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Abstract.

Disjunctive Temporal Problems with Preferences (DTPPs) extend DTPs with piece-wise constant preference
functions associated to each constraint of the form | < z —y < u, where z, y are (real or integer) variables, and [, u
are numeric constants. The goal is to find an assignment to the variables of the problem that maximizes the sum
of the preference values of satisfied DTP constraints, where such values are obtained by aggregating the preference
functions of the satisfied constraints in it under a “max” semantic. The state-of-the-art approach in the field,
implemented in the DTPP solver MAXILITIS, extends the approach of the DTP solver EPILITIS.

In this paper we present an alternative approach that reduces DTPPs to Maximum Satisfiability of a set of
Boolean combination of constraints of the form [ <tz — y 1 u, <€ {<, <}, that extends previous work that dealt
with constant preference functions only. Results obtained with the Satisfiability Modulo Theories (SMT) solver
YICES on randomly generated DTPPs show that our approach is competitive to, and can be faster than, MAXILITIS.

Keywords: Disjunctive Temporal Problems, Optimization

1. Introduction

Temporal constraint networks [?] provide a con-
venient formal framework for representing and
processing temporal knowledge. Along the years,
a number of extensions to the framework have
been presented to deal with, e.g. more expressive
preferences. Disjunctive Temporal Problems with
Preferences (DTPPs) is one of such extensions,
that is useful in planning and scheduling domains.
DTPPs extend DTPs, i.e. conjunctions of disjunc-
tions of constraints of the form | < z —y < wu,
where z,y are (real or integer) variables, and [, u
are numeric constants, with piece-wise constant
preference functions associated to each constraint.
The goal is to find an assignment to the vari-

IThis is an extended and revised version of a paper
presented to the 5th Italian Workshop on Planning and
Scheduling, which appears in [?].
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ables of the problem that maximizes the sum of
the preference values of satisfied disjunctions of
constraints (called DTP constraints), where such
values are obtained by aggregating the preference
functions of the satisfied constraints in it. We con-
sider an utilitarian aggregation of such DTP con-
straints values, and a “max” semantic for aggre-
gating preference values within DTP constraints:
given a (candidate) solution of a DTPP, the pref-
erence value of a DTP constraint is defined to be
the maximum value achieved by any of its sat-
isfied disjuncts (see, e.g. [?]). The current state-
of-the-art approach that considers such aggrega-
tion methods is implemented in the DTPP solver
MAXILITIS, and is based on an extension of the ap-
proach of the DTP solver EPILITIS [?] to deal with
piece-wise constant preference functions. Various
other approaches have been designed in the liter-
ature to deal with DTPPs [?,?,2,?], possibly rely-
ing on alternative preference aggregation methods
(see, e.g. [1,7]).
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In this paper we present an alternative approach
that reduces DTPPs to Maximum Satisfiability
of a set of Boolean combination of constraints of
the form [ <t & — y > u, where e {<, <}. We
have first considered a very natural modeling of
the problem where, starting from each DTP con-
straint, the generated constraints are mutually ex-
clusive, and each is weighted by a preference value
in order to maximize the degree of satisfaction of
the DTP constraint. A second solution we pro-
pose is, instead, obtained by extending previous
work that dealt with constant preference functions
only [?], and reduces each DTP constraint to a
set of disjunctions of constraints, and a non-trivial
interplay among their preference values to maxi-
mize, as before, the preference value that get as-
signed to the DTP constraint. In order to test the
effectiveness of our proposals, we have randomly
generated DTPPs, following the method originally
developed in [?] and then employed in all other
papers on DTPPs. In our framework, each prob-
lem is then represented as a Satisfiability Mod-
ulo Theory (SMT) formula, and the YICES SMT
solver [?], that is able to deal with optimization
issue, is employed’. An experimental analysis con-
ducted on a wide set of benchmarks, using also
the same benchmarks setting already employed in
past papers, shows that (z) the first solution is im-
practical, and (#7) the second approach is compet-
itive to, and can be faster than, MAXILITIS.

To summarize the main contributions of the pa-
per:

e We defined two approaches for solving DTPPs,
by means of reduction to a Maximum Satisfi-
ability problem of a set of Boolean combina-
tion of constraints of specific form.

e We implemented both reductions.

e We evaluated such reductions employing the
SMT solver YICES w.r.t. the state-of-the-art
DTPP solver MAXILITIS on random DTPPs.

