
Abstract Disjunctive Answer Set Solvers
Remi Brochenin1 and Yuliya Lierler2 and Marco Maratea3

Abstract. A fundamental task in answer set programming is to
compute answer sets of logic programs. Answer set solvers are the
programs that perform this task. The problem of deciding whether
a disjunctive program has an answer set is ΣP2 -complete. The high
complexity of reasoning within disjunctive logic programming is re-
sponsible for few solvers capable of dealing with such programs,
namely DLV, GNT, CMODELS and CLASP. We show that transition
systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model
and analyze satisfiability solvers can be adapted for disjunctive an-
swer set solvers. In particular, we present transition systems for
CMODELS (without backjumping and learning), GNT and DLV (with-
out backjumping). The unifying perspective of transition systems
on satisfiability and non-disjunctive answer set solvers proved to be
an effective tool for analyzing, comparing, proving correctness of
each underlying search algorithm as well as bootstrapping new algo-
rithms. Given this, we believe that this work will bring clarity and
inspire new ideas in design of more disjunctive answer set solvers.

1 Introduction

Answer set programming (ASP) is a declarative programming
paradigm oriented towards difficult combinatorial search prob-
lems [20, 21]. ASP has been applied to many areas of science and
technology, from the design of a decision support system for the
Space Shuttle [24] to graph-theoretic problems arising in zoology
and linguistics [1]. A fundamental task in ASP is to compute answer
sets of logic programs. Answer set solvers are the programs that per-
form this task. There were sixteen answer set solvers participating in
the Fourth Answer Set Programming Competition in 20134.

Gelfond and Lifschitz introduced logic programs with disjunc-
tive rules [8]. The problem of deciding whether a disjunctive pro-
gram has an answer set is ΣP2 -complete [3]. The high complexity
of reasoning within disjunctive logic programming stems from two
sources: (i) there is an exponential number of possible candidate
models, and (ii) the hardness of checking whether a candidate model
is an answer set of a propositional disjunctive logic program is co-
NP-complete. Only four answer set systems allow programs with dis-
junctive rules: DLV [13], GNT [10], CMODELS [14] and CLASP [6].

Recently, several formal approaches have been used to describe
and compare search procedures implemented in answer set solvers.
These approaches range from a pseudo-code representation of the
procedures [9], to tableau calculi [7], to abstract frameworks via tran-
sition systems [17, 18]. The last method proved to be particularly
suited for the goal. It originates from the work by Nieuwenhuis et
al. [23], where authors proposed to use transition systems to describe

1 University of Genova, Italy, email: remi.brochenin@unige.it
2 University of Nebraska at Omaha, email: ylierler@unomaha.edu
3 University of Genova, Italy, email: marco@dibris.unige.it
4 https://www.mat.unical.it/aspcomp2013/Participants

the DPLL (Davis-Putnam-Logemann-Loveland) procedure [2]. They
introduced an abstract framework – a DPLL graph – that captures
what ”states of computation” are, and what transitions between states
are allowed. Every execution of the DPLL procedure corresponds to
a path in the DPLL graph. Lierler and Truszczynski [17, 18] adapted
this approach to describing answer set solvers for non-disjunctive
programs including SMODELS, CMODELS, and CLASP. Such an ab-
stract way of presenting algorithms simplifies the analysis of their
correctness and facilitates formal reasoning about their properties,
by relating algorithms in precise mathematical terms.

In this paper we present transition systems that account for dis-
junctive answer set solvers implementing plain backtracking. We de-
fine abstract frameworks for CMODELS (without backjumping and
learning), GNT and DLV (without backjumping). We also identify a
close relationship between answer set solvers DLV and CMODELS by
means of properties of the related graphs. We believe that this work
will bring better understanding of the main design features of current
disjunctive answer set solvers as well as inspire new algorithms.

The paper is structured as follows. Sec. 2 introduces needed pre-
liminaries. Sec. 3, 4 and 5 show the abstract frameworks of CMOD-
ELS, GNT and DLV, respectively. The paper ends in Sec. 6 by dis-
cussing related works and with final remarks.

