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Abstract. In this work we present a complete picture of our work on comput-
ing optimal solutions in satisfiability problems with qualitative preferences. With
this task in mind, we first review our work on computing optimal solutions by im-
posing an ordering on the way the search space is explored, e.g., on the splitting
heuristic in case the DPLL algorithm is used. The main feature of this approach
is that it guarantees to compute all and only the optimal solutions, i.e., models
which are not optimal are not even computed: For this result, it is essential that
the splitting heuristic of the solver follows the partial order on the expressed pref-
erences. However, for each optimal solution, a formula that prunes non-optimal
solutions needs to be retained, thus this procedure does not work in polynomial
space when computing all optimal solutions.
We then extend our previous work and show how it is possible to compute optimal
solutions using a generate-and-test approach: Such a procedure is based on the
idea to first compute a model and then check for its optimality. As a consequence,
no ordering on the splitting heuristic is needed, but it may compute also non-
optimal models. This approach does not need to retain formulas indefinitely, thus
it does work in polynomial space.
We start from a simple setting in which a preference is a partial order on a set of
literals. We then show how other forms of preferences, i.e., quantitative, qual-
itative on formulas and mixed qualitative/quantitative can be captured by our
framework, and present alternatives for computing “complete” sets of optimal
solutions. We finally comment on the implementation of the two procedures on
top of state-of-the-art satisfiability solvers, and discuss related work.

1 Introduction

The problem of finding an optimal solution in a satisfiability (SAT) problem with qual-
itative preferences has attracted a lot of researchers in Artificial Intelligence in gen-
eral, and in the constraint and logic programming community in particular. As a con-
sequence, several approaches for expressing and reasoning with SAT problems with
preferences have been proposed, and viable solutions exist, especially for finding one
optimal solution. However, in some cases, it is not desirable to find just one solution.
Indeed, it might be desirable to be able to compute more, and possibly all, solutions,
e.g., for comparatively evaluate them on the basis of other criteria not captured by the
preferences. See, e.g., [4, 34, 8, 6, 25, 10, 18, 49, 3] for approaches for finding one and
all optimal solutions.



A simple approach for finding optimal solutions consists in first enumerating all
(non necessarily optimal) solutions, and then eliminating a solution µ if there exists
another solution µ′ which is “preferred” to µ. The first obvious drawback of this ap-
proach is that it requires the computation of all solutions, even the non optimal ones.
The second drawback is that each solution has to be stored and compared with the
others. In [5], in the context of CP-nets [4], the authors noticed, that by imposing an
ordering on the splitting heuristic used for searching solutions, it is possible to miti-
gate the second drawback by comparing a solution only with the previously generated
ones, which are already guaranteed to be optimal: In this way, only the so far generated
optimal solutions need to be stored. Still, the number of optimal solutions can be ex-
ponential and all the solutions (even the non-optimal ones) are computed. Further, it is
well known that imposing an ordering on the splitting heuristic may lead to a significant
degradation in the performances of the solver used for finding solutions [38, 39].

In this work we present two procedures, based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [16, 15], for computing optimal solutions of a SAT problem
with qualitative preferences. In our setting, a qualitative preference is a partially ordered
set of literals 〈S,≺〉: S is the set of literals that we would like to have satisfied, and ≺
is a (strict) partial order on S expressing the relative importance of fulfilling each literal
in S. The first procedure is guaranteed to compute all and only the optimal solutions,
i.e., models which are not optimal are not even computed. For this result, it is essen-
tial that the splitting heuristic of the solver follows the partial order on the expressed
preferences [34]: As we already said, imposing such ordering can lead to significant
degradation in the performances of the solver, though this is not the case for many ap-
plications, see, e.g., [35, 45] in the context of satisfiability planning [42] and Answer
Set Programming [30, 31]. However, for each optimal solution this approach needs to
retain a formula that prunes non-optimal solutions: Thus, such a procedure works in
polynomial space when searching for a bounded number of optimal solutions, but not
in the general case [20]. The second procedure is based on the idea to first compute a
model and then check for its optimality: The check consists in determining whether a
better model exists and this task is reduced again to a SAT problem. As a consequence,
no ordering on the splitting heuristic is needed. Of course, this second procedure may
compute models which are not optimal, but is guaranteed to work in polynomial space
given there is no need to retain formulas indefinitely. The solving procedure for finding
one optimal solution has been presented in [19].

