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Abstract. Disjunctive Temporal Problems with Preferences (DTPPs)
extend DTPs with piece-wise constant preference functions associated
to each constraint of the form | < z — y < u, where z,y are (real or
integer) variables, and [,u are numeric constants. The goal is to find
an assignment to the variables of the problem that maximizes the sum
of the preference values of satisfied DTP constraints, where such val-
ues are obtained by aggregating the preference functions of the satisfied
constraints in it under a “max” semantic. The state-of-the-art approach
in the field, implemented in the DTPP solver MAXILITIS, extends the
approach of the DTP solver EPILITIS.

In this paper we present an alternative approach that reduces DTPPs to
Maximum Satisfiability of a set of Boolean combination of constraints of
the form | <1 z — y 1 u, € {<, <}, that extends previous work that
dealt with constant preference functions only. Results obtained with the
Satisfiability Modulo Theories (SMT) solver YICES on randomly gener-
ated DTPPs show that our approach is competitive to, and can be faster
than, MAXILITIS.

1 Introduction

Temporal constraint networks [1] provide a convenient formal framework for
representing and processing temporal knowledge. Along the years, a number of
extensions to the framework have been presented to deal with, e.g. more expres-
sive preferences. Disjunctive Temporal Problems with Preferences (DTPPs) is
one of such extensions. DTPPs extend DTPs, i.e. conjunctions of disjunctions of
constraints of the form | < x — y < u, where z,y are (real or integer) variables,
and [, u are numeric constants, with piece-wise constant preference functions as-
sociated to each constraint. The goal is to find an assignment to the variables of
the problem that maximizes the sum of the preference values of satisfied disjunc-
tions of constraints (called DTP constraints), where such values are obtained by
aggregating the preference functions of the satisfied constraints in it. We consider
an utilitarian aggregation of such DTP constraints values, and a “max” semantic
for aggregating preference values within DTP constraints: given a (candidate)
solution of a DTPP, the preference value of the DTP constraint is defined to



be the maximum value achieved by any of its satisfied disjuncts (see, e.g. [2]).
The actual state-of-the-art approach that considers such aggregation methods is
implemented in the DTPP solver MAXILITIS, and is based on an extension of the
DTP approach of the solver EPILITIS [3] to deal with piece-wise constant prefer-
ence functions. Various other approaches have been designed in the literature to
deal with DTPPs [4-6, 2], possibly relying on alternative preference aggregation
methods (see, e.g. [7,8]).

In this paper we present an alternative approach that reduces DTPPs to
Maximum Satisfiability of a set of Boolean combination of constraints of the
form [ > oz — y <1 u, where <€ {<, <}. At first, we have considered a very
natural modeling of the problem where the generated constraints are mutually
exclusive, and each is weighted by a preference value: the set is constructed in
order to maximize the degree of satisfaction of the DTP constraint. Preliminary
experiments report that this solution is impractical. A second solution we pro-
pose is, instead, obtained by extending previous work that dealt with constant
preference functions only [9], and reduces each DTP constraint to a set of disjunc-
tion of constraints, and a non-trivial interplay among their preference values to
maximize, as before, the preference value of the DTP constraint. In order to test
the effectiveness of our proposal, we have randomly generated DTPPs, following
the method originally developed in [7] and then employed in all other papers on
DTPPs. In our framework, each problem is then represented as a Satisfiability
Modulo Theory (SMT) formula, and the YICES SMT solver, that is able to deal
with optimization issue, is employed®. An experimental analysis conducted on a
wide set of benchmarks, using the same benchmarks setting already employed in
past papers, shows that our approach is competitive to, and can be faster than,
MAXILITIS.

The rest of the paper is structured as follows. Section 2 introduces prelimi-
naries about DTPs, DTPPs and Maximum Satisfiability. Then, in Section 3 we
present our reduction from DTPPs to Maximum Satisfiability of Boolean combi-
nation of constraints, while the experimental analysis is presented in Section 4.
The paper ends by providing a discussion about the related work in Section 5
and some conclusions in Section 6.

2 Formal Background

Problems involving disjunction of temporal constraints have been introduced
in [10], as an extension of the Simple Temporal Problem (STP) [1], which consists
of conjunction of different constraints. The problem was referred for the first
time as Disjunctive Temporal Problem (DTP) in [11], and is presented in the
first subsection. The remaining subsections introduce Maximum Satisfiability of
DTPs and DTPPs.