2 Preliminaries

Formulas, Logic Programs, and Program’s Completion Atoms
are Boolean variables over {true, false}. The symbols ⊥ and > are
the false and the true constant, respectively. The letter l denotes a
literal, that is an atom a or its negation ¬a, and l is the complement
of l, i.e., literal a for ¬a and literal ¬a for a. Propositional formulas
are logical expressions defined over atoms and symbols ⊥, > that
take value in the set {true, false}. A finite disjunction of literals, is
a clause. We identify an empty clause with the clause⊥. A CNF for-
mula is a conjunction (alternatively, a set) of clauses. A conjunction
(disjunction) of literals will sometimes be seen as a set, containing
each of its literals. Given a conjunction (disjunction)B of literals, by
B we denote the disjunction (conjunction) of the complements of the
elements of B. For example, a ∨ ¬b denotes ¬a ∧ b, while a ∧ ¬b
denotes ¬a ∨ b. A (truth) assignment to a set X of atoms is a func-
tion from X to {false, true}. A satisfying assignment or a model
for a formula F is an assignment M such that F evaluates to true
under M . If F evaluates to false under M , we say that M contra-
dicts F . If F has no model we say that F is unsatisfiable. We often
identify a consistent set L of literals (i.e., a set that does not contain
complementary literals, for example, a and ¬a) with an assignment
as follows: if a ∈ L then a maps to true , while if ¬a ∈ L then a
maps to false . We also identify a set X of atoms over At(Π) with
an assignment as follows: if a ∈ X then a maps to true , while if
a ∈ At(Π) \X then a maps to false .



A (propositional) disjunctive logic program is a finite set of dis-
junctive rules of the form

a1 ∨ . . . ∨ ai ← ai+1, . . . , aj , not aj+1, . . . , not ak,
not not ak+1, . . . , not not an,

(1)

where a1, . . . , an are atoms. The left hand side expression of a rule
is called the head. We call rule (1) non-disjunctive if its head contains
not more than one atom. A program is non-disjunctive if it consists
of non-disjunctive rules. The letter B often denotes the body

ai+1, . . . , aj , not aj+1, . . . , not ak, not not ak+1, . . . , not not an
(2)

of a rule (1). We often identify (2) with the conjunction

ai+1 ∧ . . . ∧ aj ∧ ¬aj+1 ∧ . . . ∧ ¬ak ∧ ak+1 ∧ . . . ∧ an.

We identify the rule (1) with the clause

a1 ∨ . . . ∨ ai ∨ ¬ai+1 ∨ · · · ∨ ¬aj∨
aj+1 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬an.

(3)

This allows us to sometimes view a program Π as a CNF formula.
It is important to note the presence of doubly negated atoms in the

bodies of rules. This version of logic programs is a special case of
programs with nested expressions introduced by Lifschitz et al. [19].
A choice rule [22] construct {a} ← B, originally employed in the
LPARSE5 and GRINGO6 languages, can be seen as an abbreviation for
a rule a← B, not not a [5]. In this work we adopt this abbrevia-
tion. We sometime write (1) as

A← D,F (4)

where A is a1 ∨ . . . ∨ ai, D is ai+1, . . . , aj , and F is

not aj+1, . . . , not ak, not not ak+1, . . . , not not an.

The reduct ΠX of a disjunctive program Π w.r.t. a set X of atoms
is obtained from Π by deleting each rule (4) such that X 6|= F and
replacing each remaining rule (4) with A ← D. A set X of atoms
is an answer set of Π if X is minimal among the sets of atoms that
satisfy ΠX . For any consistent and complete setM of literals, ifM+

is an answer set for a program Π, thenM is a model of Π. Moreover,
in this case M is a supported model of Π, in the sense that for every
atom a ∈M , M |= B for some rule a← B in Π.

The completion Comp(Π) of a program Π is a formula

Comp(Π) = Π ∪ {¬a ∨
∨

C∨a←B∈Π

(B ∧ C), a ∈ At(Π)}

where by At(Π) we denote the set of atoms occurring in Π. This
formula has the property that any answer set of Π is a model of
Comp(Π). The converse does not hold in general.

Abstract DPLL. The Davis-Putnam-Logemann-Loveland (DPLL)
procedure [2] is a well-known method that exhaustively explores as-
signments to generate models of a propositional formula. Most mod-
ern satisfiability and answer set solvers are based on variations of
the DPLL procedure. We now review the abstract transition system
for DPLL proposed by Nieuwenhuis et al. [23]. This framework pro-
vides an alternative to common pseudo-code descriptions of back-
track search based algorithms.

5 http://www.tcs.hut.fi/Software/smodels/
6 http://potassco.sourceforge.net/

For a setX of atoms, a record relative toX is a stringL composed
of literals over X or symbol ⊥ without repetitions where some lit-
erals are annotated by ∆. The annotated literals are called decision
literals. We say that a record L is inconsistent if it contains both a
literal l and its complement l, or if it contains ⊥. We will sometime
identify a record with the set containing all its elements disregarding
its annotations. For example, we will identify a record b∆ ¬a with
the set {¬a, b} of literals.

A state relative to X is either the distinguished state Failstate,
a record relative to X , or Ok(L) where L is a record relative to X .
For instance, states relative to a singleton set {a} include

Failstate, ∅, ⊥, a ⊥, ⊥ a, a, ¬a, a∆, ¬a∆, a ¬a
a∆ ¬a, a ¬a∆, a∆ ¬a∆, ¬a a, ¬a∆ a, ¬a a∆, Ok(a).