We then show how qualitative preferences on formulas and quantitative preferences
on literals or formulas can be reduced to the basic framework of qualitative preferences
on literals: This allows us to use our procedures also in these extended settings and,
further, for solving problems with mixed qualitative and quantitative preferences. Our
procedures compute “complete” set of optimal solutions, and different complete sets of
optimal solutions may exist: We also present alternatives for computing such sets. We
finally comment on the implementation of the two procedures on top of state-of-the-art
satisfiability solvers, like MINISAT [24], and discuss related work.

The paper is structured as follows. In Section 2 we review the basic definitions
and terminology about qualitative preferences on literals. In Section 3 we present the
two procedures for computing optimal models, while how to deal with other forms of



preferences and with other concepts of complete sets of optimal models is showed in
Section 4. Section 5 discusses implementation and related work, and we conclude the
paper in Section 6.

2 Satisfiability and Qualitative Preferences

Consider a finite set P of variables. A literal is a variable x or its negation¬x. A formula
is either a variable or a finite combination of formulas using the n-ary connectives ∧,∨
for conjunction and disjunction (n ≥ 0), and the unary connective ¬ for negation. We
use the symbols⊥ and> to denote the empty disjunction and conjunction, respectively.
If l is a literal, we write l for ¬l and we assume x = x. This notation is extended to sets
S of literals, i.e., S = {l : l ∈ S}.

Formulas are used to express hard constraints that have to be satisfied. For example,
given the 4 variables Fish, Meat, RedWine, WhiteWine, the formula

(Fish ∨Meat) ∧ (RedWine ∨WhiteWine) (1)

models the fact that we cannot have both fish (Fish) and meat (Meat), both red (RedWine)
and white (WhiteWine) wine.

An assignment µ is a consistent set of literals. If l ∈ µ, we say that both l and l
are assigned by µ. An assignment µ is total if each literal l is assigned by µ. A total
assignment µ satisfies

• a literal l if l ∈ µ,
• a disjunction (ϕ1 ∨ . . . ∨ ϕn) (n ≥ 0) if and only if µ satisfies at least one disjunct
ϕi with 1 ≤ i ≤ n,

• a conjunction (ϕ1 ∧ . . . ∧ ϕn) (n ≥ 0) if and only if µ satisfies all the ϕi with
1 ≤ i ≤ n,

• the negation of a formula ¬ψ if and only if µ does not satisfy ψ.

A model of a formula ϕ is an assignment satisfying ϕ. A formula ϕ entails a formula
ψ (ϕ |= ψ) if the models of ϕ are a subset of the models of ψ. For instance, (1) has
9 models. In the following, we represent a total assignment with the set of variables
assigned to true in it. For instance, {Fish,WhiteWine} represents the total assignment
in which the only variables assigned to true are Fish and WhiteWine, i.e., the situation
in which we have fish and white wine.

A (qualitative) preference (on literals) is a partially ordered set of literals, i.e., a pair
〈S,≺〉 where

• S is a set of literals, called the set of preferences: Intuitively, S represents the set of
literals that we would like to have satisfied; and
• ≺ is a (strict) partial order on S: Intuitively, l ≺ l′ models the fact that we prefer l

to l′.

For example,
{Fish,Meat,RedWine}, {Fish ≺ Meat} (2)



models the case in which we prefer to have both fish and meat, and avoid red wine; in
the case in which it is not possible to have both fish and meat, we prefer to have fish
over having meat.

A qualitative preference 〈S,≺〉 on literals can be extended to the set of total assign-
ments as follows [49]: Given two total assignments µ and µ′, we say that µ is preferred
to µ′ (µ ≺ µ′) if and only if1

1. there exists a literal l ∈ S with l ∈ µ and l ∈ µ′; and
2. for each literal l′ ∈ S ∩ (µ′ \ µ), there exists a literal l ∈ S ∩ (µ \ µ′) such that
l ≺ l′.

From the definition, it is clear that for any two total assignments µ and µ′:

1. If S ∩ µ = S ∩ µ′ then µ 6≺ µ′: In particular, if the set S of preferences is empty,
every model is optimal.

2. If S ∩ µ′ ⊂ S ∩ µ then µ ≺ µ′: Every optimal model has a maximal intersection
with S. In the case ≺ is empty, every model with a maximal intersection with S is
optimal.