3 Y1cEs showed the best performance in [9] among of number of alternatives, and it
is the only SMT solver able to cope with (Partial Weighted) Maximum Satisfiability
problems.



2.1 DTP

Let V be a set of symbols, called variables. A constraint is an expression of the
form I <1z —y <1 u, where e {<, <}, z,y € V, and [, v are numeric constants. A
DTP constraint is a disjunction of constraints having =< (equivalently seen as
a disjunctively intended set of constraints). A DTP formula, or simply formula,
is a conjunction of DTP constraints. A DTP constraint can be either hard, i.e.
its satisfaction is mandatory, or soft, i.e. its satisfaction is not necessary but
preferred, and in case of satisfaction it contributes to the generation of high
quality solutions according to the aggregation methods employed and defined
later. A DTPA constraint is a Boolean combination of constraints.

About the semantics, let the set D (domain of interpretation) be either the
set of the real numbers R or the set of integers Z. An assignment is a total
function mapping variables to D. Let ¢ be an assignment and ¢ be a formula
composed by hard DTP constraints only. Then, o |= ¢ (o satisfies a formula ¢)
is defined as follows

—okEl<z—y<wuifandonly ifl < o(zx) —o(y) < u;

o = —¢ if and only if it is not the case that o = ¢;

o = (A ¢;) if and only if for each i € [1,n], o = ¢;; and
— o | (VP ¢;) if and only if for some i € [1,n], o | ¢;.

If o | ¢ then o is also called a model of ¢. We also say that a formula ¢ is
satisfiable if and only if there exists a model for ¢. The DTP is the problem
of deciding whether a formula ¢ is satisfiable or not in the given domain of
interpretation D. Notice that the satisfiability of a formula depends on D, e.g.
the formula

r—y>0Nz—y<l1

is satisfiable if D is R but unsatisfiable if D is Z. However, the problems of
checking satisfiability in Z and R are closely related and will be treated uni-
formly.

2.2 Max-DTP

Consider now a DTP4 formula ¢ consisting of hard DTP constraints and soft
DTP4 constraints. Intuitively, in this case the goal is to find an assignment to the
variables in ¢ that satisfies all hard DTP constraints and maximizes the sum of
the weights associated to satisfied soft DTP# constraints. The problem is called
Partial Weighted Maximum Satisfiability of DTP4, and is formally defined as a
pair (¢, w), where

1. ¢ is a DTP# formula consisting of both hard DTP and soft DTP4 con-
straints, and
2. w is a function that maps DTP4 constraints to positive integer numbers.



More precisely, the goal is to find an assignment ¢’ for ¢ that satisfies all
hard DTP constraints and maximizes the following linear objective function f

f= % w@ (1)

de¢,o'l=d

where d is a soft DTP4 constraint. In the following, for simplicity we will use
Max-DTP to refer to the Partial Weighted Maximum Satisfiability problem of
mixed DTP and DTP# constraints as defined above.

2.3 DTPP
DTPP is an extension of DTP, and it is defined as a pair (¢, w’), where

1. ¢ is a DTP formula consisting of both hard and soft DTP constraints, and
2. w' is a (possibly partial) function that maps constraints in soft DTP con-
straints to piece-wise constant preference functions.

We consider, as before, an utilitarian method for aggregating soft DTP con-
straints weights: the goal is now to find an assignment o’ for ¢ that (i) satisfies
all hard DTP constraints, and (i7) maximizes the sum of weights associated to
satisfied soft DTP constraints, i.e. maximizes the linear objective function (1).

It is left to define how weights, corresponding to preference values, are ag-
gregated within soft DTP constraints to “define” their weights w(d) in (1). In
our work we consider a prominent semantic for this purpose: the max semantic.