Each CNF formula F determines its DPLL graph DPF . The set
of nodes of DPF consists of the states relative to the set of atoms
occurring in F . The edges of the graph DPF are specified by the
transition rules:7

UnitPropagate :

L =⇒ Ll if
{

C ∨ l is a clause in F and
all the literals of C occur in L

Decide :

L =⇒ Ll∆ if
{

L is consistent and
neither l nor l occur in L

Conclude :

L =⇒ Failstate if
{

L is inconsistent and
L contains no decision literals

Backtrack :

Ll∆L′ =⇒ Ll if
{

Ll∆L′ is inconsistent and
L′ contains no decision literals

OK :
L =⇒ Ok(L) if no other rule applies

A node (state) in the graph is terminal if no edge originates in it.
The following theorem gathers key properties of the graph DPF .

Theorem 1 (Proposition 1 in [17]) For any CNF formula F ,

1. graph DPF is finite and acyclic,
2. any terminal state reachable from ∅ inDPF other than Failstate

is Ok(L), with L being a model of F ,
3. Failstate is reachable from ∅ in DPF if and only if F is unsatisfi-

able.

Thus, to decide the satisfiability of a CNF formula F it is enough
to find a path leading from node ∅ to a terminal node. If it is a
Failstate, F is unsatisfiable. Otherwise, F is satisfiable. For in-
stance, let F = {a∨ b,¬a∨ c}. Below we show a path inDPF with
every edge annotated by the name of the transition rule that gives rise
to this edge in the graph (UP abbreviates UnitPropagate):

∅ Decide
=⇒ a∆ UP

=⇒ a∆ c
Decide
=⇒ a∆ c b∆

OK
=⇒ Ok(a∆ c b∆). (5)

The state Ok(a∆ c b∆) is terminal. Thus, Theorem 1 asserts that F
is satisfiable and {a, c, b} is a model of F . Here is another path to
the same terminal state

∅ Decide
=⇒ a∆ Decide

=⇒ a∆ ¬c∆ UP
=⇒ a∆ ¬c∆ c

Backtrack
=⇒ a∆ c

Decide
=⇒ a∆ c b∆

OK
=⇒ Ok(a∆ c b∆).

(6)

A path in the graph DPF is a description of a process of search for
a model of a CNF formula F . The process is captured via applica-
tions of transition rules. Therefore, we can characterize the algorithm

7 Recall that, given the definition of a record, a state may have a form Ll only
if a literal l or l∆ is not already in L.

2



of a solver that utilizes the transition rules of DPF by describing a
strategy for choosing a path in this graph. A strategy can be based on
assigning priorities to transition rules of DPF so that a solver never
applies a rule in a state if a rule with higher priority is applicable
to the same state. The DPLL procedure is captured by the following
priorities

Conclude,Backtrack >> UnitPropagate >> Decide.

Path (5) complies with the DPLL priorities. Thus it corresponds
to an execution of DPLL. Path (6) does not: it uses Decide when
UnitPropagate is applicable.

Disjunctive Answer Set Solvers: Discussion The problem of
deciding whether a disjunctive program has an answer set is ΣP2 -
complete [3]. This is because: (i) there is an exponential number of
possible candidate models, and (ii) the hardness of checking whether
a candidate model is an answer set of a disjunctive program is co-
NP-complete. The latter condition differentiates disjunctive answer
set solving procedures from answer set solvers for non-disjunctive
programs. Informally, a disjunctive (answer set) solver requires two
“layers” of computation – two solving engines: one that generates
candidate models, and another that tests candidate models. Existing
disjunctive solvers differ in underlying technology for each of the
solving engines. System CMODELS uses instances of SAT solvers for
each of the tasks. System GNT uses instances of non-disjunctive an-
swer set solver SMODELS. System DLV uses the SMODELS-like pro-
cedure to generate candidate models, and instances of SAT solvers
to test candidate models. These substantial differences obscure the
thorough analysis and understanding of similarities and differences
between the existing disjunctive solvers. To elevate this difficulty, we
generalize the graph-based framework for capturing DPLL-like pro-
cedures to the case of disjunctive answer set solving.

3 Abstract CMODELS

We start by introducing a graph DP 2
F,f based on two instances of

DPLL graph. We then describe how it can be used to capture the
CMODELS procedure for disjunctive programs.

Abstract Solver via DPLL. We call a function f : M → F from
a set M of literals to a CNF formula F a witness-(formula) function.
Intuitively, a CNF formula resulting from a witness function is a wit-
ness (formula) with respect to M . Informally, a witness formula is
what is tested by a solver after generating a candidate model so as to
know whether this candidate is good.

