribu-
tions from different soft DTP constraints in φ. A solution is to consider a single occurrence
of the resulting soft DTPA constraint in φ′ whose weight is the sum of the weights of the
various occurrences.

4 Correctness and completeness of the reductions

This section deals with correctness and completeness of the introduced reductions, i.e.
the original DTPP formula 〈〈φh, φs〉, wpc〉, and the reduced DTPA formula have the same
solution space of “optimal” assignments.

We first show that the underlying DTPs φ := φh ∪ φs and φ′ := φh ∪⋃
d∈φs

REDUCT(d,wpc) have the same satisfying assignments,1 i.e. that this holds for φs

and
⋃

d∈φs
REDUCT(d,wpc), given that φh remains unchanged during both reductions.

We assume that no repeated soft DT P A constraints are in the reduced formula: with this
hypothesis, it is enough to prove that the property holds for a single soft DTP constraint d.

At first we deal with the reduction in Section 3.1.

1Note that in the case of the second reduction this corresponds to a model, while for the first reduction, where
the constraints are mutually exclusive, this is according to the semantic of a Max-SAT solution.
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Proposition 1 Given an assignment σ , σ satisfies d iff σ satisfies REDUCT1(d,wpc).

Proof To prove the thesis, we need to show that an assignment σ that satisfies d also
satisfies REDUCT1(d,wpc), an vice-versa.

(left-to-right) If σ satisfies d, this means that at least a constraint dc ∈ d is satisfied.
Consider now the dc which is satisfied at the highest preference value by σ . We know by
construction that dc can occur in more DTPA constraints of REDUCT1(d,wpc), in this case
divided in preference intervals. We are guaranteed that at least one of its preference intervals
satisfies a DTPA constraint in REDUCT1(d,wpc): in fact, if it satisfies c1(d), then the thesis
holds, otherwise this means that a preference interval at lower preference value is satisfied,
and we know that it satisfies the respective DTPA constraint ci(d).

(right-to-left) If σ satisfies REDUCT1(d,wpc), this means that exactly one DTPA con-
straint in REDUCT1(d,wpc) is satisfied. Such DTPA constraint is satisfied because of a
preference interval of a constraint dc in d, and thus σ satisfies also d.

We now state that, given a satisfying assignment of the underlying DTPs of the two
formulas, the two optimal solutions have the same values.

Proposition 2 Given a satisfying assignment σ of φ and φ′, for each d ∈ φs

wc(d) =
∑

σ satisf ies ci (d),ci (d)∈REDUCT1(d,wpc),1≤i≤z

wc(ci(d))

Proof From Proposition 1 we also know that if ci(d) is satisfied, by construction no DTPA

constraint cj (d) in REDUCT1(d,wpc) with both j < i or j > i is satisfied, thus the thesis
follows immediately.

Thus, one DTPA constraint in REDUCT1(d,wpc) is satisfied, and corresponds to the
DTPA constraint having the maximum possible preference value, which corresponds to the
semantic of our problem.

Now, we deal with the reduction in Section 3.2.

Proposition 3 Given an assignment σ , σ satisfies d iff σ satisfies REDUCT2(d,wpc).

Proof To prove the thesis, we need to show that an assignment σ that satisfies d also
satisfies REDUCT2(d,wpc), an vice-versa.

(left-to-right) If σ satisfies d, this means that at least one constraint dc ∈ d is satisfied.
From (8), we know by construction that dc will occur, possibly divided into its preference
intervals, in REDUCT2(d,wpc); at least one of its preference interval is satisfied, thus also
REDUCT2(d,wpc) is satisfied by σ .

(right-to-left) If σ satisfies REDUCT2(d,wpc), this means that at least one DTPA con-
straint in (8) is satisfied, thus at least one preference interval in it is satisfied. Take this
preference interval, by construction we know that it is (part of) a constraint occurring in d,
thus also d is satisfied by σ .

Proposition 4 Given a satisfying assignment σ of φ and φ′, for each d ∈ φs

wc(d) =
∑

σ satisf ies ci (d),ci (d)∈REDUCT2(d,wpc),1≤i≤z

wc(ci(d))

This proposition follows from the construction of the encoding, and from (9).
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5 Experimental analysis

In this section we present benchmarks and solvers involved in our analysis, as well as the
results of our experiments.