The rest of the paper is structured as follows.
Section ?? introduces preliminaries about DTPs,
DTPPs and Maximum Satisfiability. Then, in Sec-
tion ?? we present our reductions from DTPPs to

1Y1cES showed the best performance in [?] among a num-
ber of alternatives, and it is the only SMT solver able to
cope with (Partial Weighted) Maximum Satisfiability prob-
lems.

Maximum Satisfiability of Boolean combination of
constraints, while the experimental analysis is pre-
sented in Section ??. The paper ends by providing
a discussion about the related work in Section 77
and some conclusions in Section ?7.

2. Formal Background

Problems involving disjunctions of temporal
constraints have been introduced in [?], as an ex-
tension of the Simple Temporal Problem (STP) [?],
which consists of conjunction of constraints. The
problem was referred for the first time as Dis-
junctive Temporal Problem (DTP) in [?], and is
presented in the first subsection. The remaining
subsections introduce Maximum Satisfiability of
DTPs and DTPPs.

2.1. DTP

Let V be a set of symbols, called wvariables. A
constraint is an expression of the form [ >z —y >
u, where <€ {<, <}, z,y € V, and [, u are numeric
constants. A DTP constraint is a disjunction of
constraints having <xi=< (equivalently seen as a
disjunctively intended finite set of constraints). A
DTP formula, or simply formula, is a finite con-
junction of DTP constraints. A DTP constraint
can be either hard, i.e. its satisfaction is manda-
tory, or soft, i.e. its satisfaction is not necessary
but preferred, and in case of satisfaction it con-
tributes to the generation of high quality solutions
according to the aggregation methods employed
and defined later. A DTP4 constraint is a Boolean
combination of constraints.

About the semantics, let the set D (domain of
interpretation) be either the set of the real num-
bers R or the set of integers Z. An assignment is a
total function mapping variables to D. Let o be an
assignment and ¢ be a formula composed by hard
DTP constraints only. Then, o |= ¢ (o satisfies a
formula ¢) is defined as follows

—oFEl<z—y<wuifand only if I < o(z) —
o(y) < w;

— 0 = —¢ if and only if it is not the case that
o = ¢;

- 0 = (A_1¢;) if and only if for each i € [1,n],
o = ¢i; and
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- 0 E (VI_,¢;) if and only if for some ¢ € [1,n],
g ': (;51

If o = ¢ then o is also called a model of ¢. We also
say that a formula ¢ is satisfiable if and only if
there exists a model for ¢. The DTP is the problem
of deciding whether a formula ¢ is satisfiable or
not in the given domain of interpretation D. Notice
that the satisfiability of a formula depends on D,
e.g. the formula

r—y>0Nz—y<l1

is satisfiable if D is R but unsatisfiable if D is Z.
However, the problems of checking satisfiability in
Z and R are closely related and will be treated
uniformly.

Example 1. Consider a DTP formula ¢; composed
by only one constraint dcy V dco, where dcy : 1 <
r—y<10and dco : 5 < z—q < 15; D=2Z.

¢1 is satisfiable and a model oy for it assigns
x=8,y=2,2z=10,and ¢ =0.

2.2. Max-DTP

Consider now a DTP4 formula ¢ consisting of
hard DTP constraints and soft DTP4 constraints.
Intuitively, in this case the goal is to find an as-
signment to the variables in ¢ that satisfies all
hard DTP constraints and maximizes the sum of
the weights associated to satisfied soft DTP4 con-
straints. The problem is called Partial Weighted
Maximum Satisfiability of DTPA, and is formally
defined as a pair (¢, w), where

1. ¢ is a DTP# formula consisting of both hard
DTP and soft DTP# constraints, and

2. w is a function that maps DTP# constraints
to positive integer numbers.

More precisely, the goal is to find an assignment
o’ for ¢ that satisfies all hard DTP constraints and
maximizes the following linear objective function

f
f= > wd) (1)
deg, o' l=d

where d is a soft DTP# constraint. In the follow-
ing, for simplicity, we will use Max-DTP to refer

to the Partial Weighted Maximum Satisfiability
problem of mixed DTP and DTP# constraints as
defined above.

