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Abstract— This paper studies a control strategy for reducing
congestions in freeway systems by applying ramp metering as
control measure. More specifically, the objective is to define
a Model Predictive Control scheme to be applied on line,
characterized by a finite-horizon optimal control problem with
a mixed-integer linear form, in order to be efficiently solved
with commercial solvers. In this optimal control problem the
prediction model is obtained by linearizing the first-order
macroscopic traffic model, hence binary variables must be
introduced and the resulting model has a piecewise linear
structure. In the paper, the adopted control scheme is first of

all analysed in order to evaluate its effectiveness in improving
the traffic conditions; secondly, the analysis has been devoted to
evaluate the computational time necessary to solve the finite-
horizon optimal control problem depending on the problem
sizes and the traffic scenarios.

I. INTRODUCTION

The problem of traffic congestion in freeways has been

addressed by researchers for some decades. Different traffic

control measures have been proposed and implemented, such

as ramp metering, variable speed limits, route guidance and

vehicle-infrastructure integration systems [1]. The two most

common control measures are ramp metering, which controls

the traffic flow entering the freeway mainstream with traffic

lights at on-ramps, and variable speed limits, which use on-

road variable message signs to indicate specific speed limits.

Ramp metering has been adopted successfully for more than

30 years, even though it presents limitations in some cases

[2], [3]. The literature on ramp metering is very wide, starting

from the feedback traffic controller ALINEA [4], until its

extended versions such as the heuristic traffic-responsive

feedback control strategy HERO [5] and the proportional-

integral version PI-ALINEA [6]. On the other hand, variable

speed limits are mainly used to control the driver speed of

the mainline traffic [7], [8]. In many cases, variable speed

limits and ramp metering are combined in order to improve

the efficiency of the control scheme [9], [10].

The present paper is focused on the definition of a Model

Predictive Control (MPC) scheme in order to reduce freeway

congestion via ramp metering. In the last decades, many

control approaches have been developed, until the most so-

phisticated non-linear MPC frameworks, as in [3], where the

macroscopic non-linear second-order traffic model is adopted

for the prediction. The major drawback of this approach is

related to its computational burden: in fact, for each control

interval, a non-linear programming problem must be solved
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and, then, the on-line application of this MPC scheme is

possible only in small networks (as highlighted also in [11]).

Due to these computational problems of the non-linear

MPC approach, some recent works have been devoted to find

different solution techniques, as in [12], where an algorithm

based on game theory is proposed. Other works (as for

instance [13], [14]) propose MPC schemes for freeway ramp

metering considering the Cell Transmission Model [15], [16]

for the prediction. In these works, besides the non-linear

formulation of the finite-horizon optimal control problem

(FHOCP), the authors propose simpler formulations in which

some model equations are relaxed.

In the present work we propose a control scheme in which

the FHOCP is computationally affordable for an on-line

application. To this end, we consider a simplified predic-

tion model based on the first-order macroscopic dynamical

model where the steady-state speed-density characteristic is

discretized to become a piecewise constant function (as in

[17]). In this way, we transform the classical non-linear opti-

mization problem into a Mixed-Integer Linear Programming

(MILP) problem, that can be solved efficiently by a MILP

solver allowing to find the global optimum. Obviously, the

piecewise linear prediction model is less accurate than the

non-linear second-order model but it is shown with experi-

mental tests that good performances of the proposed control

law are assured and the computational strength is improved.

In this paper we are especially interested in performing an

experimental analysis about the computational effort needed

to solve one single FHOCP, by generating random instances

and analysing different traffic scenarios.

The idea of linearizing the prediction model in order to

avoid the non-linear formulation has been also proposed in

[18], where the second-order macroscopic traffic model is

linearized, obtaining a more accurate prediction of the system

dynamics, at the expense of a higher computational burden,

with respect to the approach proposed in this paper. Besides,

a similar approach is also provided in [19] where a mixed-

integer formulation is adopted for the FHOCP in which,

differently from the present approach, the linear prediction

model is a linearized version of the Cell Transmission Model

whereas the objective function has a quadratic form. In any

case, the prediction models are restated in piecewise linear

forms by introducing in the model some inequalities and

some auxiliary variables, both binary and continuous, ac-

cording to the definition of mixed logical dynamical systems

[20].