〈S,≺〉 induces a partial order on the set of total assignments, as stated by the fol-
lowing theorem.

Theorem 1. Let 〈S,≺〉 be a qualitative preference on literals. The relation≺ extended
to the set of total assignments is a partial order.

This theorem has been presented and proved as Theorem 7 in [49] and Theorem 1
in [20].

A model µ of a formula ϕ is optimal if it is a minimal element of the partially
ordered set of models of ϕ. A model µ dominates a model µ′ if µ ≺ µ′. For instance,
considering the qualitative preference (2), the formula (1) has only two optimal models,
i.e., {Fish} and {Fish,WhiteWine}. We call {{Fish}, {Fish,WhiteWine}} a complete,
or “P -complete”, set of optimal models.

3 Computing all optimal solutions in a SAT problem with
preferences

Given a formula ϕ and a preference, we now show how it is possible to compute all
optimal models of ϕ by extending the famous DPLL procedure [16, 15]. In principle, we
could use any complete backtrack-search algorithm that can find all satisfying assign-
ment of ϕ. For presenting our algorithms, we have chosen DPLL for clarity. However,
DPLL does not directly handle arbitrary formulas, but finite sets of clauses, where a
clause is a finite set of literals to be interpreted disjunctively. This is not a limitation
because of well known clause form transformation procedures (see, e.g., [59, 51, 37]).
In the following, we will continuously switch between formulas and sets of clauses, in-
tuitively meaning the same thing. We remind that deciding whether a formula belongs
to an optimal solution is in Σ2

p (see, e.g., Theorem 14 in [49]).

1 It is easy to see that in the case in which the partial order is empty, our definition corresponds
to the standard Pareto’s optimality, while, in the case in which the partial order is not empty, it
corresponds to the “Inter criterial Pareto Optimality” as defined in [22].



3.1 Computing all optimal solutions by pruning non-optimal models

Consider a formula ϕ and a preference 〈S,≺〉. The problem of computing all optimal
models of ϕ wrt 〈S,≺〉 can be solved by

1. determining and printing an optimal model µ of ϕ by imposing an ordering on the
splitting heuristic, as in, e.g., [34];

2. adding to the input formula a new formula which prunes the models which are
dominated by µ; and

3. returning FALSE in order to continue the search for other optimal models.

Crucial for the above procedure is a condition which enables us to say which are the
total assignments that are dominated by µ (wrt 〈S,≺〉). We therefore define a formula
whose models are dominated by µ: From our definition such formula is

(∨l∈S∩µ l) ∧ (∧l∈S∩µ ( l ∨ ∨l′∈S∩µ,l′≺l l′ )). (3)

The total assignment µ dominates a total assignment µ′ wrt 〈S,≺〉 iff µ′ satisfies
Eq. (3), as stated by the following theorem.

Theorem 2. Let 〈S,≺〉 be a qualitative preference on literals. A total assignment µ
dominates a total assignment µ′ wrt 〈S,≺〉 if and only if µ′ satisfies the formula in
Eq. (3) wrt 〈S,≺〉.

This theorem has been presented and proved as Theorem 3 in [20].
For example,

1. if µ1 = {Fish} and 〈S,≺〉 is as in (2), then (3) is

(Fish ∨ RedWine) ∧ (Meat ∨ Fish)

which is equivalent to
Fish ∨ (RedWine ∧Meat)

Any total assignment which satisfies Fish or (RedWine ∧ Meat) is dominated by
{Fish}.

2. if µ2 = {Meat} and 〈S,≺〉 is as in (2), then (3) is

(Meat ∨ RedWine) ∧ Fish

Any total assignment which satisfies Fish and at least one between RedWine and
Meat) is dominated by {Meat}.

Notice that if µ1 dominates µ2 and ψ1 (resp. ψ2) is the formula (3) computed for µ1

(resp. µ2), then ψ2 |= ψ1, i.e., the models of ψ2 are a subset of the models ψ1: This is
a simple consequence of the fact that if µ1 ≺ µ2 then µ1 dominates a superset of the
total assignments dominated by µ2.