An (extended) state relative to sets X and X ′ of atoms is a pair
(L,R) or distinguished states Failstate or Ok(L), where L and R
are records relative to X and X ′, respectively. We often drop the
word extended before state, when it is clear from a context. A state
(∅, ∅) is called initial. For a formula F , by At(F ) we denote the set
of atoms occurring in F . For a formula F and a witness function f ,
by At(F, f) we denote the union of At(f(L)) for all possible con-
sistent records L over At(F ). It is not necessarily equal to At(F ) as
f may, for instance, introduce additional variables.

We now define a graph DP 2
F,f for a CNF formula F and a wit-

ness function f . The set of nodes of DP 2
F,f consists of the states

relative to At(F ) and At(F, f). The edges of the graph DP 2
F,f are

specified by the transition rules presented in Figure 1. We use the fol-
lowing abbreviations in stating these rules. Expression up(L, l, F )

Left-rules:
UnitPropagateL (L, ∅) =⇒ (Ll, ∅) if up(L, l, F )
DecideL (L, ∅) =⇒ (Ll∆, ∅) if de(L, l, F )
ConcludeL (L, ∅) =⇒ Failstate if fa(L)
BacktrackL (Ll∆L′, ∅) =⇒ (Ll, ∅) if ba(L, l, L′)

Right-rules, applicable when no left-rule applies:
UnitPropagateR (L,R) =⇒ (L,Rl) if up(R, l, f(L))
DecideR (L,R) =⇒ (L,Rl∆) if de(R, l, f(L))
ConcludeR (L,R) =⇒ Ok(L) if fa(R)
BacktrackR (L,Rl∆R′) =⇒ (L,Rl) if ba(R, l, R′)

Crossing-rules, applicable when no right-rule and no left-rule applies:
ConcludeLR (L,R) =⇒ Failstate

if L contains no decision literal
BacktrackLR (Ll∆L′, R) =⇒ (Ll, ∅)

if L′ contains no decision literal

Figure 1. The transition rules of the graph DP 2
F,f .

holds when the condition of the transition rule UnitPropagate of
the graph DPF holds, i.e., when

C ∨ l is a clause in F and
all the literals of C occur in L

Similarly, de(L, l, F ), fa(L), and ba(L, l, L′) hold when the condi-
tions of Decide, Conclude, and Backtrack of DPF hold, respec-
tively.

A graph DP 2
F,f can be used for deciding whether a CNF for-

mula F has a model M such that witness formula defined by f with
respect to M is unsatisfiable.

Theorem 2 For any CNF formula F and a witness function f :

1. graph DP 2
F,f is finite and acyclic,

2. any terminal state of DP 2
F,f reachable from the initial state and

other than Failstate is Ok(L), with L being a model of F such
that f(L) is unsatisfiable,

3. Failstate is reachable from the initial state if and only if F has
no model such that its witness is unsatisfiable.

This graph can be used to capture two layers of computation –
generate and test – by combining two DPLL procedures as follows.
The generate layer applies the DPLL procedure to a given formula F
(see left-rules). It turns out that left-rules no longer apply to a state
(L,R) only when L is a model for F . Thus, when a model L for F
is found, then a witness formula with respect to L is built. The test
layer applies the DPLL procedure to the witness formula (see right-
rules). If no model is found for the witness formula, thenConcludeR
rule applies bringing us to a terminal state Ok(L) suggesting that L
represents a solution to a given search problem. It turns out that no
left-rules and no right-rules apply in a state (L,R) only when R is
a model for the witness formula. Thus, the set L of literals is not a
solution and the DPLL procedure of the generate layer proceeds with
the search (see crossing-rules).

CMODELS via the Abstract Solver. We now relate the graph
DP 2

F,f to the CMODELS procedure, DP-ASSAT-PROC, described by
Lierler [14]. We start by introducing some required notation.

For a set M of literals, by M+ we denote atoms that occur posi-
tively in M . For example, {¬a, b}+ = {b}. For set σ of atoms and
set M of literals, by M|σ we denote the maximal subset of M over
σ. For example, {a,¬b, c}|{a,b} = {a,¬b}. We say that a set M of

3



literals covers a set σ of atoms if for each atom a in σ either a or ¬a
is in M . For example, set {¬a} of literals covers set {a} of atoms
while {¬a} does not cover {a, b}. Given a program Π and a con-
sistent set M of literals that covers At(Π), a witness function fmin
maps M into a formula composed of the clause M+, one clause ¬a
for each literal ¬a ∈ M , and the clauses of ΠM+

. Recall that we
identify a program with a CNF formula.

Given a disjunctive program Π, the answer set solver CMOD-
ELS starts its computation by converting program’s completion
Comp(Π) into a CNF formula that we call EDcomp(Π). Lier-
ler (Section 13.2, [16]) describes the details of the transformation.
The graphDP 2

EDcomp(Π),fmin
captures the search procedure of DP-

ASSAT-PROC of CMODELS. The DP-ASSAT-PROC algorithm follows
the priorities on its transition rules listed below

BacktrackL, ConcludeL >> UnitPropagateL >> DecideL >>
BacktrackR, ConcludeR >> UnitPropagateR >> DecideR >>
BacktrackLR, ConcludeLR.