The paper is organized as follows. In Section II the

adopted (piecewise linear) prediction model is described
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whereas in Section III the finite-horizon optimal control

problem is stated and analysed. The computational results

are reported in Section IV and some conclusive remarks are

drawn in Section V.

II. THE PIECEWISE LINEAR PREDICTION MODEL

As already introduced, an MPC scheme is proposed in this

paper. The considered MPC framework works as follows. At

each time step k a FHOCP is solved over a prediction horizon

Kp, by optimizing a suitable objective function subject

to constraints on control variables and on state variables.

The constraints also include the state equations, so that a

prediction of the system behaviour is realized. A sequence

of optimal control variables from time step k to (k+Kp−1)
is derived; the first element of this sequence becomes the

control action at time step k. The same procedure is applied

again at time step k + 1 and iterated for all the following

time steps.

In the proposed approach, the prediction model is a

linearized version of the first-order macroscopic dynamical

model of traffic flow, first introduced in the Fifties by

Lighthill and Whitham [21], also called LW model. Of

course, the LW model includes great simplifications if com-

pared with the second-order one, proposed in the Seventies

[22], [23] and applied in many real cases, as described for

instance in [24]. Anyway, we adopt the first-order model in

order to deal with a linear representation of the system and

then to obtain a MILP formulation for the FHOCP.

Let us introduce the notation adopted for the macroscopic

model considered in this work. First of all, k = 0, . . . ,K−1
denotes the temporal stage and i = 1, . . . , N indicates the

section of the freeway stretch; T is the sample time interval

and ∆i is the length of section i. The main macroscopic

variables, referred to section i and time step k, are the

following:

• ρi(k) is the traffic density [veh/km];

• vi(k) is the mean traffic speed [km/h];

• qi(k) is the traffic volume [veh/h];

• li(k) is the queue length on the on-ramp [veh];

• di(k) is the demand for access to the on-ramp [veh/h];

• ri(k) is the on-ramp traffic volume [veh/h];

• si(k) is the off-ramp traffic volume [veh/h].

Note that if a certain section i is not provided with

on-ramps and off-ramps, the corresponding variables ri(k),
si(k), li(k) and di(k) are imposed to be equal to 0. The

first-order model can be written as follows:

ρi(k+1) = ρi(k)+
T

∆i

[

qi−1(k)−qi(k)+ri(k)−si(k)

]

(1)

li(k + 1) = li(k) + T
[

di(k)− ri(k)
]

(2)

qi(k) = ρi(k) · Vf · exp

[

−
1

ai

(

ρi(k)

ρcri

)ai
]

(3)

with i = 1, . . . , N , k = 0, . . . ,K − 1. Note that in the

state equation for the traffic density (1), when considering

the first section of the freeway stretch, corresponding to i =
1, the term qi−1(k) represents the measured value of the

ρi

ṽi,1

ṽi,2

ρ̄i,1 = 0 ρ̃i,1 ρ̄i,2 ρ̄i,3

. . .

. . .

. . .

ρ̄i,Di+1 = ρmax
i

Fig. 1: The typical form of V
(

ρi
)

and its piecewise constant

approximation Ṽ
(

ρi
)

.

traffic volume entering the freeway stretch. Equation (2) is

the classical dynamic equation for the queues. Equation (3)

implies that the traffic volume qi(k) adjusts instantaneously

according to the fundamental diagram, in which Vf denotes

the free speed (average speed assumed by vehicles when the

traffic flows freely), ρcri is the critical density for section i

(density at which the traffic flow is maximal), and ai is a

model parameter.

Our objective stands in further simplifying the model

described above in order to obtain a linear formulation.