As general examples consider the following particular cases:

1. If S ∩ µ = ∅, then formula (3) is equivalent to the empty disjunction, i.e., FALSE:
Indeed, if µ does not satisfy any preference, no assignment is dominated by µ;



〈S,≺〉 := a qualitative preference on literals;
ψ := ∅;

function nOPT-DLL1(ϕ ∪ ψ, µ)
1 if (⊥ ∈ (ϕ ∪ ψ)µ) return FALSE;
2 if (µ is total)
3 Print(µ ∩ (P ∪ P ));
4 ψ := ψ ∪ Reason(µ);
5 return FALSE;
6 if ({l} ∈ (ϕ ∪ ψ)µ) return nOPT-DLL1(ϕ ∪ ψ, µ ∪ {l});
7 l := ChooseLiteral1(ϕ ∪ ψ, µ);
8 return nOPT-DLL1(ϕ ∪ ψ, µ ∪ {l}) or

nOPT-DLL1(ϕ ∪ ψ, µ ∪ {l}).

Fig. 1. The algorithm of nOPT-DLL1.

2. If S ⊆ µ, then formula (3) is equivalent to

∨l∈S l.

Each assignment which does not satisfy all the preferences is dominated by µ;
3. If ≺= ∅, then formula (3) is equivalent to

∨l∈S∩µ l ∧ ∧l∈S∩µ l.

Each assignment satisfying a strict subset of the set of preferences satisfied by µ, is
dominated by µ.

Given a system SYS for computing an optimal model of a formula ϕwrt a preference
〈S,≺〉, Theorem 2 allows us to compute a complete set of optimal models using SYS as
a black box, according to the following procedure:

1. SYS is invoked with input ϕ and the preference 〈S,≺〉;
2. If SYS returns that ϕ is unsatisfiable then all optimal models have been already

computed and the procedure stops;
3. If SYS returns an optimal model µ, the negation of the formula (3) is computed and

added to ϕ;
4. Go to Step 1.

The resulting procedure, which generalizes the DPLL-based procedure presented in [34]
for computing one optimal model, is represented in Figure 1 and returns a complete set
of optimal models.

In the figure,2

• it is assumed that the input formula ϕ is a set of clauses; µ is an assignment; ψ is
an initially empty set of clauses;

2 We assume left-associativity for the or at line 8 of the procedure.



• (ϕ ∪ ψ)µ is the set of clauses obtained from ϕ ∪ ψ by (i) deleting the clauses
C ∈ ϕ∪ψ with µ∩C 6= ∅, and (ii) substituting the other clauses C ∈ ϕ∪ψ with
C \ {l : l ∈ µ};

• Reason(µ) returns a set of clauses equivalent to the negation of (3): Let P be the
signature of ϕ, Reason(µ) is a finite set of clauses —possibly in a signature P ′

extending P— such that
1. for each total assignment µ satisfying the negation of (3), there exists one as-

signment µ′ in P ′ extending µ and satisfying Reason(µ);
2. for each total assignment µ′ in P ′ satisfying Reason(µ), the restriction of µ′ to
P satisfies the negation of (3).

Such a set of clauses can be computed starting from the negation of (3) using the
already mentioned clause form transformations [59, 51, 37].
• ChooseLiteral1(ϕ ∪ ψ, µ) returns an unassigned literal l such that

– if there exists a literal in S which is not assigned by µ, then each literal l′ with
l′ ≺ l has to be assigned by µ, and

– is an arbitrary literal occurring in ϕ ∪ ψ, otherwise.

nOPT-DLL1 has to be invoked with ϕ and µ set to the input formula and the empty set,
respectively. It is easy to see that if there are no preferences, the computation performed
by nOPT-DLL1 for computing the first (optimal) model is the same as the one performed
by DPLL. nOPT-DLL1 prints all and only the optimal models of ϕ wrt 〈S,≺〉, as stated
by the following theorem.

Theorem 3. Let 〈S,≺〉 be a qualitative preference on literals. Let ϕ be a set of clauses.
nOPT-DLL1(ϕ, ∅) returns all and only the optimal models for ϕ wrt 〈S,≺〉.