Example 2. Consider a soft DTP4 formula ¢y :=
di Ndg Nds, where d; is the formula ¢, in Example
l,dy=—1<z—y<Oandd3:=1<2z—¢q<4;
moreover, w(dy) = 3, w(dz) = 2 and w(ds) = 1.

An assignment oy that maximizes the objective
function (??) assigns x =0, y = 1, 2 = 10, ¢ = 0,
and the related value for f is 5.

2.3. DTPP

DTPP is an extension of DTP, and it is defined
as a pair (¢, w’), where

1. ¢ is a DTP formula consisting of both hard
and soft DTP constraints, and

2. w' is a function that maps constraints in soft
DTP constraints to piece-wise constant pref-
erence functions.

We consider, as before, an utilitarian method
for aggregating soft DTP constraints weights: the
goal is now to find an assignment ¢’ for ¢ that (i)
satisfies all hard DTP constraints, and (i¢) max-
imizes the sum of weights associated to satisfied
soft DTP constraints, i.e. maximizes a linear ob-
jective function as (?7?).

It is left to define how weights, corresponding to
preference values, are aggregated within soft DTP
constraints to “define” their weights w(d) in (??).
In our work we consider a prominent semantic for
this purpose: the maz semantic.

Given a constraint dc =1 < z —y < wu, its
preference function w’(dc) is in general defined as:

w'(de) : t C [l,u] — [0, RT]

mapping every feasible temporal interval ¢ to a
preference value expressing its weight. The maz
semantic [?,?] defines the weight w(d) of a satisfied
soft DTP constraint d as the maximum among the
possible preference values of satisfied constraints
in d, i.e. given an assignment o’

w(d) == maz{w (tg.) : dc € d,o’ |= dc}

where tg4. is the interval [o/(z), o' (y)].
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Example 3. Consider the DTP formula in Exam-
ple 1 to be soft instead of hard, and the following
piece-wise constant preference functions:

1 1<z—y<3

fde)={ 2 3<a—y<T (2)
1 T<zxz—y<10

and
2 5<z2z—q<8

fldea) =< 4 8<z—¢q<10 (3)

2 10<z—q<15

Of course, in this case the maximum possible
value (4) can be assigned to the DTP constraint
d, e.g. with the assignment o of Example 1.

3. Reducing DTPPs to Max-DTPs

As we said before, our main idea is to reduce the
problem of solving DTPPs to solving Max-DTPs.
Hard DTP constraints remain unchanged in our
reduction, while soft DTP constraints need special
treatment. Given a soft DTP constraint d, for each
constraint dc ;== < x —y < wu in d, let Lg. be
a set of pairs, each pair (DC,v) being composed
by (i) a set DC of pairs (I,7), representing the
end points of intervals, such that [I,u] C [I,u], and
(i4) the preference value v of the constraints of the
type [ >4 2 — y a1, € {<, <} from DC, where
the variables x, y are obtained from the constraint
name. If the preference function is a constant v’,
Ly, is composed by only one pair ({({,u)},v'), i.e.
the interval [I,u], representing the constraint I <
x —y < u, and its preference value v’.

We need now to “aggregate” the preference val-
ues corresponding to different levels of the piece-
wise constant functions in the various constraints
in order to implement our reduction. The idea is
to “merge” the pairs (DC,v), representing pref-
erence functions of constraints, in the same soft
DTP constraint; intuitively, this means that, if the
candidate solution satisfies at least one of the con-
straints obtained from DC' at preference value v,
then a possible preference value for d is v.

More formally, consider aggregating Lg., and
Lgc,, coming from two constraints dec; and dcg in

d, respectively.

Lic,vde, :=MERGE(Lgc, , L4c, ) is an operator that

e contains the preference values that are in the
preference functions of dey or deg; and

e if the preference functions of dc; and deo
have a common preference value, i.e. Lg., con-
tains a pair (DC;,v;), Lgc, contains a pair
(DCj,v;) and v; = vj, these pairs are merged
and Lgc,vde, contains a pair (DC; UDC},v;).

Moreover, during MERGE a subscript is attached
to the pairs (I,7), from which we deduce the or-
dered pair of variables involved in the constraint
it represents.

The operator MERGE can be easily generalized
to an arbitrary finite number of constraints.