To do that, the steady-state speed-density characteristic is

simplified to become a piecewise constant function Ṽ
(

ρi
)

,

i = 1, . . . , N :

V (ρi) = Vf · exp

[

−
1

ai

(

ρi

ρcri

)ai
]

≈ Ṽ
(

ρi
)

(4)

As shown in Figure 1, for each section i the range of

variation of ρi is divided in Di segments of equal length,

with threshold values denoted as ρ̄i,j , j = 1, . . . , Di, with

ρ̄i,1 = 0 and ρ̄i,Di+1 = ρmax
i . For each segment, the

approximated values ṽi,j are obtained as the values of the

speed-density characteristic computed in the average point of

each discretization segment, i.e. in ρ̃i,j . Now equation (1),

taking into account (3), can be written as:

ρi(k + 1) = ρi(k) +
T

∆i

[

ρ̃i−1(k)ṽi−1(k)

− ρ̃i(k)ṽi(k) + ri(k)− si(k)

] (5)

being ρ̃i(k) = ρ̃i,j and ṽi(k) = ṽi,j , with j : ρ̄i,j ≤ ρi(k) ≤
ρ̄i,j+1, for i = 1, . . . , N , k = 0, . . . ,K − 1.

III. THE FINITE-HORIZON OPTIMAL CONTROL PROBLEM

In order to express equations (5) in the FHOCP, it is

necessary to identify the relevant discretization segment for

each section i at time step k (on the basis of the value of

the state variable ρi(k)). To this end, let us introduce some
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binary variables as follows:

yi,j(k) =

{

1 if ρi(k) ≥ ρ̄i,j
0 otherwise

(6)

zi,j(k) =

{

1 if ρi(k) ≤ ρ̄i,j+1

0 otherwise
(7)

with i = 1, . . . , N , j = 1, . . . , Di, k = 1, . . . ,K − 1. These

definitions imply that, at time step k, the active discretization

segment for section i is indicated by index j such that

yi,j(k) = zi,j(k) = 1. Besides, another set of auxiliary

variables must be introduced:

wi,j(k) =

{

ṽi,j if ρ̄i,j ≤ ρi(k) ≤ ρ̄i,j+1

0 otherwise
(8)

with i = 1, . . . , N , j = 1, . . . , Di, k = 1, . . . ,K − 1.

The control objective includes the minimization of the

Total Time Spent (TTS) by vehicles in the freeway system,

as usually done in freeway optimal control problems. In

addition, in order to make the control action more effective,

a term is added to the TTS expression penalizing the state

conditions in which the traffic density is higher than its

critical value. To define such term of the cost function, it

is necessary to introduce a further set of binary variables

defined as:

xi(k) =

{

1 if ρi(k) ≥ ρcri
0 otherwise

(9)

with i = 1, . . . , N , k = 1, . . . ,K − 1 .

It is now possible to state the FHOCP to be solved at time

step k over a time horizon equal to Kp.

Problem 1: Given:

• the initial conditions on the queue length and the traffic

volume li(k), qi(k), i = 1, . . . , N ;

• the traffic volume entering the freeway stretch q0(h),
h = k, . . . ,Kp − 1;

• the on-ramp demands and the off-ramp volumes di(h),
si(h), i = 1, . . . , N , h = k, . . . ,Kp − 1;

the problem is to find the optimal values of:

• the state variables ρi(h) and li(h), i = 1, . . . , N , h =
k + 1, . . . ,Kp;

• the control variables ri(h), i = 1, . . . , N , h =
k . . . ,Kp − 1;

• the auxiliary variables yi,j(h), wi,j(h) and zi,j(h), i =
1, . . . , N , j = 1, . . . , Di, h = k + 1, . . . ,Kp − 1, and

xi(h), i = 1, . . . , N , h = k + 1, . . . ,Kp;

minimizing the cost function:

Kp
∑

h=k+1

N
∑

i=1

c1T∆iρi(h) + c2T li(h) + c3xi(h) (10)

subject to

ρi(k+1) = ρi(k)+
T

∆i

[

qi−1(k)− qi(k)+ ri(k)− si(k)

]

i = 1, . . . , N (11)

ρ1(h+ 1) = ρ1(h) +
T

∆i

[

q0(h)−

Di
∑

j=1

ρ̃1,jw1,j(h)+

+ r1(h)− s1(h)

]

h = k + 1, . . . ,Kp − 1 (12)

ρi(h+ 1) = ρi(h) +
T

∆i

[ Di
∑

j=1

ρ̃i−1,jwi−1,j(h)−

−

Di
∑

j=1

ρ̃i,jwi,j(h) + ri(h)− si(h)