This theorem has been presented and proved as Theorem 4 in [20]. Notice that if the
number of optimal models is polynomial, so is the space requirement of nOPT-DLL1,
and it is easy to modify nOPT-DLL1 by introducing a bound on the number of optimal
models to be generated. However, even in practice we did not experience many prob-
lems due to excessive space requirements on most of the benchmarks and applications
we considered, in general there can be exponentially many optimal models and thus
nOPT-DLL1 is not ensured to run in polynomial space.

3.2 Computing all optimal solutions via generate-and-test

As we have already anticipated, nOPT-DLL1 has two drawbacks: In principle, it may
have exponential space requirements and it imposes an ordering on the splitting heuris-
tic. In order to be sure to run in polynomial space, a procedure for computing all optimal
models of a formula ϕ has to give up the idea of storing information about the previ-
ously computed optimal models. However, this has the consequence that we are no
longer ensured that a generated model is also optimal, even by designing the splitting
heuristic as in nOPT-DLL1. Thus, it is necessary to test for optimality of a generated
model µ, and this test has to be performed by taking into account only the model µ,
the formula ϕ and the preference 〈S,≺〉. In other words, we need a condition enabling



us to determine if a model µ of a formula ϕ is optimal wrt 〈S,≺〉, i.e., if there exists
another model µ′ of ϕ with µ′ ≺ µ. The preference formula for µ (wrt 〈S,≺〉) is

(∨l∈S∩µ l) ∧ (∧l′∈S∩µ(∨l∈S∩µ,l≺l′ l ∨ l′)). (4)

A total assignment µ′ is preferred to µ wrt 〈S,≺〉 iff µ′ satisfies (4), as stated by the
following theorem.

Theorem 4. Let 〈S,≺〉 be a qualitative preference on literals. A total assignment µ′

is preferred to a total assignment µ wrt 〈S,≺〉 if and only if µ′ satisfies the preference
formula for µ wrt 〈S,≺〉.

The theorem can be proved from the definition of dominance between total assignments,
as for Theorem 2.

For example,

1. if µ1 = {Fish} and 〈S,≺〉 is as in (2), then the preference formula for µ1 is

(Meat ∧ Fish ∧ RedWine).

The two total assignments satisfying (Meat∧ Fish∧ RedWine) are preferred to µ1.
2. if µ2 = {Meat} and 〈S,≺〉 is as in (2), then the preference formula for µ2 is

Fish ∧ ((Meat ∨ Fish) ∧ RedWine)

equivalent to Fish∧RedWine: The four total assignments satisfying Fish∧RedWine
are preferred to µ2.

Notice that since µ1 ≺ µ2, the preference formula (4) for µ1 entails the preference
formula for µ2: The set of total assignments which are preferred to µ1 is a subset of the
set of total assignments which are preferred to µ2. As general examples consider the
following particular cases:

1. If S ⊆ µ (e.g., because S = ∅), then (4) is equivalent to ⊥ meaning that there is no
assignment which is preferred to µ, i.e., that µ is optimal.

2. If ≺= ∅, then (4) becomes

(∨l∈S∩µ l) ∧ ∧l′∈S∩µ l′,

meaning that a total assignment µ′ is preferred to µ if and only if µ ∩ S ⊂ µ′ ∩ S.

Thanks to Theorem 4 we can check if a model µ of a formula ϕ is optimal by
checking the satisfiability of ϕ and the preference formula ψ for µ. We can thus easily
generate a complete set of optimal solutions by modifying DPLL in order to

1. compute a (not necessarily optimal) model µ of ϕ;
2. test if µ is optimal, in which case µ is printed; and
3. return FALSE in order to continue the search for other (possibly optimal) models.

In Figure 2 we maintain the same assumptions and notations used in Figure 1, ex-
tended with:



〈S,≺〉 := a qualitative preference on literals;
ψ := ∅;

function nOPT-DLL2(ϕ ∪ ψ, µ)
1 if (⊥ ∈ (ϕ ∪ ψ)µ) return FALSE;
2 if (µ is total)
3 ψ := NewReason(µ, ψ);
4 if (UNSAT (ϕ ∪ Prefwff(µ))) Print(µ);
5 return FALSE;
6 if ({l} ∈ (ϕ ∪ ψ)µ) return nOPT-DLL2(ϕ ∪ ψ, µ ∪ {l});
7 l := ChooseLiteral2(ϕ ∪ ψ, µ);
8 return nOPT-DLL2(ϕ ∪ ψ, µ ∪ {l}) or

nOPT-DLL2(ϕ ∪ ψ, µ ∪ {l}).