5.1 Benchmarks

Randomly generated benchmarks These benchmarks aim at comparing the considered
solvers on two dimensions, namely (i) the size of the benchmarks, and (ii) the number of
preference levels in the piece-wise constant preference function , all used in past papers on
DTPPs—see, e.g. [6].

In order to generate the benchmarks, the main parameters considered are:

1. the number k of disjuncts per DTP constraint;
2. the number n of arithmetic variables;
3. the number m of DTP constraints;
4. the number l of levels in the preference functions.

Furthermore, we also investigated the performance of the solvers considering two dif-
ferent settings related to the preference values of the preference functions. The preference
functions considered are semi-convex piece-wise constant: starting from the lower and
upper bounds of the constraints, intervals corresponding to higher preference levels are ran-
domly put within the interval of the immediate lower level, with a reduction factor, up to an
highest level. For details see, e.g. [6].

In particular, we consider

– a setting where, given the i-th level l, w(l) = i, i.e. the setting used by Moffitt for
evaluating MAXILITIS [6] (“Model A” in the following);

– a setting where w(l) is randomly generated in the range [1, 100], still ensuring to
maintain the same shape for preference functions (“Model B” in the following).

Finally,

– the domain of interpretation for all benchmarks is Z , given that MAXILITIS can not
deal with real numbers, and

– all generated DTP constraints are soft, i.e. experiments are focused on this challenge setting.

For each tuple of values of the parameters, 25 instances have been generated.
Concerning the first dimension, we randomly generated benchmarks by varying the total

amount of DTP constraints, with the following parameters: k = {2, 3}, m ∈ {10, . . . , 80},
n = 0.8 × m, l = 5, lower and upper bounds of each constraint taken in [−50, 100].2

Regarding the second dimension, we randomly generated benchmarks by varying the
number of levels l in the preference functions in the interval [2, . . . , 8]. The remaining
parameters has been set as follows. In the case of k = 2, n and m have been set to 24 and
30, respectively. In the case of k = 3, n is equal to 32, while m = 40. Finally, lower and
upper bounds of each constraint is taken again in [−50, 100].
Real-world benchmarks For these kind of benchmarks we analyze the Job Shop Schedul-
ing problems already employed for DTPPs in [13]. The benchmarks evaluated in [13] are
composed of 10 groups, each made of 4 problems, whose preference functions are constant.

2These benchmarks have been generated using the program provided by Michael D. Moffitt, author of
MAXILITIS.
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We have considered one problem for the smallest group, having n = 5, m = 10, and
k ∈ {1, 2} as parameters, and generated instances having piece-wise constant preference
functions with Model A and B. We varied the number l of levels in the interval [2, . . . , 5],
and generated 10 instances for each setting, for a total of 80 instances. Problems in the other
groups have very challenge parameters such as k up to 4 and m up to 500, and result in very
big and hard DTPPs.

5.2 Solvers evaluated

We have implemented our translations and expressed the resulting formulas as SMT formu-
las with optimization. We called our system DTPP2MAXSMT, and it can be coupled, in
principle, with any MaxSMT solver as back-engine. In particular, we evaluated its perfor-
mance involving two state-of-the-art MaxSMT solvers, namely MATHSAT (ver. 5.2.11) [16,
17] and YICES (ver. 1.0.38) [18, 19]. In the following, we will refer to the systems
DTPP2MAXSMT+MATHSAT and DTPP2MAXSMT+YICES with DTPPMATHSAT and
DTPPYICES, respectively.

In the experimental analysis, we compare the systems mentioned above with the solver
MAXILITIS, an implementation by Moffitt of the approach presented in [6]. To the best of
our knowledge, MAXILITIS is the state-of-the-art system for solving DTPPs, and it sub-
sumes other previous systems, such as ARIO [8] and GAPD [20]. MAXILITIS works as
follows: a DTPP is represented as a constraints system named Valued DTP (VDTP), that
can express the same solution space of the DTPP. The VDTP is then solved by general-
izing meta-CSP approach employed by EPILITIS for DTP solving. Known optimization
techniques in DTP solving, i.e. removal of subsumed variables and semantic branching, are
also lifted to VDTP in order to reduce the explored search space. We included in our anal-
ysis two variants of MAXILITIS (as provided by its author), namely MAXILITIS-IW and
MAXILITIS-BB. MAXILITIS-IW (IW standing for Iterative Weakening) searches for solu-
tions with a progressively increasing number of violated constraints; MAXILITIS-BB uses,
instead, branch-and-bound for reaching the optimal solution.