A proof of correctness and termination of the DP-ASSAT-PROC pro-
cedure results from Theorem 2 and two conditions on formula
EDcomp(Π) and function fmin: (i) for any answer set X of Π
there is a model M of EDcomp(Π) such that X = M+

|At(Π), and
(ii) for any consistent set M of literals covering At(Π), M+

|At(Π) is
an answer set of Π if and only if fmin(M) results in an unsatisfiable
formula.

We now capture,for the graph DP 2
EDcomp(Π),fmin

, general prop-
erties which guarantee that a similar solving strategy that uses
the DPLL procedure for generate and test layers results in a cor-
rect answer set solver. We say that a propositional formula F DP-
approximates a program Π if for any answer set X of Π there is a
model M of F such that X = M+

|At(Π). For instance, completion
of Π DP-approximates Π. We say that a witness-formula function f
DP-ensures a program Π if for any consistent set M of literals that
covers At(Π), M+

|At(Π) is an answer set of Π if and only if f(M)
results in an unsatisfiable formula. For example, the witness-formula
function fmin DP-ensures Π. It turns out that for any program Π,
given any formula F that DP-approximates Π and any witness func-
tion f that DP-ensures Π, the graph DP 2

F,f captures a correct algo-
rithm for establishing whether Π has answer sets.

Theorem 3 For a disjunctive program Π, a CNF formula F that
DP-approximates Π, and a witness-formula function f that DP-
ensures Π,

1. graph DP 2
F,f is finite and acyclic,

2. any terminal state of DP 2
F,f reachable from the initial state and

other than Failstate isOk(L), with L+
|At(Π) being an answer set

of Π,
3. Failstate is reachable from the initial state if and only if Π has

no answer sets.

4 Abstract GNT

We illustrated how the graph DP 2
F,f captures the basic CMODELS

procedure. This section describes a respective graph for the proce-
dure underlying disjunctive solver GNT. Recall that unlike solver
CMODELS that uses the DPLL procedure for generating and testing,
system GNT uses the SMODELS procedure – an algorithm for finding
answer sets of non-disjunctive logic programs – for respective tasks.
Lierler [17] introduced the graph SMΛ that captures the computation
underlying the SMODELS algorithm just as the graph DPF captures
the computation underlying DPLL. The graph SMΛ forms a basis for
devising the transition system suitable to describe GNT.

ac(L, a,Λ) if
{

for each rule a← B of Λ
B is contradicted by L

bt(L, l,Λ) if


there is a rule a← l, B of Λ such that

a is a literal of L and
for each other rule a← B′ of Λ

B′ is contradicted by L

uf(L, a,Λ) if

{
L is consistent and
there is a set M containing a such that

M is unfounded on L w.r.t. Λ

Figure 2. The properties for rules of the graph SM2
Λ,p.

Left-rules:
AllRulesCancelledL (L, ∅) =⇒ (L¬a, ∅) if ac(L, a,Λ)
BackchainTrueL (L, ∅) =⇒ (Ll, ∅) if bt(L, l,Λ)
UnfoundedL (L, ∅) =⇒ (L¬a, ∅) if uf(L, a,Λ)

Right-rules, applicable when no left-rule applies:
AllRulesCancelledR (L,R) =⇒ (L,R¬a) if ac(R, a, p(Λ))
BackchainTrueR (L,R) =⇒ (L,Rl) if bt(R, l, p(Λ))
UnfoundedR (L,R) =⇒ (L,R¬a) if uf(R, a, p(Λ))

Figure 3. Transition rules of the graph SM2
Λ,p

Abstract Solver via SMODELS. We abuse some terminology, by
calling a function p : M → Λ from a set M of literals to a non-
disjunctive program Λ a witness-(program) function. Intuitively, a
program resulting from a witness function is a witness (program)
with respect to M . For a program Λ and a witness function p, by
At(Λ, p) we denote the union ofAt(p(L)) for all possible consistent
records L over At(Λ).

We now define a graph SM2
Λ,p for a non-disjunctive program Λ

and a witness function p. The set of nodes of SM2
Λ,p consists of

the states relative to At(Λ) and At(Λ, p). The edges of the graph
SM2

Λ,p are specified by the transition rules of the DP 2
Λ,p graph ex-

tended with the transition rules presented in Figure 3 and based on
the properties listed in Figure 2. We refer the reader to [12] for the
definition of “unfounded” sets.

A graph SM2
Λ,p can be used for deciding whether a non-

disjunctive program Λ has an answer set X such that witness pro-
gram defined by p(X) has no answer sets.