Given a constraint dc := 1 < 2 — y < w, its preference function w’(dc) is in
general defined as:

w'(de) : t C [l,u] — [0,R7]

mapping every feasible temporal interval ¢ to a preference value expressing its
weight. The max semantic [5, 2] defines the weight w(d) of a satisfied soft DTP
constraint d as the maximum among the possible preference values of satisfied
constraints in d, i.e. given an assignment o’

w(d) := maz{w' (o' (z) — o'(y)) : dc € d, o’ |= dc}

3 Reducing DTPPs to Max-DTPs

As we said before, our main idea is to reduce the problem of solving DTPPs to
solving Max-DTPs. Hard DTP constraints remain unchanged in our reduction,
while soft DTP constraints need special treatment. Given a soft DTP constraint
d, for each constraint dc in d, let Ly, be a set of pairs, each pair (DC,v) being
composed by (i) a set DC of pairs (I, ), representing the end points of intervals,
such that [I,7] C [I,u], and (i) the preference value v of the constraints of the
type I b & — 1y >4 T, XIE {<, <}, extracted from DC, where the variables x,y are

obtained from the constraint name. If the preference function is a constant v’,



L. is composed by only one pair ({(I,u)},v’), i.e. the interval [I, u], representing
the constraint | < x —y < u, and its preference value v'.

We need now to “aggregate” the preference values corresponding to different
levels of the piece-wise constant functions in the various constraints in order to
implement our reduction. The idea is to “merge” the pairs (DC, v), representing
preference function of constraints, in the same soft DTP constraint; intuitively,
this means that, if the candidate solution satisfies at least one of the constraints
obtained from DC at preference value v, then a possible preference value for d
is v.

More formally, consider aggregating Lg4., and Lg.,, coming from two con-
straints de; and deg in d, respectively. Lge,vde, :=MERGE(Lgc, , L4, ) is an oper-
ator that

e contains the preference values that are in the preference functions of de; or
dcg; and

e if the preference functions of dc; and dcy have a common preference value,
i.e. Lqc, contains a pair (DC;, v;), Lqc, contains a pair (DC}, v;) and v; = vj,
these pairs are merged and L, vae, contains a pair (DC; U DC, v;).

Moreover, during MERGE pairs (I, %) are attached a subscript, from which we
deduce the ordered pair of variables involved in the constraint it represents.

The operator MERGE can be easily generalized to an arbitrary finite number
of constraints.

Consider a soft DTP constraint

d:=dcy V...Vde (2)
where {dcy, ..., dei} is the set of constraints in d.

The first attempt we considered for our reduction is to express a soft DTP
constraint d using soft DTP4 constraints that force the highest preference value
associated to satisfied constraints in d to be assigned as weight for d. First, we
apply the operator MERGE to all the constraints in d, and related piece-wise
constant preference functions, i.e. Ly :=MERGE(Lgc,, - -, Lde, )-

Further, consider an ordering on the k pairs in Ly of a dc in d induced
by the preference values, i.e. an ordering < is which (DCj,v;) < (DCj,v; ) iff
v; <vj,1 < 4,5 < k,i# j. For simplicity, from now on we consider the pairs in
L4 to be re-ordered according to <, i.e. DC; is the set whose v is maximum
among the weights in d, i.e. v1 > v;,2 < ¢ < k, while the set DCY}, is such that
v < v, 1 <1< k—1.

Then, starting from L4, d and its preference value are expressed by the
following |L4| soft DTP4 constraints: for each z = 1...|Lg|

Cz = Afgllﬁ(vpeDCidcp) A (Vpepc.dey), w(d) = w(c,) = v, (3)

where dc, is a constraint built from the pair p (we recall that the subscript
identifies the variables involved in the constraint, and in which order). The set



of constraints is mutually exclusive: considering an assignment, at most one of
the constraints in (3) can be satisfied, and the relative value is assigned to d.
If a constraint in (3) is satisfied, this is the constraint leading to the maximum
value (according to the candidate solution considered).

This is done for each soft DTP constraint in the formula.

Ezample 1. Consider a soft DTP constraint dcy Vdcs, where dey : 1 < xz—y < 10
and dcg : 5 < z— ¢ < 15. The piece-wise constant preference function associated
to de; is

1 1<z—-y<3
flder) =42 3<z—y<7 (4)
1 7T<z—-y<10

and can be represented with Lqc, = {({(1,3),(7,10)},1), ({(3,7)},2)}.
Regarding dco, its preference function is

2 5<z—q<8
fldea)=<¢ 4 8<z—¢<10 (5)
2 10<z—q<15

represented with Lg., = {{{(5,8),(10,15)},2),({(8,10)}, 3)}. We now “merge”
Lge, and Ly, into Lge,vde, :=MERGE(Lge,, L4c,) whose result is