Consider a soft DTP constraint
d:=dcy V...Vdc. (4)

Further, consider an ordering on the k£ pairs in
Ly of a dc in d induced by the preference values,
i.e. an ordering < is which (DC;,v;) < (DCj,v;)
iff v; < v;,1 < 4,5 < ki # j. For simplicity,
from now on we consider the pairs in Ly to be re-
ordered according to <, i.e. DC] is the set whose
v1 is maximum among the weights in d, i.e. v >
v;,2 < i < k, while the set DC}, is such that v, <
vi,1<i<k-—1.

In the following subsections, we present the
two reductions. The first reduction corresponds to
a very natural representation of soft DTP con-
straints, where preference values are directly ap-
plied to conjunctions of (possibly negated) con-
straints. In the second reduction, instead, the re-
sulting formula has a Conjunctive Normal Form
(CNF) structure, but preference values need to be
aggregated.

3.1. First reduction

The first attempt we considered for our reduc-
tion is to express a soft DTP constraint d using
soft DTP# constraints that force the highest pref-
erence value associated to satisfied constraints in
d to be assigned as weight for d, in a direct way.
First, we apply the operator MERGE to all the con-
straints in d, and related piece-wise constant pref-
erence functions, i.e. Lg :=MERGE(Lgc,, - - -, Lde, )-
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Then, starting from Ly, d and its preference
value are expressed by the following |Lg| soft
DTP# constraints: for each z = 1...|Lg|

Cz = /\fz_ll_‘(vpeDC%dcp) A (Vpepc.dey)  (5)

w(d) = w(e,) = v,

where dc,, is a constraint built from the pair p
(we recall that the subscript identifies the vari-
ables involved in the constraint, and in which or-
der they appear). The set of constraints is mutu-
ally exclusive: considering an assignment, at most
one of the constraints in (??) can be satisfied, and
the relative value is assigned to d. If a constraint
in (??) is satisfied, this is the constraint leading to
the maximum achievable value (according to the
candidate solution considered).

This is done for each soft DTP constraint in the
formula.

Example 4. Consider the DTPP formula in Ex-
ample 3. We report again the preference functions
for convenience, and then the related representa-
tions.

The piece-wise constant preference function as-
sociated to dc;p is

1 1<2z—y<3
2 3<x—y<T (6)
1 7T7<z—-—y <10

f(dcl) =

and can be represented with

Lge, = {<{(17 3)a (77 10)}7 1>7 <{(37 7)}7 2>}

Regarding dcs, its preference function is

2 5<z2z—q<8
fldes) =< 4 8<z—¢q<10 (7)
2 10<z—q<15
represented with
Lgc, = {<{(5v 8)’ (10a 15)}1 2>7 <{(87 10)}7 4>}

We now “merge” Lg., and Ly, into

Lac,vde, = merge(Lac,, Lac,)

whose result is

{ ({(1,3)1,(7,10)1}, 1),
{@, ) (5,8)2, (10, 15)2}, 2), (8)
({(8,10)2},4) }-

Following (??), the reduction is in Figure ??.

Further note that the preference functions we
have considered are characterized by having the
left-most sub-interval with both bounds included,
while the remaining sub-intervals have only the
right bound included: to correctly reproduce the
reduction from the set L, we have further assumed
that with the subscript we can recognize the left-
most sub-interval of each constraint.

This first reduction corresponds to a very nat-
ural way of expressing soft DTP constraints; un-
fortunately, experiments show that it is inefficient
(see Section ?? for details).

3.2. Second reduction

A second reduction transforms each soft DTP
constraint d to |Ly| soft DTP4 constraints as fol-
lows: for each z =1...|Lg|

¢, = Vi_1 Vpenc, dep (9)

The problem is now to define what are the
weights associated to each newly defined soft
DTP# constraint, in order to reflect the seman-
tic of our problem. In the previous reduction (?7?),
the constraints occurred positively only once; now
there can be many occurrences in the correspond-
ing soft DTP4 constraints in (??) that influence
constraints weights adaptation and definition. Our
solution starts from the following fact: if the con-
straint ci Lal is satisfied, it contributes for at least
the minimum preference value vz, i.e. the one
associated to the set DC\p |, from which CiLd| is
constructed. Satisfying the constraint CT La|—1 CON-
tributes for vy, -1 — v, and given that a con-
straint ¢, implies all constraints ¢, 2’ > z, these
two soft DTPA constraints together contribute for
V|py4|—1- This method is recursively applied up to
the set of constraints constructable from DCY, i.e.
¢}, whose preference value is v1 — v9 and, given
that ¢} implies all other introduced soft DTP4
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c1:(8<z—¢<10), w(c;) =4

e AN((B<z—y<NHV(BE<2z—¢<8)V(I0<z—q<15)), w(c) =2

cg:ci A AN(1<z—y<3VTi<z—y<10), w(c) =1

Fig. 1. First reduction applied to Example 4.