The executable of our solver, together with the benchmarks analyzed, can be found at

http://www.star.dist.unige.it/∼marco/DTPPYices/.

5.3 Experimental results

The experiments described in this subsection ran on PCs equipped with a processor Intel
Core i5 at 3.20 GHz, with 4 GB of RAM, and running GNU Linux Ubuntu 12.04. The
timeout for each instance has been set to 300s. All instances have been evaluated considering
integer-valued variables.3

Randomly generated benchmarks We first preliminary tested the two translations on
the smallest benchmarks generated with Model A. For instance, considering the perfor-
mance of DTPPYICES (that will prove to be our best option) on benchmarks generated on
dimension (i), we notice that, by employing the first translation, it was able to solve only
the ones with m = 10. In particular, DTPPYICES solves all 25 instances generated with
Model A in (cumulative time of) 141.92 s, while it solves only 14 out of 25 instances gen-
erated with Model B in 1749.28 s. At the same time, DTPPYICES on the second translation
solves all 50 instances in 0.1 s and 0.26 s, respectively.

3We have tested our solvers on the biggest formulas we could solve but employing real-valued variables, and
results are very similar to those when variables are integers.

http://www.star.dist.unige.it/~marco/DTPPYices/
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Thus, the first translation looks impractical from a performance point of view. For this
reason, in the following we report only the results related to the second translation.

Considering the second translation, the results obtained in the experiments for k = 2
are shown in Fig. 1, which is organized as follows. Concerning the top-most plots, in the
x-axis we show the total amount of DTP constraints, while in the plots in the bottom, the
total amount of levels of the piece-wise constant preference function is reported. In the y-
axis (in log scale), it is shown the related median CPU time (in seconds). MAXILITIS-BB’s
performance is depicted by a dotted line with blue triangles, MAXILITIS-IW’s by using
a dashed line with orange upside down triangles, while DTPPMATHSAT’s performance is
depicted by a dashed green line with boxes; finally, DTPPYICES performance is denoted by
a solid line with black circles. Plots in the left-most column are related to Model A, while
plots in the right-most column are related to Model B.

Looking at Fig. 1, and considering the top-left plot, we can see that MAXILITIS-IW is
the solver with the best performance, and it is one order of magnitude of CPU time faster

Fig. 1 Results of the evaluated solvers on random DTPPs with k = 2 considering the size of the benchmarks
(top-most plots) and number of preference levels (bottom). Left-most plots are related to Model A, while
right-most plots depict the results related to Model B
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than DTPPYICES and DTPPMATHSAT. Considering the same analysis in the case of Model
B, we can see (top-right plot) that the picture changes in a noticeable way. Benchmarks
are harder than previously: MAXILITIS-BB and MAXILITIS-IW are not able to efficiently
cope with benchmarks with m > 30, while DTPPMATHSAT stops at m = 10. In this case,
DTPPYICES is the best solver, and we report that it is able to deal with benchmarks up to
m = 60.

Looking at the bottom-left plot of Fig. 1, we can see that MAXILITIS-IW is the best
solver up to l = 7, while for l = 8, we report that DTPPYICES is slightly faster. Also in
this case MAXILITIS-BB does not efficiently deal with the most difficult benchmarks in the
suite. Looking now at the plot in the bottom-right, we can see that the performance of both
versions of MAXILITIS are very similar, while DTPPYICES is the fastest solver: the median
CPU time of both MAXILITIS-BB and MAXILITIS-IW runs in timeout for l > 5, while
DTPPYICES solves the majority of the benchmarks within the time limit for all levels.

Fig. 2 Results of the evaluated solvers on random DTPPs with k = 3 considering the size of the benchmarks
(top-most plots) and number of preference levels (bottom). As in Fig. 1, left-most plots are related to Model
A, while right-most plots depict the results related to Model B
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Table 1 Results of DTPPYICES and DTPPMATHSAT on Job Shop Scheduling problems

Benchmark N DTPPMATHSAT DTPPYICES

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

jobshop l2 10 8 0.18 3 0.53 10 0.01 10 0.01

jobshop l3 10 10 3.26 – – 10 0.04 10 0.05

jobshop l4 10 6 43.68 – – 10 0.14 10 0.12

jobshop l5 10 – – – – 10 0.38 10 0.25

Detailed results related to the plots in Fig. 1 are reported in the Appendix, cf. Tables 3 and 4.
Considering the results related to k = 3, looking at Fig. 2 (which has the same orga-

nization of Fig. 1), top-left plot, we report for both versions of MAXILITIS the very same
performance, and they are one order of magnitude faster than both DTPPMATHSAT and
DTPPYICES. Concerning DTPPs generated with Model B, by looking at the top-right plot
of Fig. 2, we report that the best solver turned out to be DTPPYICES, while both versions of
MAXILITIS stop at m = 40, while DTPPMATHSAT stops at m = 20.