Fig. 2. The algorithm of nOPT-DLL2.

• NewReason(µ, ψ) returns a subset of the clauses in Reason(µ) ∪ ψ;
• Prefwff(µ) returns the set of clauses equivalent to the preference formula for µ;
• UNSAT (ϕ ∪ Prefwff(µ)) is an invocation to a SAT solver returning TRUE if the

input set of clauses is unsatisfiable, and FALSE otherwise;
• ChooseLiteral2(ϕ ∪ ψ, µ) returns an arbitrary unassigned literal l.

The nOPT-DLL2 algorithm in Figure 2 has to be invoked withϕ and µ set to the input
formula and the empty set, respectively. It is easy to see that if there are no preferences,
the computation performed by nOPT-DLL2 for computing the first (optimal) model is
the same as the one performed by DPLL. nOPT-DLL2 prints all optimal models, as stated
by the following theorem.

Theorem 5. Let 〈S,≺〉 be a qualitative preference on literals. Let ϕ be a set of clauses.
nOPT-DLL2(ϕ, ∅) prints all optimal models for ϕ.

Proof. The theorem follows from:

1. The correctness and completeness of DPLL as models enumerator, and
2. the correctness of the UNSAT (ϕ ∪ Prefwff(µ)) function.

The first point is proved in, e.g., [33], while the second point holds by definition of
Prefwff(µ).

As an optimization of the above procedure, when a model µ is computed, we can
add to the input formula a subset of the clauses in Reason(µ) ∪ ψ at line 3 of nOPT-
DLL2, e.g., the ones corresponding to the negation of (3). The goal of these clauses is
to prune the models of µ which are guaranteed not to be optimal because dominated by
µ: They are not needed for the correctness of the procedure and can be removed at any
time.

No formula is needed to be retained indefinitely in this algorithm, thus if NewReason
computes a polynomial number of clauses, then nOPT-DLL2 is guaranteed to work in
polynomial space.



4 Extensions

In this section we describe two extensions of our initial setting of (i) computing P -
complete sets of optimal solutions (ii) of SAT problems with qualitative preferences
on literals. Subsection 4.1 shows how to deal with an alternative concept of “complete”
set of optimal models, while Subsection 4.2 shows how problems with quantitative
preferences, or with qualitative preferences defined on formulas, or with mixed quali-
tative/quantitative preferences, can be captured by our basic setting (ii). This last part
has been already presented in [20].

4.1 Alternative complete sets of optimal models

The two procedures we have presented compute what we have called a P -complete set
of optimal models: Considering the formula (1) and the preference (2), a P -complete
set of optimal models for this problem is {{Fish}, {Fish,WhiteWine}}. Given the task
to compute all optimal models, it can be the case that it is not interesting to distinguish
between the two optimal models {Fish} and {Fish,WhiteWine} given that they differ
only for the truth value assigned to WhiteWine, and the set of preferences says nothing
about the desired truth value assigned to WhiteWine.

More formally, consider a formula ϕ, a qualitative preference 〈S,≺〉 and a set Γ of
optimal models of ϕ, Γ is P -complete if it contains all the optimal models of ϕ: Indeed,
there can be only one P -complete set of optimal models. An alternative form, we call S-
complete, considers that for each optimal model µ of ϕ there exists exactly one model
µ′ in Γ with µ ∩ S = µ′ ∩ S. Intuitively, any two models in Γ have to differently
evaluate some of the literals in S. There can be more than one S-complete sets of
optimal models, for example, the sets of models {{Fish}} and {{Fish,WhiteWine}}
are both S-complete for (1), assuming 〈S,≺〉 is (2).

Some updates are needed in order to find an S-complete set of optimal models.
First, the definition of dominance: A model µ dominates a model µ′ if either µ ≺ µ′ or
µ ∩ S = µ′ ∩ S.

Then, the formula (3) that defines which are the total assignments dominated by a
given total assignment µ becomes

∧l∈S∩µ ( l ∨ ∨l′∈S∩µ,l′≺l l′ ). (5)

As general examples consider the following particular cases:

1. If S ⊆ µ (e.g., because S = ∅), then (5) is equivalent to > meaning that all
assignments are dominated by µ, i.e. {µ} is S-complete.