constraints, satisfying ¢} correctly corresponds to
assign a weight v to d.
More formally, for each z =1...|Ly|

/ — vlLdl Z = ‘Ld|
w(c;) = {vz —v,41 1<z < |Ly| (10)

and, given an assignment o/,

w(d) = Z vy

z€{1,...,|Lq|},0' F=c’,

The soft DTP4 constraints that express Exam-
ple 4 are in Figure ?7.

Such reduction works correctly if we consider a
single soft DTP constraint. However, considering
a formula ¢, given our reduction, it is possible to
have repeated DTP4 constraints in the reduced
formula ¢’. In this case, intuitively, we want each
single occurrence in ¢’ to count “separately”, given
that they take into account different contributions
from different soft DTP constraints in ¢. A solu-
tion is to consider a single occurrence of the re-
sulting soft DTPA constraint in ¢’ whose weight is
the sum of the weights of the various occurrences.
The same applies to the first reduction.

4. Experimental Analysis

We have implemented both reductions, and ex-
pressed the resulting formulas as SMT formu-
las with optimization, then solved with YICES
ver. 1.0.38. The experimental analysis will be di-
vided into two parts: the first part compares the
two reductions (showing that the first reduction
is not competitive), while the second part aims

at comparing the performance of our second re-
duction, called DTPPYICES, with two versions of
the MAXILITIS solver, namely MAXILITIS-IW and
MAXILITIS-BB. MAXILITIS-IW (IW standing for
Iterative Weakening) searches for solutions with a
progressively increasing number of violated con-
straints; MAXILITIS-BB uses a branch-and-bound
approach for reaching the optimal solution.

Our experiments aim at comparing the consid-
ered solvers on three dimensions, namely (i) the
size of the benchmarks; (i4) the number of pref-
erence levels in the piece-wise constant preference
functions; and (7i7) the constraint density, i.e. the
ratio of constraints to arithmetic variables, all used
in past papers on DTPPs.

For randomly generating the benchmarks the
main parameters considered are:

1. the number k of disjuncts per DTP con-
straint;

2. the number n of arithmetic variables;

the number m of DTP constraints;

4. the number [ of levels in the preference func-
tions.

bad

Furthermore, we also investigated the perfor-
mance of the solvers considering two different set-
tings related to the generation of the preference
values in the piece-wise preference functions. The
preference functions considered are semi-convex
piece-wise constant:? starting from the lower and
upper bounds of the constraints, intervals corre-
sponding to higher preference levels are randomly
put within the interval of the immediate lower
level, with a reduction factor, up to an highest
level. For details see, e.g. [?].

In particular, we consider

2These are the type of preference functions resulting from
the generation method employed in the literature to eval-
uate DTPP solvers.
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A =8<z—¢q<10, w(c)) =2

chi=cAVB<r—y<TV5<2z—q<8VI0<z—q<15), w(c) =1

=i VeV (1 <z—y<3VT<z—y<10), w(ch) =1

Fig. 2. Second reduction applied to Example 4.

— asetting where, given the i-th level [, w(l) = 1,
i.e. the setting used in [?] (“Model A” in the
following);

— a setting where w(l) is a positive integer num-
ber randomly generated in the range [1, 100],
still ensuring to maintain the same shape for
preference functions (“Model B” in the fol-
lowing).

In Figure 7?7 we report an example related to a
constraint, with possible preference values gener-
ated by the two models; Figure ?? depicts their
graphical versions.

The experiments reported in the following ran
on PCs equipped with a processor Intel Core i5
at 3.20 GHz, with 4 GB of RAM, and running
GNU Linux Ubuntu 12.04. The timeout for each
instance has been set to 300s.