]

i = 2, . . . , N h = k + 1, . . . ,Kp − 1 (13)

wi,j(h) = ṽi,j ·

(

yi,j(h) + zi,j(h)− 1

)

i = 1, . . . , N

j = 1, . . . , Di h = k + 1, . . . ,Kp − 1 (14)

li(h+ 1) = li(h) + T
[

di(h)− ri(h)
]

i = 1, . . . , N h = k, . . . ,Kp − 1 (15)

ρi(h)− ρ̄i,j +M
[

1− yi,j(h)
]

> 0 i = 1, . . . , N

j = 2, . . . , Di h = k + 1, . . . ,Kp − 1 (16)

ρ̄i,j − ρi(h) +Myi,j(h) ≥ 0 i = 1, . . . , N

j = 2, . . . , Di h = k + 1, . . . ,Kp − 1 (17)

ρi(h)− ρ̄i,j+1 +Mzi,j(h) > 0 i = 1, . . . , N

j = 1, . . . , Di − 1 h = k + 1, . . . ,Kp − 1 (18)

ρ̄i,j+1 − ρi(h) +M
[

1− zi,j(h)
]

≥ 0 i = 1, . . . , N

j = 1, . . . , Di − 1 h = k + 1, . . . ,Kp − 1 (19)

ρi(h)− ρcri +M
[

1− xi(h)
]

> 0

i = 1, . . . , N h = k + 1, . . . ,Kp (20)

ρcri − ρi(h) +Mxi(h) ≥ 0

i = 1, . . . , N h = k + 1, . . . ,Kp (21)

yi,1(h) = 1, zi,Di
(h) = 1

i = 1, . . . , N, h = k + 1, . . . ,Kp − 1 (22)

0 ≤ ρi(h) ≤ ρmax
i

i = 1, . . . , N h = k + 1, . . . ,Kp − 1 (23)

0 ≤ li(h) ≤ lmax
i

i = 1, . . . , N h = k + 1, . . . ,Kp − 1 (24)

0 ≤ ri(h) ≤ rmax
i

i = 1, . . . , N h = k . . . ,Kp − 1 (25)
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yi,j(h) ∈ {0, 1}, zi,j(h) ∈ {0, 1} i = 1, . . . , N

j = 1, . . . , Di h = k + 1, . . . ,Kp − 1 (26)

xi(h) ∈ {0, 1} i = 1, . . . , N h = k+ 1, . . . ,Kp (27)

where M is a sufficiently large number. �

In the cost function (10), c1, c2 and c3 are weighting

coefficients assigned to the three terms of the objective to

be minimized (the first two referring to the computation of

the TTS, the last one weighting when the critical density is

exceeded). Constraints (11)-(13) represent the state equations

on the traffic density, specifically defined for the first time

step and for the first section. Constraints (14) express the

definition of wi,j(h) variables, as in (8), while constraints

(15) represent the dynamic equations on the queue lengths.

Constraints (16)-(21) define the values of the binary variables

yi,j(h), zi,j(h) and xi(h) as in (6), (7), (9), respectively. The

other constraints define the lower and upper bounds for state,

control and auxiliary variables.

It is worth pointing out that the FHOCP is a MILP that

can be solved with commercial solvers; in the worst case,

the computational time to optimally solve these types of

problems exponentially depends on the number of binary

variables of the formulation.

IV. EXPERIMENTAL EVALUATION

We have implemented the overall MPC scheme with the

C♯ programming language; in particular, the FHOCP has

been solved with the MILP solver Cplex 12.3 by using the

ILOG Concert technology for building the model with the C♯

language. In order to test the performance of the proposed

approach, we have adopted for the simulation the second-

order macroscopic model presented in [7], [9] (with the

same model parameters), that is an extended version of the

METANET model [24]. All the experimental tests have been

realized with a 2.53 GHz Intel(R) Core(TM) i5 computer

with 4 GB RAM.

First of all, in order to evaluate the performance of the

proposed ramp metering MPC approach, we have compared,

in different traffic scenarios, the results of the no-control

case with those obtained by applying the feedback traffic

controller ALINEA and the MPC regulator proposed in

this paper. For the experimental tests we consider a three-

lane freeway stretch composed of N = 7 road sections

of length ∆i, i = 1, . . . 7, equal to 1 kilometer, and a

sample time T of 10 seconds. In the considered freeway

stretch there are 3 on-ramps, in the first, the third and the

fifth road section; an overall time horizon for the simulation

corresponding to K = 360, i.e. 1 hour, is considered.