Theorem 4 For any non-disjunctive program Λ and a witness func-
tion p:

1. graph SM2
Λ,p is finite and acyclic,

2. any terminal state of SM2
Λ,p reachable from the initial state and

other than Failstate isOk(L), withL+ being an answer set of Λ
such that p(L) has no answer set,

3. Failstate is reachable from the initial state if and only if there is
no set L of literals such that L+ is an answer set of Λ and p(L)
has no answer set.

Similarly to the graph DP 2
F,f , the graph SM2

Λ,p has two layers. It
combines two SMODELS procedures in place of DPLL procedures.

GNT via the Abstract Solver. Let us illustrate how GNT is de-
scribed by this graph. We need some additional notations for that. For
a disjunctive program Π, by ΠN we denote the set of non-disjunctive
rules of Π, by ΠD we denote Π \ΠN . For each atom a in At(Π) let

4



as be a new atom. For a set X of atoms by Xs we denote a set
{as | a ∈ X} of atoms. The non-disjunctive program Gen(Π) de-
fined by Janhunen et al. [10]8 consists of the rules below

{{a} ← B | a,A← B ∈ ΠD}∪
{← A,B | A← B ∈ ΠD}∪
ΠN∪
{as ← A \ {a}, B | A← B ∈ Π; a ∈ A; a ∨A′ ← B′ ∈ ΠD}∪
{← a, not as | a ∨A← B ∈ Π}
Janhunen et al. [10] defined a witness-program function that they

call Test. The graph SM2
Gen(Π),Test captures the GNT procedure in

a similar way as DP 2
EDcomp(Π),fmin

captures the CMODELS proce-
dure of DP-ASSAT-PROC. The precedence order

BacktrackL, ConcludeL >>
UnitPropagateL, AllRulesCancelledL,
BackchainTrueL >> UnfoundedL >> DecideL >>
BacktrackR, ConcludeR >>
UnitPropagateR, AllRulesCancelledR,
BackchainTrueR >> UnfoundedR >> DecideR >>
BacktrackLR, ConcludeLR

(7)

on the rules of the graph SM2
Gen(Π),Test describes GNT.9

We say that a non-disjunctive program Λ SM-approximates a pro-
gram Π (resp. SM′-approximates) if for any answer set X of Π there
is a consistent and complete set M of literals such that M+ is an
answer set of Λ (resp. M is a supported model of Λ) such that
X = M+

|At(Π). The program Gen(Π) both SM-approximates Π and
SM′-approximates Π. We say that a witness-program function p SM-
ensures a program Π if for any consistent setM of literals that covers
At(Π), M+

|At(Π) is an answer set of Π if and only if p(M) results in
a program that has no answer sets. The function Test SM-ensures Π.
We also define the graph SM ′ × SMΛ,p as the graph SM2

Λ,p minus
the rule UnfoundedL. It turns out that for any program Π, given a
witness-program function p that SM-ensures Π and a nondisjunctive
program Λ that SM-approximates Π (resp. SM′-approximates Π),
the graph SM2

Λ,p (resp. SM ′×SMΛ,p) captures a correct algorithm
for establishing whether Π has answer sets.

Theorem 5 For a disjunctive program Π, a non-disjunctive pro-
gram Λ that SM-approximates Π (resp. SM′-approximates Π), and
a witness-program function p that SM-ensures Π,

1. graph SM2
Λ,p (resp. SM ′ × SMΛ,p) is finite and acyclic,

2. any terminal state of SM2
Λ,p (resp. SM ′ × SMΛ,p) reachable

from the initial state and other than Failstate is Ok(L), with
L+
|At(Π) being an answer set of Π,

3. Failstate is reachable from the initial state if and only if Π has
no answer sets.

Gelfond and Lifschitz [8] defined a mapping from a disjunctive
program Π to a non-disjunctive program Πsh , the shifted variant of
Π, by replacing each rule (1) in Π by i new rules:

am ← B,not a1, . . . , not am−1, not am+1, . . . , not ai (8)

where 1 < m ≤ i, B stands for the body (2) of the rule (1).
Program Πsh SM′-approximates Π. Theorem 5 ensures the graph
SM ′ × SMΠsh ,Test captures a correct procedure for establishing
whether a program Π has answer sets.
8 The presented program Gen(Π) captures the essence of a program defined

under this name by Janhunen et al., but is not identical to it. Our language
of programs includes rules with empty heads as well as choice rules. This
allows us a more concise description of Gen(Π).