{{(1,3)1,(7,10)1}, 1), {(3, 7)1, (5,8)2, (10,15)2}, 2), ({(8,10)2}, 4)}. (6)
Following (3), the reduction is
11 (8<z—q<10), we)) =4
il AN((B<z—y<T)V(BE<2—qg<8)V(10<2z—q<15)), wicz) =2
ez A N(1<ax—y<3V7<z—y<10), wle) =1

Further note that the preference functions we have considered are charac-
terized by having the left-most sub-interval with both bounds included, while
the remaining sub-intervals have only the right bound included: to correctly re-
produce the reduction from the set L, we have further assumed that with the
subscript we can recognize the left-most sub-interval of each constraint.

This first reduction corresponds to a very natural way of expressing soft DTP
constraints; unfortunately, preliminary experiments show that it is inefficient.

A second reduction transforms each soft DTP constraint d to | L4| soft DTP4
constraints as follows: for each z =1...|Ly|

sz = Vi_1 Vpenc; dep (7)

The problem is now to define what are the weights associated to each newly
defined soft DTP# constraint, in order to reflect the semantic of our problem.



In the previous reduction (2), the constraints occurred positively only once; now
there can be many occurrences in the corresponding soft DTP4 constraints in (7)
that influence constraints weights adaptation and definition. Our solution starts
from the following fact: if the constraint cf Ll (i.e. the one that contains all con-
straints generated with out method) is satisfied, it is safe to consider that it
contributes for at least the minimal preference value v, i.e. the one associ-
ated to the set DC|p |, from which CTLd‘ is constructed. Satisfying the constraint
CTLd‘_l contributes for vz, _; — vz,|, and given that a constraint ¢, implies
all constraints ¢, z’ > z, these two soft DTPA constraints together contribute
for v|1,,|—1. This method is recursively applied up to the set of constraints con-
structable from DC1, i.e. ¢}, whose preference value is v; — vy and, given that
¢jimplies all other introduced soft DTP# constraints, satisfying ¢} correctly cor-
responds to assign a weight vy to d.
More formally, for each z = 1...|L4]

7y — J VlLal Z:|Ld|
w(c;) = {vz — V11 1 <z < |L4| (8)

: . / _
and, given an assignment o, w(d) =3 . (1 |L.(}.0e Ve

Ezample 2. Concerning the second reduction, the soft DTPA constraints that
express the constraint d with the preference functions in Example 1 are

A =8<z—q<10, w(c)) =2

= VEB<r—y<TV5E<z—q<8VI10<z—¢<15), w(d) =1
= VeaV(1<z—y<3vi<z-—y<10), w(dg) =1

Such reduction works correctly if we consider a single soft DTP constraint.
However, considering a formula ¢, given our reduction, it is possible to have
repeated DTP# constraints in the reduced formula ¢’. In this case, intuitively,
we want each single occurrence in ¢’ to count “separately”, given that they take
into account different contributions from different soft DTP constraints in ¢. A
solution is to consider a single occurrence of the resulting soft DTP4 constraint
in ¢ whose weight is the sum of the weights of the various occurrences. The
same applies to the first reduction.

4 Experimental Analysis

We have implemented both reductions, and expressed the resulting formulas as
SMT formulas with optimization, then solved with YICES ver. 1.0.38. A pre-
liminary analysis showed that the first reduction is not competitive, thus our
experimental analysis compares the performance of our second reduction, called
DTPPYICES, with two versions of the MAXILITIS solver, namely MAXILITIS-
IW and MAXILITIS-BB. MAXILITIS-IW (IW standing for Iterative Weakening)
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Fig. 1. Results of the evaluated solvers on random DTPPs.

searches for solutions with a progressively increasing number of violated con-
straints; MAXILITIS-BB uses a branch and bound approach for reaching the
optimal solution. Our experiments aim at comparing the considered solvers on
two dimensions, namely the size of the benchmarks and the number of preference
levels in the piece-wise constant preference function, as used in past papers on
DTPPs, with the same parameter settings. Moreover, we also investigated the
performance of the solvers in the case where the preference values of the levels of
the piece-wise preference functions are randomly generated. For randomly gen-
erating the benchmarks the main parameters considered are: (i) the number &
of disjuncts per DTP constraint; (i¢) the number n of arithmetic variables; (4i%)
the number m of DTP constraints; and (iv) number [ of levels in the preference
functions.* For each tuple of values of the parameters, 25 instances have been
generated.