For such system, a significant experimental campaign has

been realized; although we discuss here one specific case,

analogous conclusions can be drawn also for other traffic

scenarios.

The analysed scenario corresponds to the case of a rather

high density at the end of the considered stretch, equal to 160

[veh/km] from the first time step until k = 250 and equal to

70 [veh/km] in the remaining time steps; an inflow of 4800

[veh/h] for the whole time horizon has been considered; the
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Fig. 2: Traffic density in section 4 (2a), 5 (2b) and 6 (2c).

initial density in all the road sections is equal to 80 [veh/km].

The demand at the three on-ramps is equal to 800 [veh/h]

for the first 3 minutes, equal to 900 [veh/h] until minute 13

and then it is equal to 500 [veh/h].

We have applied the MPC regulator presented in this paper

with a prediction horizon Kp = 10 and a discretization

of the steady-state speed-density characteristic in Di = 12
segments, i = 1, . . . 7. With such parameters, each FHOCP

is a MILP problem with about 2000 variables and more

than 3000 constraints. Each problem is solved by Cplex

in few seconds, that would be compatible with an on-line

application, being the sample time equal to 10 seconds.

In Figure 2 it is possible to compare the different values of

the traffic density in sections 4, 5 and 6, in case of no-control

action, with the application of ALINEA (corresponding to a

total TTS improvement of 4%) and with the application of

the MPC scheme (involving an overall TTS improvement
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Fig. 3: Queue lengths in the on-ramp of section 5.

equal to 8%). It is easy to observe that the density in case

of application of the MPC scheme is always lower than with

ALINEA. Moreover, Figure 3 shows the queue lengths in

the on-ramp of section 5, for the cases with ALINEA and

MPC (the queues of the no-control case are not shown since

they are always null). It is interesting to note that with the

MPC scheme the queue length starts increasing before and

this is due to the prediction model that is able to anticipate

the higher on-ramp demand.

Once verified the good performance of the proposed con-

trol approach, a computational analysis has been performed,

in order to evaluate two main aspects. First of all, it is of

interest to analyse how the computational time changes when

the sizes of the problem change (they are basically given by

the number of freeway sections N , the prediction horizon

length Kp and the number of segments in which the funda-

mental diagram is discretized Di, i = 1, . . . , N ). Secondly,

it is interesting to evaluate how the traffic conditions impact

on the difficulty of the problem to be solved, i.e. on the

computational time. In order to make a conservative analysis,

we have randomly generated the traffic conditions in the

freeway and we have solved different instances of the same

problem type. It is also supposed that each freeway section

has got an on-ramp, hence the number of control variables

is the maximum possible number; this has been done, again,

in order to perform a “worst case” analysis for the proposed

control approach.

In order to examine the first point, i.e. the dependence

of the problem computational burden on N , Kp and Di,

i = 1, . . . , N , 8 groups of instances have been considered,

as shown in Table I. Note that the number of discretization

segments has been considered the same for the different

sections and, from now on, denoted as D. For the second

point, related to the analysis of different traffic conditions,

we have taken into account two scenarios, whose main data

are reported in Table II. The random data are the initial

densities ρi(k), i = 1, . . . , N , the densities in the section

before the first one ρ0(h), h = k, . . . ,Kp − 1, the demands

at the on-ramps di(h) and the exit flows si(h), i = 1, . . . , N ,

h = k, . . . ,Kp − 1. These values are randomly generated

using the uniform distribution, as indicated in Table II. It

is worth noting that scenario 1 represents regular traffic

conditions in which the demands at the on-ramps are not

very high and the initial and boundary conditions for the

traffic density are always lower than the critical density. On

the contrary, scenario 2 indicates a congested situation with

higher demands and higher initial and boundary conditions

for the traffic density.