Finally, concerning the analysis on preference levels, we can report a picture similar to
the one related to k = 2. Both versions of MAXILITIS outperform both DTPPMATHSAT and
DTPPYICES on benchmarks generated with Model A (with the exception of MAXILITIS-
BB for l = 8), while DTPPYICES is by far the best solver on benchmarks generated with
Model B (with the exception of the smallest instances having l = 2).

Detailed results related to the plots in Fig. 2 are reported in the Appendix, cf. Tables 5 and 6.

Real-world benchmarks Table 1 reports the results of the Job Shop Scheduling prob-
lems enhanced with preference functions generated with Model A and B. The table is
structured as follow. The first column gives information about the benchmark, where job-
shop lN means the selected problem whose preference functions have N levels. The second
column is the number of instances generated, while the third and fourth columns report
the results for DTPPMATHSAT and DTPPYICES, respectively. The last two columns are
then divided into two sub-columns reporting results for the two generation models, each
sub-column being further divided into number of instances solved and cumulative time for
solved instances, respectively. MAXILITIS is not included in this analysis given it returns
some incorrect answers.

Results confirm the trends observed so far: DTPPYICES is much faster than DTPPMATH-
SAT, solving all 80 instances; formulas generated with Model B are much more difficult for
MATHSAT, while all instances are relatively easy for YICES; and performance decreases
while the number of level increases.

Table 2 Five-number summary
for the number of conflicts of
DTPPYICES on formulas arising
from the two translations

Translation Min Q1 Median Q3 Max

First 96619 113809 175417 184762 241149

Second 0 3 6 14 58
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5.4 Discussion

In this subsection we give insights in order to more deeply understand the results we
have shown in the previous subsection. To this aim, we often employ number of conflicts
encoutered during search as a CPU-time independent measure for measuring the workload
of a solver.4 The concept of “conflict” is central in every part of the search, e.g. backtrack-
ing, learning, and decision, for a CDCL solver. Our analysis follows a number of direction,
devoting one paragraph to each.

First vs. second translation We focused on the setting where the two translations solve
the same set of istances, i.e. the 25 instances built under dimention (i) with m = 10,
Model A. In the following table we report, for both translations, the 5 numbers (minimum,
first quartile, median, third quartile, maximum) of the number of conflicts (DTPP)YICES

encoutered during search.
As it is clear from Table 2, with the first translation DTPPYICES encounters a number of

conflicts bigger by orders of magnitude in comparison to those encountered with the second
translation.

A property of the second translation that can contribute to these results is the following:
by construction, as soon as a DTPA constraint gets satisfied, say, c′

z, all DTP
A constraints

c′
z′ coming from the translation of the same soft DTP constraint, and such that z′ > z wrt
(8), are satisfied as well.

Results on different random models Model B brings in general to harder formulas for
all solvers, given that the weights are not uniform. As far as the specific performance of
solvers is concerned, on random benchmarks MAXILITIS in general performs better than
our solution on Model A, while this is the opposite on Model B. Unfortunately, we could
not rely on CPU time independent measures for MAXILITIS given that it does not output
measures of this kind (other than the cost). A possible explanation for this behavior is that
Maxilitis is likely to be optimized on formulas generated with Model A, given that this is
the only type of formulas analyzed in its paper [6].

Instead, in order to corroborate the results on Model A vs. Model B in our setting, we
did a similar analysis to the paragraph above, by comparing the distributions of number of
conflicts, employing the same setting. Results are now showed using a boxplot depicted in
Fig. 3. In this case we can note that the number of conflicts on benchmarks generated with
Model B is much higher than the same number of those generated with Model A.