The experiments reported in the following ran on PCs equipped with a pro-
cessor Intel Core i5 running at 3.20 GHz, with 4 GB of RAM, and running GNU
Linux Ubuntu 12.04. The timeout for each instance has been set to 300s.

As a first experiment, we randomly generated benchmarks by varying the to-
tal amount of constraints, with the following parameters: k=2, m € {10,...,100},
n=0.8 x m, [=>5, lower and upper bounds of each constraint taken in [—50, 100].
In this setting, the preference value of the i-th levels is .°

4 The preference functions considered are, as in previous papers, semi-convex piece-
wise constant: starting from the lower and upper bounds of the constraints, intervals
corresponding to higher preference levels are randomly put within the interval of the
immediate lower level, with a reduction factor, up to an highest level. For details
see, e.g. [2].

5 These benchmarks have been generated using the program provided by Michael D.
Moffitt, author of MAXILITIS.



The results obtained in the experiment are shown in Figure 1, which is orga-
nized as follows. Concerning the left-most plots, in the x axis we show the total
amount of constraints, while in the right-most plots the total amount of levels
of the piece-wise constant preference function is reported. In the y axis (in log
scale), it is shown the related median CPU time (in seconds). MAXILITIS-BB’s
performance is depicted by blue triangles, MAXILITIS-IW’s by using orange up-
side down triangles, and DTPPYICES performance is denoted by black circles.
Plots in the top row have a preference value corresponding to ¢ for the i-th
preference level, while plots in the bottom row are related to random DTPPs
whose preference values are randomly generated in {1,...,100} (still ensuring
to maintain the same shape for preference functions),

Looking at Figure 1, and considering the top-left plot, we can see that the
median time of MAXILITIS-BB on benchmarks with 100 constraints runs into
timeout. We can also see the up to m = 80, MAXILITIS-IW is one order of mag-
nitude of CPU time faster that DTPPYICES, while for m > 80 the performance
of the solvers are in the same ballpark. Now, considering the same analysis in
the case where values of the preference levels are randomly generated, we can
see (bottom-left plot) that the picture changes in a noticeable way. Benchmarks
are harder than previously: MAXILITIS-BB and MAXILITIS-IW are not able to
efficiently cope with benchmarks with m > 30. In this case, DTPPYICES is the
best solver, and we report that it is able to deal with benchmarks up to m = 60.

Detailed results for these benchmarks containing, for each solver and number
of constraints, the number of solved instances, and the sum of their solving CPU
times, are reported in Table 1.

Our next experiment aims to evaluate the solvers by varying the number of
levels in the preference functions, with the following parameters: k=2, n=24,
m=30, | € {2,...,8}, lower and upper bounds of each constraint taken in
[—50, 100]. Top-right and bottom-right plots have the same meaning as before
w.r.t. the preference functions. Looking at the top-right plot of Figure 1, we can
see that MAXILITIS-IW is the best solver up to [ = 7, while for [ = 8, we report
that DTPPYICES is faster. Also in this case MAXILITIS-BB does not efficiently
deal with the most difficult benchmarks in the suite. Looking now at the plot in
the bottom-right, we can see the same picture related to the bottom-left plot: the
performance of both versions of MAXILITIS are very similar, while DTPPYICES is
the fastest solver: the median CPU time of both MAXILITIS-BB and MAXILITIS-
IW runs in timeout for [ > 5, while DTPPYICES solves all set of benchmarks
within the time limit. Along with the previous results, this reveals that MAX-
ILITIS may have specialized techniques to deal with DTPPs whose preference
values are of the first type we have analyzed.

Finally, detailed results for each number of levels are reported in Table 2.