For each tuple of values of the parameters, 25 in-
stances have been generated, and the median CPU
time is showed (unsolved instances are counted
300s).

As a first experiment, we randomly generated
benchmarks? by varying the total amount of con-
straints, with the following parameters: k=2, m €
{10,...,100}, n=0.8 x m, 1=>5, lower and upper
bounds of each constraint taken in [—50, 100].

The next experiment aims to evaluate the
solvers by varying the number of levels in the pref-
erence functions, with the following parameters:
k=2,n=24, m=30,1 € {2,...,8}, lower and upper
bounds of each constraint taken in [—50, 100].

The last experiment aims to evaluate the solvers
with respect to the constraint density m/n. In or-
der to do that, we generated benchmarks having
k=2, n=30, [=5 and ratio m/n in {3, 6, 12, 15, 20,
30, 36}. Also in this case, we set lower and upper
bounds of each constraint in the range [—50, 100].

3We have used and extended the program provided by
Michael D. Moffitt, author of MAXILITIS.

These experiments correspond to the dimen-
sions reported above, and for each of such setting
the preference values of piece-wise constant pref-
erence functions are generated with model A and
model B (for a total of six groups of instances).

4.1. Comparing the two reductions

As we mentioned in the Introduction, the first
reduction is impractical from a performance point
of view. Considering the first experiment, we re-
port that the implementation of the first reduc-
tion was able to solve only benchmarks having m
= 10. In the case of model A, we report that it
was able to solve all the 25 instances in 74.22 CPU
seconds, while considering model B, it tops at 18
solved benchmarks in 2162.67 seconds. As we will
show in detail in the next section, DTPPYICES is
orders of magnitude faster.

Considering the second experiment, we report
that the implementation of the first reduction did
not solve any instance in the CPU time limit. Fi-
nally, concerning the last experiment, we report
that it was only able to solve benchmarks having
m/n = 3. Also in this case, DTPPYICES is faster:
the median CPU time related to the first reduc-
tion is 182.16 for model A, and 18.81 for model B,
while the same for DTPPYICES is 65.33 and 1.14,
respectively.

We conjecture that the differences in perfor-
mances between the two reductions are mainly
due to the structure of the resulting formulas:
Yices follows the lazy approach to SMT solv-
ing [?], which is based on abstracting the prob-
lem into a CNF formula to be processed by a SAT
solver. However, a more detailed analysis is needed
to corroborate this conjecture.

4.2. Comparison with the state-of-the-art

The results obtained in the experiments are
shown in Figure ??, whose organization corre-
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LdCA = {<{(_497 _33)a (777 90)}, 1>7 <{(_337 —14), (657 77)}, 2>v <{(_147 65)}7 3>}

Lge, = {{{(—49,-33),(77,90)},17), ({(—33,—-14), (65, 77)}, 55), ({(—14,65)},68) }.

Fig. 3. Examples of a constraint dc, whose preference values are generated with model A (Lg4c,) and with model B (Lgc ).

100

80 4

60

40 |

20

T T T T T T T
—40 -20 o] 20 40 60 80 100

Fig. 4. Piece-wise constant preference functions related to Lg., (left) and Lgc, (right) from Figure ??. In the x-axis is
reported the interval where the constraint is defined, while in the y-axis the preference values are reported.

sponds to the six groups of instances outlined
above. Concerning the top-most plots, in the z-
axis we show the total amount of constraints, while
in the middle plots the total amount of levels of
the piece-wise constant preference functions is re-
ported. In the plots in the bottom we show the
ratio of constraints to arithmetic variables. In the
y-axis (in log scale), it is shown the CPU time (in
seconds). MAXILITIS-BB’s performance is depicted
by a dotted line with blue triangles, MAXILITIS-
IW’s by using a dashed line with orange upside
down triangles, and DTPPYICES performance is
denoted by a solid line with black circles. Plots
in the left-most column are related to model A,
while plots in the right-most column are related
to model B. Finally, points in the plots denote the
related median CPU time (timeout values are not
depicted).