9 Sec. 5.1 of [10] describes the “early minimality test” optimization imple-
mented in GNT. The introduced abstract framework does not account for
this feature of GNT. It is a direction of future work to enhance the frame-
work to this case.

dAllRulesCancelledL :

(L, ∅) =⇒ (L¬a, ∅) if
{

for each rule a ∨A← B of Π
B is contradicted by L

dBackchainTrueL :

(L, ∅) =⇒ (Ll, ∅) if


there is a rule a ∨A← l, B of Π
or a rule a ∨ l ∨A← B of Π such that
a is a literal of L and
for each other rule a,A′ ← B′ of Π

B′ is contradicted by L

Figure 4. The new transition rules of the graph SM∨ ×DPΠ,f

5 Abstract DLV and More
We illustrated how procedures behind CMODELS and GNT are cap-
tured by the graphs DP 2

F,f and SM2
Λ,p respectively. We now intro-

duce a graph that captures answer set solver DLV.
We define a graph SM∨×DPΠ,f for a program Π and a witness-

formula function f . The set of nodes of SM∨ ×DPΠ,f consists of
the states relative to At(Π) and At(Π, f). The edges of the graph
SM∨ × DPΠ,f are specified by the rules of DP 2

Π,f and the rules
presented in Figure 4. We note that the new rules are in spirit of
some left-rules of the SM2

Λ,p graph.

Theorem 6 For any program Π and a witness-formula function f
that DP-ensures Π:

1. graph SM∨ ×DPΠ,f is finite and acyclic,
2. any terminal state of SM∨ × DPΠ,f reachable from the initial

state and other than Failstate is Ok(L), with L+ being an an-
swer set of Π,

3. Failstate is reachable from the initial state if and only if Π has
no answer set.

The graph SM∨ × DPΠ,f has two layers. The generate layer, i.e.,
the left-rule layer, is reminiscent to the SMODELS algorithm without
UnfoundedL. The test layer applies the DPLL procedure to the wit-
ness formula. We refer the reader to [11] for the details of the specific
witness function Γ employed in DLV.

It differs from fmin used in CMODELS. The graph SM∨×DPΠ,Γ,
along with the precedence order (7) trivially extended to the rules of
SM∨ ×DPΠ,Γ describes DLV, as in [4] and [11].

It turns out that systems DLV and CMODELS share a lot in com-
mon: the transition systems that capture DLV and CMODELS fully
coincide in their left-rules.

Theorem 7 For a disjunctive program Π, the edge-induced sub-
graph of SM∨×DPΠ,f w.r.t. left-edges is equal to the edge-induced
subgraph of DP 2

CNF−Comp(Π),f w.r.t. left-edges.

Additionally, the precedence orders on their left-rules coincide.
The proof of this fact illustrates that UnitPropagateL is appli-
cable in a state of DP 2

CNF−Comp(Π),f whenever one of the rules
UnitPropagateL, dAllRulesCancelledL, dBackchainTrueL
is applicable in the same state in SM∨ × DPΠ,f . The last result is
remarkable as it illustrates close relation between solving technology
for different propositional formalisms.

Alternative Solvers We now illustrate how transition systems in-
troduced earlier may inspire the design of new solving procedures.
We start by defining a graph that is a “symbiosis” of graphs DP 2

F,f

and SM2
Λ,p.

5



A graph DP × SMF,p for a CNF formula F and a witness-
program function p is defined as follows. The set of nodes of
DP × SMF,p consists of the states relative to At(F ) and At(F, p).
The edges of the graph DP × SMF,p are specified by (i) the Left-
rules and Crossing-rules of the DP 2

F,p graph, and (ii) the Right-rules
of SM2

F,p. This graph allows us to define a new procedure for decid-
ing whether disjunctive answer set program has an answer set.

One can use this framework to define a theorem in the spirit of
Theorem 6, in order to prove the correctness of, for instance, a pro-
cedure based on the graph DP × SMEDcomp(Π),Test.

6 Related Work and Conclusions

Lierler [15] introduced and compared the transition systems for the
answer set solvers SMODELS and CMODELS for non-disjunctive pro-
grams. We extend that work as we design and compare transition
systems for ASP procedures for disjunctive programs. Lierler [17]
considered another extension of her earlier work by introducing tran-
sition rules that capture backjumping and learning techniques com-
mon in design of modern solvers. It is a direction of future work to
extend the transition systems presented in this paper to capture back-
jumping and learning. This extension will allow us to model answer
set solver CLASP for disjunctive programs as well as CMODELS that
implements these features.

The approach based on transition systems for describing and com-
paring ASP procedures is one of the three main alternatives studied
in the literature. The other methods include pseudo-code presentation
of algorithms [9] and tableau calculi [7]. Giunchiglia et al. [9] pre-
sented pseudo-code descriptions of CMODELS (without backjumping
and learning), SMODELS and DLV (without backjumping) restricted
to non-disjunctive programs. They note the relation between solvers
CMODELS and DLV on tight non-disjunctive programs. Gebser et
al. [7] considered formal proof systems based on tableau methods for
characterizing the operations and the strategies of ASP procedures
for disjunctive programs. These proof systems also allow cardinality
constraints in the language of logic programs, yet they do not capture
backjumping and learning.