2. If ≺= ∅, then (5) becomes
(∧l∈S∩µ l)

meaning that a total assignment µ is preferred to µ′ if and only if µ′ ∩ S ⊆ µ ∩ S.

In our example,

1. if µ1 = {Fish} and 〈S,≺〉 is as in (2), then (5) is

(Meat ∨ Fish).

Any total assignment which satisfies Fish or Meat is dominated by {Fish}.



2. if µ2 = {Meat} and 〈S,≺〉 is as in (2), then (5) is

Fish.

Any total assignment which satisfies Fish is dominated by {Meat}.

Similar changes hold for the preference formula (4). Moreover, in the second algo-
rithm the generation of an S-complete set of models is more difficult than computing a
P -complete set. Indeed, we cannot have two optimal models which satisfy the same set
of preferences. If µ is an already determined optimal model, in order to avoid the gener-
ation of models satisfying the preferences of µ (i.e., the literals in S ∩ µ) we could add
a clause containing the negation of the literals in S∩µ, as soon as µ is determined to be
optimal. However, the resulting procedure is no longer guaranteed to run in polynomial
space. A simple solution that guarantees the polynomial space requirement is to force
DPLL in order to first split on the literals l such that either l ∈ S or l ∈ S: When a model
µ is found, regardless of whether it is optimal or not, a set of clauses corresponding to
the negation of (5) is added to the input formula. The goal of these clauses is to force the
procedure to backtrack up to one of the literals in S, in this way avoiding the generation
of models which satisfy the same preferences as µ. Once the procedure backtracks to
one such literal, these clauses can be removed, thus guaranteeing the polynomial space
property of the procedure. Thus, the definition of ChooseLiteral2 needs to be updated in
this case: ChooseLiteral2 returns (i) a literal l with l ∈ S or l ∈ S if not all the literals
in S are assigned by µ, and (ii) an arbitrary unassigned literal otherwise.

All theorems and results can be restated in terms of S-complete set of models.

4.2 Quantitative and Qualitative Preferences on Formulas and their mixing

Quantitative Preferences on literals. Given a set of preferences S and a formula ψ, if
it is not possible to satisfy both S and ψ, an alternative approach to model the relative
importance of the preferences in S is to define a function c : S 7→ N+: Intuitively, c(l)
is the reward for satisfying l ∈ S. A pair 〈S, c〉 is a quantitative preference and a model
µ of ψ is optimal if it maximizes the objective function defined as3∑

l∈S∩µ

c(l). (6)

Consider a quantitative preference 〈S′, c〉 and a satisfiable set of clauses ϕ′.
The problem of finding a complete set of optimal models of ϕ′ wrt 〈S′, c〉 can

be solved again using nOPT-DLL1 or nOPT-DLL2 as core engine. The basic idea is to
encode the value of the objective function (6) as a sequence of bits bn−1, . . . , b0 and
then consider the qualitative preference 〈{bn−1, . . . , b0}, {bi ≺ bj : 0 ≤ j < i < n}〉.
In more details, let adder(S′, c) be a set of clauses such that:

3 Assuming we want c(l) < 0 for some l ∈ S, we can replace l with l in S and define c(l) =
−c(l): The set of optimal models does not change. Given 〈S, c〉 and assuming we are interested
in minimizing the objective function (6), we can consider the quantitative preference 〈S, c′〉
with c′(l) = c(l), and then look for a model maximizing

P
l∈S∩µ c

′(l).



1. If n = dlog2(
∑
l∈S′ c(l)+1)e, adder(S′, c) contains n new variables bn−1, . . . , b0;

and
2. A total assignment µ satisfies ϕ′ iff there exists a unique total assignment µ′ to the

variables in ϕ′ and in adder(S′, c) such that
(a) µ′ extends µ and satisfies both ϕ′ and adder(S′, c), and
(b)

∑
l∈S′∩µ c(l) =

∑n−1
i=0 µ

′(bi) × 2i, where µ′(bi) is 1 if bi ∈ µ′, and is 0
otherwise.