Looking at Figure ??, and considering the
top-left plot, we can see that the median time
of MAXILITIS-BB on benchmarks with 100 con-
straints runs into timeout. We can also see that up
to m = 80, MAXILITIS-IW is one order of magni-

tude of CPU time faster that DTPPYICES, while for
m > 80 the performance of the solvers are in the
same ballpark. Now, considering the same analy-
sis in the case of model B, we can see (top-right
plot) that the picture changes in a noticeable way.
Benchmarks are harder than before: MAXILITIS-
BB and MAXILITIS-IW are not able to efficiently
cope with benchmarks with m > 30. In this case,
DTPPYICES is the best solver, and we report that
it is able to deal with benchmarks up to m = 60.

Looking at the middle-left plot of Figure ??, we
can see that MAXILITIS-IW is the best solver up
to [ = 7, while for [ = 8 we report that DTPPY-
ICES is faster. Also in this case MAXILITIS-BB does
not efficiently deal with the most difficult bench-
marks in the suite. Looking now at the plot in
the middle-right, we can see the same picture re-
lated to the bottom-right plot: the performance
of both versions of MAXILITIS are very similar,
while DTPPYICES is the fastest solver: the median
CPU time of both MAXILITIS-BB and MAXILITIS-
IW runs in timeout for [ > 5, while DTPPYICES
solves the majority of the benchmarks within the
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Fig. 5. Results of the evaluated solvers on random DTPPs considering the size of the benchmarks (top-most plots), number
of preference levels (middle), and constraint density (bottom). Left-most plots are related to model A, while right-most plots

depict the results related to model B.

time limit for all levels. Along with the previous
results, this reveals that MAXILITIS may have spe-
cialized techniques to deal with DTPPs generated
with model A. Finally, concerning our last exper-

iment, we report that both versions of MAXILI-
TIS are generally faster than DTPPYICES. Looking
at the plot reporting the performance on model
A (bottom-left), we can see that MAXILITIS is
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faster especially looking at m/n < 20. The picture
changes with benchmarks generated with model B
(bottom-right), where we can see that m/n equals
to 12 and 15 represent a hard setting for all the
considered solvers. Moreover, DTPPYICES is the
only solver that can solve the majority of the
benchmarks with m/n = 20.

Detailed results related to the plots in Figure 77
are reported in Tables 7?7, 7?7, and ?7?.

5. Related Work

DTP is a well studied problem in literature:
Along the years several systems that can solve
DTPs have been developed, e.g., SK [?], TSAT [?],
CSP1 [?], EpiLiTis [?], TSAT++ [?], and MATE-
SAT [?]. Moreover, the competition of solvers
for Satisfiability Modulo Theories (SMT-COMP)*
has two logics that include DTPs (called QF_RDL
and QF_IDL, respectively), thus all SMT solvers
that can deal with these logics can act as a DTP
problems (note that TSAT++ and MATHSAT
have been originally developed in the SMT field).

Then, the addition of preferences (see, e.g. [?])
has led to the definition of solvers for dealing
with DTPPs. MAXILITIS [?,?] (that extends the
DTP solver EPILITIS), WEIGHTWATCHER [?] and
ARIO [?] (originated in the SMT field) implement
different approaches for solving DTPPs as defined
in [?]. MAXILITIS is a direct extension of the DTP
solver EPILITIS [?], while WEIGHTWATCHER uses
an approach based on Weighted Constraints Satis-
faction problems. ARIO, instead, relies on an ap-
proach based on Mixed Logical Linear Program-
ming problems. In our analysis we have used MAX-
ILITIS because the results in, e.g. [?] clearly indi-
cate its superior performance.

About the comparison to MAXILITIS, our So-
lution is easy, yet efficient, and has a number
of advantages w.r.t. the approach of MAXILITIS.
On the modeling side, it allows to consider (with
no modifications) both integer and real variables,
while MAXILITIS can deal with integer variables
only. Moreover, our implementation provides an
unique framework for solving DTPPs, while the
techniques proposed in [?] are implemented in two
separate versions of MAXILITIS. Finally, our so-

lution is modular, i.e. it is easy to rely on dif-
ferent back-end solvers (or, on a new version of
Y1CES), thus taking advantages on new algorithms
and tools for solving our formulas of interest.

DTPPs with a restricted form of preference
functions have been tackled in [?] with a similar
approach: in [?], only constant preference functions
have been considered.

A previous version of this paper has been pre-
sented to the Hth Italian Workshop on Planning
and Scheduling®, and appears in [?]: in compari-
son, the current paper (i) introduces the impor-
tant concepts in a more clear way, by relying on
examples to illustrate such concepts, (i¢) imple-
ments and evaluates the first reduction, (i) in-
cludes more benchmarks, and (iv) extends the re-
lated work section.