N| M MaxiLiTis-BB MaxiLiTis-IW DTPPYICES
Fixed Rand Fixed Rand Fixed Rand

# | Time | # | Time || # | Time | # | Time || # | Time | # | Time
8 |10 25 0.01 | 25 0.04 (25| 0.01]25 0.33 25| 0.12]25 0.27
16 | 20 25 0.16 [ 25| 16.79(| 25| 0.01|25| 6297 25| 0.33|25 0.92
24 | 30 25 5.75| 18 1 593.82 || 25| 0.02 |21 |922.82 25| 0.55 |25 4.78
32|40 24| 70.12| 3| 85.98 (25| 0.05] 9|946.78 || 25| 1.06 | 25| 27.92
40 | 50 22| 27.58 | 1]108.711( 25| 0.29| 3|334.98 |25 | 1.68 |24 |278.40

48 |60 || 17 |254.24| — — |25 426| — — |25 | 2.80|20|225.48
56 | 70 || 21| 59.28 | - —|25| 0.70| - — 25| 4.04 |10 |900.48
64|80 || 16]155.92 | — —|25| 7.16| - —|25] 591 | 5|110.92
72190 || 17|400.46 | — — 1125|1538 | — —{25| 9.01| 3|225.93
80| 100 || 12| 790.15 | — —||25|58.37| - — 1251231 | 3| 144.44

Table 1. Performance of the selected solvers on random DTPPs with different sizes.
The first columns (“N”) reports the total amount of variables for each pool of DTPPs,
while the second one (“M”) reports the total amount of constraints. It is followed by
three groups of columns, and the label is the solver name. Each group is composed
of four columns, reporting the total amount of instances solved within the time limit
(“#”) and the total CPU time in seconds (“Time”) spent, both in the case of fixed
preference value corresponding to the level, and randomly generated (groups “Fixed”

and “Rand”, respectively). In case a solver does not solve any instance, “~” is reported.
L MaxiLiTis-BB MaxiLiTis-IW DTPPYICES
Fixed Rand Fixed Rand Fixed Rand

# | Time | # | Time || # | Time | # | Time || # | Time | # | Time

25 0.01 | 25 1.70 || 25 0.01 | 25 2.86 || 25 0.10 | 25 0.20

25 0.01 | 25 7.10 || 25 0.01 | 25 | 47.69 || 25 0.21 | 25 0.41

25 0.01 | 21 | 396.39 || 25 0.01 | 25 | 205.43 || 25 0.36 | 25 0.93

25 5.81 | 18 | 593.82 || 25 0.02 | 21 | 922.82 || 25 0.55 | 25 4.78

24| 33.63 | 10 | 679.97 || 25 4.83 | 10 | 614.07 || 25 1.82 ] 25| 22.12

21123520 | 2| 6838 23 |130.73| 2| 59.78 || 25| 80.57 | 21 | 270.73

O[O Y x| W N

12 | 450.63 | 2 | 218.46 || 17 | 602.64 | 2 | 306.20 || 25 | 195.52 | 13 | 493.60

Table 2. Performance of the selected solvers on random DTPPs with different levels.
In column “L” we report the total amount of levels, while the rest of the table is
organized similarly to Table 1.

5 Related Work

MAXILITIS [2,5], WEIGHTWATCHER [6] and ARIO [4] implement different ap-
proaches for solving DTPPs as defined in [7]. MAXILITIS is a direct extension of
the DTP solver EPILITIS [3], while WEIGHTWATCHER uses an approach based
on Weighted Constraints Satisfaction problems, even if the two methods are
similar (as mentioned in, e.g., [6]). ARIO, instead, relies on an approach based

10



on Mixed Logical Linear Programming (MLLP) problems. In our analysis we
have used MAXILITIS because the results in, e.g. [2] clearly indicate its superior
performance.

About the comparison to MAXILITIS, our solution is easy, yet efficient, and
has a number of advantages w.r.t. the approach of MAXILITIS. On the modeling
side, it allows to consider (with no modifications) both integer and real variables,
while MAXILITIS can deal with integer variables only. Moreover, our implemen-
tation provides an unique framework for solving DTPPs, while the techniques
proposed in [2] are implemented in two separate versions of MAXILITIS. Finally,
our solution is modular, i.e. it is easy to rely on different back-end solvers (or,
on a new version of YICES), thus taking advantages on new algorithms and tools
for solving our formulas of interest.

6 Conclusions

In this paper we have introduced a general reduction-based approach for solving
DTPPs, that reduces these problems to Maximum Satisfiability of DTPs as
defined in the paper. An experimental analysis performed with the YicEs SMT
solver on randomly generated DTPPs shows that our approach is competitive
to, and sometimes faster than, the specific implementations of the MAXILITIS
solver. The executable of our solver can be found at

http://www.star.dist.unige.it/~marco/DTPPYices/.
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