TABLE I: The groups of instances

Group N Kp D

1 5 7 10
2 5 7 12
3 7 7 10
4 7 7 12
5 7 10 10
6 7 10 12
7 10 10 10
8 10 10 12

TABLE II: Random data in the two scenarios

Scenario ρi(k) ρ0(h) di(h) si(h)
1 U[70,90] U[70,90] U[1200,1600] U[600,1000]
2 U[95,115] U[95,115] U[2200,2600] U[1200,1600]

For each group and for each scenario, 5 random instances

have been generated and solved, imposing a time limit to

the solver equal to 60 seconds, since one minute can be

considered as a maximum limit for an on-line application

of the MPC scheme. Table III shows the computational

results for scenario 1 reporting, for each group, the num-

ber of variables and constraints of the MILP problem, the

average CPU time (in seconds) and the average optimality

gap. The average CPU time is computed only over the

instances optimally solved within the time limit (this number

is reported in brackets in the same column), because for

the other instances this is obviously equal to 60 seconds.

Analogously, the average optimality gap is computed only

over the instances not optimally solved, i.e. for which the

solver has been stopped by the time limit (this number is

reported in brackets), whereas for the others the optimality

gap is obviously equal to 0. From Table III it can be seen that

the instances of the first 4 groups are all optimally solved

in few seconds, whereas for the other instances the optimal

solution is not always reached. It can be noted that in group

5 three instances have been optimally solved whereas for the

remaining two cases a high optimality gap is present. Group

6 is characterized by non-optimal solutions in all cases with a

rather high optimality gap. Finally, as regards groups 7 and

8, the computational times strongly increase and for some

instances one minute of computation is not sufficient.

TABLE III: Computational results for scenario 1

Group Variables Constraints Avg. CPU Time Avg. Opt. gap

1 1040 1575 0,302 (5) -
2 1220 1875 3,314 (5) -
3 1456 2205 0,431 (5) -
4 1708 2625 4,914 (5) -
5 2170 3297 1,944 (3) 59,27% (2)
6 2548 3927 - 28,611% (5)
7 3100 4710 18,118 (4) 99,997% (1)
8 3640 5610 28,574 (2) 99,926% (3)
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The computational results for scenario 2 are reported

in Table IV, where the columns have exactly the same

meaning of Table III. It is immediately evident that, for

the same problem sizes, the problem instances of scenario

2 are more difficult to be solved than those referred to

scenario 1, showing how different traffic scenarios change

the computational load of the problem to be solved. Hence,

by remembering that we are working in the critical case in

which each section has an on-ramp and random data are used,

it is anyhow possible to conclude that considering a freeway

stretch of 10 sections requires either a longer decision time

interval or the definition of a decentralized control scheme in

which smaller portions of the road are controlled separately.

TABLE IV: Computational results for scenario 2

Group Variables Constraints Avg. CPU Time Avg. Opt. gap

1 1040 1575 10,118 (5) -
2 1220 1875 15,096 (4) 9,293% (1)
3 1456 2205 41,676 (4) 13,978% (1)
4 1708 2625 51,18 (1) 18,367% (4)
5 2170 3297 - 61,852% (5)
6 2548 3927 - 65,592% (5)
7 3100 4710 - 95,459% (5)
8 3640 5610 - 94,551% (5)

V. CONCLUSIONS

This paper has addressed the definition of an MPC scheme

for reducing congestions in freeways by adopting ramp

metering. This MPC framework adopts a piecewise linear

version of the first-order macroscopic model for the predic-

tion; the resulting finite-horizon optimal control problem has

a mixed-integer linear form, hence it can be solved with

MILP solvers.

In this paper the effectiveness of proposed MPC scheme

for freeway traffic control has been tested via simulation.

Moreover, further computational results regarding the so-

lution of the FHOCP have been proposed. In particular,

we have analysed the computational load of the FHOCP

considering different problem sizes and different traffic con-

ditions in the freeway to be controlled. The ultimate goal of

such analysis is to determine the maximum problem sizes

(in terms of number of sections, length of the prediction

horizon and segments in which the fundamental diagram

is discretized) for which the proposed control approach

can be adopted on line in real cases. The experimental

analysis, based on randomly generated instances, has shown

that the proposed approach is suitable for medium traffic

networks but, in case of larger networks, a decentralized

approach could be more appropriate. Finally, as expected,

the difficulty in solving the FHOCP strongly depends on the

traffic scenario and, then, when validating a new scheme it

is necessary to test it in different traffic scenarios, especially

in the most congested cases.
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