6. Conclusions

In this paper we have introduced a general
reduction-based approach for solving DTPPs, that
reduces these problems to Maximum Satisfiability
of a set of Boolean combination of constraints. An
experimental analysis performed with the YICES
SMT solver on randomly generated DTPPs shows
that our approach is competitive to, and some-
times faster than, the specific implementations of
the MAXILITIS solver. As a future work, we first
plan to evaluate techniques (e.g. pre-processing) to
further improve the performance of our approach,
especially on Model A, and to run more detailed
experiments to corroborate the conjectures (about
the performances of the two reductions, and the
differences in performances between Model A and
Model B) in the paper.

The executable of our solver can be found at

http://wuw.star.dist.unige.it/~marco/DTPPYices/.
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N M MaxiLiTiS-BB MaxiLiTis-IW DTPPYICES
Mod. A Mod. B Mod. A Mod. B Mod. A Mod. B
# | Time | # | Time || # | Time | # | Time || # | Time | # | Time
8 |10 || 25 0.00 | 25 0.04 | 25| 0.00]| 25 0.31 (25| 0.10]25 0.26
16 | 20 25 0.17 | 25 16.28 || 25| 0.01 | 25| 60.84 || 25| 0.31 |25 0.80
24130 || 25 5.61 | 18 | 588.56 || 25 | 0.02 | 21 | 913.16 || 25 | 0.50 | 25 4.45
32 | 40 24| 67.60| 3| 80.83 || 25| 0.06 905.42 || 25| 0.78 | 25 23.44
40 | 50 22| 27.53 105.45 || 25 | 0.29 327.23 || 25 1.48 | 24 | 245.32
48 | 60 17 | 24724 | - —1[25] 4.24| - —1[25] 24121 | 403.39
56 |70 || 21| 57.79| - —-125] 071 - -1/ 25| 3.58 | 12 | 1355.01
64 | 80 16 | 151.82 | - —-1[25] 7.13| - -1/ 25| 4.75 414.62
72 190 17 | 399.10 | - -1/ 251530 | — -1 25| 6.72 674.02
80| 100 || 12| 774.92 | — -1/ 255790 | - — 1| 25 | 10.72 164.91
Table 1
Performance of the selected solvers on random DTPPs with
different sizes. The first columns (“N”) reports the total
amount of variables for each pool of DTPPs, while the sec-
ond one (“M”) reports the total amount of constraints. It
is followed by three groups of columns, and the label is the
solver name. Each group is composed of four columns, re-
porting the total amount of instances solved within the time
limit (“#”) and the total CPU time — i.e., the sum of CPU
time related to the solved instances — in seconds (“Time”)
spent, in the case of model A and B (groups “Mod. A” and
“Mod. B”, respectively). In case a solver does not solve any
instance, “-” is reported.
L MAXILITIS-BB MAXILITIS-IW DTPPYICES
Mod. A Mod. B Mod. A Mod. B Mod. A Mod. B
# | Time | # | Time # | Time | # Time # | Time | # | Time
2 || 25 0.01 | 25 1.68 || 25 0.01 | 25 2.836 || 25 0.10 | 25 0.20
31 25 0.01 | 25 7.05 || 25 0.01 | 25 | 47.261 || 25 0.20 | 25 0.38
4 1 25 0.01 | 21 | 395.00 || 25 0.01 | 25 | 203.523 || 25 0.32 | 25 0.87
5 || 25 5.62 | 18 | 589.33 || 25 0.04 | 21 | 914.453 || 25 0.50 | 25 4.44
6 || 24| 32.66 | 10 | 673.87 || 25 4.80 | 10 | 608.038 || 25 1.82 | 25 17.28
7| 21| 23050 | 2| 68.01 | 23 | 129.72 59.572 || 23 | 56.05 | 21 | 528.05
8 || 12 | 434.55 | 2 | 216.89 || 17 | 598.42 303.079 || 15 | 228.16 | 13 | 487.39
Table 2

Performance of the selected solvers on random DTPPs with different levels. In column “L” we report the total amount of
levels, while the rest of the table is organized similarly to Table ?77?.
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