YICES vs. MATHSAT We saw that YICES consistently outperforms MATHSAT on our
formulas. Our results are consistent with the state of the art of the competition, e.g. Yices
won the SMT Competition from 2014 to 2017 on the logics QF RDL and QF IDL, which
are the basis for our formulas (see the webpage of the (last) SMT Competition at http://
smtcomp.sourceforge.net).

6 Related work

We have seen in the introduction that DTPPs have been used in applications. We briefly
describe here some of these applications. In [5], a preference model designed to capture

4We consider number of conflicts YICES outputs by running it in verbose mode; MATHSAT does not look to
output such number.

http://smtcomp.sourceforge.net
http://smtcomp.sourceforge.net
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Fig. 3 Distributions of the number of conflicts of DTPPYICES on benchmarks generated with different
models

user scheduling preferences for over-constrained meeting requests between multiple people
has been presented. Solving is done by a constrained scheduling problem with preferences,
which is modeled as a DTPP. In [4], instead, DTPP is used in the context of one component
of an automatic personal assistant, the Personalized TimeManager (PTIME), i.e. the PTIME
constraint reasoner, to reason on temporal constraints and preferences that may arise in this
context. The usage of Artificial Intelligent techniques, including DTPs, in the context of
intelligent technology for assisting elders with cognitive decline with an Autominder’s Plan
Manager is overviewed by Pollack [3], where it is described the further advantages that
DTPPs bring. This is connected to the previous mentioned application, but with a specific
target on elders.

MAXILITIS [6, 9], WEIGHTWATCHER [10] and ARIO [8] implement different
approaches for solving DTPPs as defined in [11]. MAXILITIS is a direct extension of
the DTP solver EPILITIS [7], while WEIGHTWATCHER uses a similar (as mentioned in,
e.g. [10]) approach based on Weighted Constraints Satisfaction problems, but is less effi-
cient. ARIO, instead, relies on an approach based on Mixed Logical Linear Programming
(MLLP) problems. In our analysis we have used MAXILITIS because previous results, e.g.
in [6], clearly indicate its superior performance.

About the comparison to MAXILITIS, our solution is easy, yet efficient, and has a number
of advantages. On the modeling side, it allows to consider (with no modifications) both
integer and real variables, while MAXILITIS can deal with integer variables only. Then, in
case of unsatisfiable DTPs, our approaches provide a “Max-SAT optimal” solution, rather
than just reporting the problem to be unsatisfiable as done by MAXILITIS. Moreover, our
implementation provides an unique framework for solving DTPPs, while the techniques
proposed by Moffitt [6] are implemented in two separate versions of MAXILITIS. Finally,
our solution is modular, i.e. it is easy to rely on different back-end solvers (or, on a new
version of YICES or MATHSAT), thus taking advantages on new algorithms and tools for
solving our formulas of interest.
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7 Conclusions

In this paper we have introduced translation-based approaches for solving DTPPs, that
reduce these problems to Maximum Satisfiability of DTPs as defined in the paper. An exper-
imental analysis performed with SMT solvers on randomly generated and real-world DTPPs
shows that our approach, in particular when YICES is employed as SMT solver, is compet-
itive to, and sometimes faster than, the specific implementations of the MAXILITIS solver.
A possible direction for future research is to consider different aggregation functions.
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random benchmarks, and Bruno Dutertre for his support about YICES.

Appendix

Table 3 Performance of the selected solvers on random DTPPs with k = 2 with different sizes

n m DTPPMATHSAT DTPPYICES

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.55 18 2.68 25 0.10 25 0.26

16 20 25 1.04 9 0.75 25 0.31 25 0.80

24 30 25 1.58 4 22.63 25 0.50 25 4.45
32 40 25 2.92 2 64.61 25 0.78 25 23.44
40 50 25 3.05 1 0.15 25 1.48 24 245.32