In this work we focused on developing graph-based representa-
tion for disjunctive answer set solvers GNT, DLV, and CMODELS

implementing plain backtracking to allow simpler analysis and
comparison of these systems. Similar effort for the case of non-
disjunctive solvers resulted in design of a novel answer set solver
SUP [17]. We believe that this work is a stepping stone towards clear,
comprehensive articulation of main design features of current dis-
junctive answer set solvers that will inspire new solving algorithms.
Sections 4 and 5 hint at some of the possibilities.

An extended version of this paper with proofs of the theorems in
available at:

http://works.bepress.com/yuliya_lierler/51/

REFERENCES

[1] D. R. Brooks, E. Erdem, S. T. Erdoğan, J. W. Minett, and D.
Ringe, ‘Inferring phylogenetic trees using answer set program-
ming’, Journal of Automated Reasoning, 39, 471–511, (2007).

[2] M. Davis, G. Logemann, and D. Loveland, ‘A machine pro-
gram for theorem proving’, Comm. of the ACM, 5(7), 394–397,
(1962).

[3] T. Eiter and G. Gottlob, ‘Complexity results for disjunctive
logic programming and application to nonmonotonic logics’,
in Proc. ILPS, ed., Dale Miller, pp. 266–278, (1993).

[4] W. Faber, Enhancing Efficiency and Expressiveness in Answer
Set Programming Systems, Ph.D. dissertation, Vienna Univer-
sity of Technology, 2002.

[5] P. Ferraris and V. Lifschitz, ‘Weight constraints as nested ex-
pressions’, TPLP, 5, 45–74, (2005).

[6] M. Gebser, B. Kaufmann, and T. Schaub, ‘Advanced conflict-
driven disjunctive answer set solving’, in Proc. IJCAI 2013, ed.,
Francesca Rossi. IJCAI/AAAI, (2013).

[7] M. Gebser and T. Schaub, ‘Tableau calculi for logic programs
under answer set semantics’, ACM Transaction on Computa-
tional Logic, 14(2), 15, (2013).

[8] M. Gelfond and V. Lifschitz, ‘Classical negation in logic pro-
grams and disjunctive databases’, NGC, 9, 365–385, (1991).

[9] E. Giunchiglia, N. Leone, and M. Maratea, ‘On the relation
among answer set solvers’, AMAI, 53(1-4), 169–204, (2008).

[10] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You, ‘Un-
folding partiality and disjunctions in stable model semantics’,
ACM TOCL, 7(1), 1–37, (2006).

[11] C. Koch, N. Leone, Nicola and G. Pfeifer, ‘Enhancing disjunc-
tive logic programming systems by SAT checkers’, Artificial
Intelligence, 151(1-2), 177–212, (2003).

[12] J. Lee, ‘A model-theoretic counterpart of loop formulas’, in
Proc. of IJCAI, pp. 503–508, (2005).

[13] N. Leone, W. Faber, G. Pfeifer, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello, ‘The DLV system for knowledge representa-
tion and reasoning’, ACM TOCL, 7(3), 499–562, (2006).

[14] Y. Lierler, ‘Cmodels: SAT-based disjunctive answer set solver’,
in Proc. of LPNMR, pp. 447–452, (2005).

[15] Y. Lierler, ‘Abstract answer set solvers’, in Proc. of ICLP, pp.
377–391. Springer, (2008).

[16] Y. Lierler, SAT-based Answer Set Programming, Ph.D. disser-
tation, University of Texas at Austin, 2010.

[17] Y. Lierler, ‘Abstract answer set solvers with backjumping and
learning’, TPLP, 11, 135–169, (2011).

[18] Y. Lierler and M. Truszczynski, ‘Transition systems for model
generators – a unifying approach’, TPLP, 11(4-5), 629–646,
(2011).

[19] V. Lifschitz, L. R. Tang, and H. Turner, ‘Nested expressions in
logic programs’, AMAI, 25, 369–389, (1999).

[20] V. Marek and M. Truszczyński, ‘Stable models and an alterna-
tive logic programming paradigm’, in The Logic Programming
Paradigm: a 25-Year Perspective, 375–398, Springer, (1999).

[21] I. Niemelä, ‘Logic programs with stable model semantics as
a constraint programming paradigm’, AMAI, 25, 241–273,
(1999).

[22] I. Niemelä and P. Simons, ‘Extending the Smodels system with
cardinality and weight constraints’, in Logic-Based Artificial
Intelligence, ed., Jack Minker, 491–521, Kluwer, (2000).

[23] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, ‘Solving SAT
and SAT modulo theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T)’, Journal of the
ACM, 53(6), 937–977, (2006).

[24] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M.
Barry, ‘An A-Prolog decision support system for the Space
Shuttle’, in Proc. of PADL, pp. 169–183, (2001).

6