48 60 25 4.90 – – 25 2.41 21 403.39
56 70 25 6.28 – – 25 3.58 12 1355.01
64 80 25 8.50 – – 25 4.75 6 414.62

n m MAXILITIS-BB MAXILITIS-IW

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.00 25 0.04 25 0.00 25 0.31

16 20 25 0.17 25 16.28 25 0.01 25 60.84

24 30 25 5.61 18 588.56 25 0.02 21 913.16

32 40 24 67.60 3 80.83 25 0.06 9 905.42

40 50 22 27.53 1 105.45 25 0.29 3 327.23

48 60 17 247.24 – – 25 4.24 – –

56 70 21 57.79 – – 25 0.71 – –

64 80 16 151.82 – – 25 7.13 – –

The first columns (“n”) reports the total amount of variables for each pool of DTPPs, while the second one
(“m”) reports the total amount of constraints. It is followed by two groups of columns, and the label is the
solver name. Each group is composed of four columns, reporting the total amount of instances solved within
the time limit (“#”) and the total CPU time in seconds (“Time”) spent, in the case of model A and B (groups
“Mod. A” and “Mod. B”, respectively). In case a solver does not solve any instance, “–” is reported. Finally,
best performance are denoted in bold
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Table 4 Performance of the selected solvers on random DTPPs having k = 2, with different levels

l DTPPMATHSAT DTPPYICES

Mod. A Mod. B Mod. A Mod. B
# Time # Time # Time # Time

2 25 0.54 23 0.64 25 0.10 25 0.20
3 25 0.81 18 1.01 25 0.20 25 0.38
4 25 1.14 12 211.14 25 0.32 25 0.87
5 25 1.58 4 22.61 25 0.50 25 4.44
6 25 28.54 – – 25 1.82 25 17.28
7 22 238.73 – – 23 56.05 21 528.05
8 10 56.82 – – 15 228.16 13 487.39

l MAXILITIS-BB MAXILITIS-IW

Mod. A Mod. B Mod. A Mod. B
# Time # Time # Time # Time

2 25 0.01 25 1.68 25 0.01 25 2.84
3 25 0.01 25 7.05 25 0.01 25 47.26
4 25 0.01 21 395.00 25 0.01 25 203.52

5 25 5.62 18 589.33 25 0.04 21 914.45
6 24 32.66 10 673.87 25 4.80 10 608.04
7 21 230.50 2 68.01 23 129.72 2 59.57

8 12 434.55 2 216.89 17 598.42 2 303.08

In column “l” we report the total amount of levels, while the rest of the table is organized similarly to Table 3

Table 5 Performance of the selected solvers on random DTPPs with k = 3 with different sizes. The table is
organized as Table 3

n m DTPPMATHSAT DTPPYICES

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.73 23 77.80 25 0.20 25 0.52
16 20 25 1.51 19 158.56 25 0.47 25 1.22
24 30 25 2.60 9 28.58 25 0.96 25 2.42
32 40 25 4.85 6 173.39 25 1.95 25 10.21
40 50 25 9.36 1 189.91 25 6.02 25 54.78
48 60 24 13.43 2 0.84 25 9.19 25 70.18

56 70 25 30.75 – – 25 11.25 24 299.66
64 80 25 40.41 – – 25 20.92 18 844.75

n m MAXILITIS-BB MAXILITIS-IW

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.01 25 0.04 25 0.01 25 0.09

16 20 25 0.01 25 2.48 25 0.01 25 5.53

24 30 25 0.02 25 231.18 25 0.04 25 209.74

32 40 25 0.12 17 838.47 25 0.11 18 974.13

40 50 25 0.15 6 671.02 25 0.13 9 703.24

48 60 25 0.28 2 144.48 25 0.15 3 380.24

56 70 25 0.64 – – 25 0.24 1 22.22

64 80 25 0.33 – – 25 0.30 – –
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Table 6 Performance of the selected solvers on random DTPPs with k = 3 with different levels. The table
is organized as Table 4

l DTPPMATHSAT DTPPYICES

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 1.18 23 1.54 25 0.52 25 0.83

3 25 1.91 21 38.65 25 0.87 25 1.40

4 25 2.74 20 4.35 25 1.32 25 2.21

5 25 4.97 6 160.81 25 2.18 25 10.51

6 25 7.19 1 0.30 25 4.06 25 185.18

7 25 13.85 – – 25 8.32 22 391.73

8 25 15.19 – – 25 11.23 7 352.83

l MAXILITIS-BB MAXILITIS-IW

Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 0.13 25 2.52 25 0.13 25 8.39

3 25 0.15 24 14.92 25 0.15 25 80.92

4 25 0.16 25 197.68 25 0.17 25 180.88

5 25 0.20 17 838.47 25 0.19 18 974.05

6 25 0.76 8 1071.03 25 0.23 10 1064.63

7 25 180.89 1 163.84 25 0.37 – –

8 20 943.89 – – 25 1.17 – –

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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