If the above conditions are satisfied, we say that adder(S′, c) is a Boolean encoding
of 〈S′, c〉 with output bn−1, . . . , b0. adder(S′, c) can be realized in polynomial time in
many ways, see, e.g., [61]. In the above hypotheses, if

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c), and
2. 〈S,≺〉 is the qualitative preference 〈{bn−1, . . . , b0},{bi ≺ bj : 0 ≤ j < i < n}〉

then nOPT-DLL1 and nOPT-DLL2 return a complete set of optimal solutions of ϕ′ wrt
〈S′, c〉. The following theorem formally states this result.

Theorem 6. Let ϕ′ be a set of clauses and let 〈S′, c〉 be a quantitative preference on
literals. Let adder(S′, c) be a Boolean encoding of 〈S′, c〉 with output bn−1, . . . , b0. If

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c),
2. 〈S,≺〉 is the qualitative preference 〈{bn−1, . . . , b0},{bi ≺ bj : 0 ≤ j < i < n}〉,

and
3. M is the set of models of ϕ printed by nOPT-DLL1 in Figure 1, or by nOPT-DLL2

in Figure 2,

then the models in M , restricted to the signature of ϕ′, are all the optimal models of ϕ′

wrt 〈S′, c〉.

This theorem has been presented and proved as Theorem 5 in [20].

Qualitative and Quantitative Preferences on Formulas. So far, a preference is a
literal, and we have seen how it is possible to use DPLL to find optimal models wrt
both qualitative and quantitative preferences on literals. We now show that the hypoth-
esis that preferences are literals can be waved, i.e., that it is possible to generalize the
previous concepts and results from literals to arbitrary formulas. The basic idea is to
introduce definitions [59] or “names” [51] for the formulas at hand.

First, we define a qualitative preference on formulas to be a pair 〈S,≺〉 where S is
a finite set of formulas and ≺ is a (strict) partial order on S. The set S of preferences
does not need to be consistent. Then, as in Section 2, the partial order on S induces a
partial order on the sets of total assignments according to which, if µ and µ′ are two
total assignments, µ ≺ µ′ if and only if

1. there exists a formula ψ ∈ S satisfied by µ and not by µ′; and
2. for each formula ψ′ ∈ S satisfied by µ′ and not by µ, there exists a formula ψ ∈ S

satisfied by µ and not by µ′ such that ψ ≺ ψ′.



It is easy to see that if the formulas in S are literals, then the above definition coincides
with the one given in Section 2. It is also straightforward to generalize the result of
Theorem 1 saying that the if 〈S,≺〉 is a qualitative preference on formulas, the relation
≺ extended to the set of total assignments is a partial order.

A model µ of a formula ψ is optimal wrt a qualitative preference on formulas 〈S,≺〉
if µ is a minimal element of the partial order on the models of ψ.

Consider a formula ψ and a qualitative preference on formulas 〈S,≺〉. Instead of ψ
and 〈S,≺〉 we can consider

1. the qualitative preference on literals 〈Ls,≺S〉, where
• LS has a newly introduced variable xα for each formula α ∈ S, and
• xα ≺S xβ if and only if α ≺ β; and

2. the formula
ψ ∧ ∧α∈S(xα ≡ α). (7)

Then, if
µS = µ ∪ {xα : α ∈ S, µ |= α} ∪ {¬xα : α ∈ S, µ 6|= α}

it is straightforward to see that a model µ of ψ is optimal wrt the qualitative preference
on formulas 〈S,≺〉 iff µS is an optimal model of (7) wrt the qualitative preference on
literals 〈LS ,≺S〉. It is also easy to see that (7) can be simplified to

ψ ∧ ∧α∈S(¬xα ∨ α) (8)

and we obtain again the desired correspondence between the models of ψ and (8).
Introducing definitions [59] or “names” [51] for the formulas in the preferences

allows us also to reduce quantitative preferences on formulas (defined in the obvi-
ous way) to qualitative preferences on literals. Further, it allows us to use nOPT-DLL1

and nOPT-DLL2 as core engines for computing optimal models of ψ given a qualita-
tive/quantitative preference on formulas.

An advantage of reducing quantitative preferences to qualitative ones is that it
makes also possible to mix the two, e.g., we can ask (we assume bn−1, . . . , b0 to be
the output bits of adder(S′, c)):

1. Which among the optimal models according to a qualitative preference 〈S,≺〉 are
optimal according to a quantitative preference 〈S′, c〉: Such assignments corre-
spond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S∪{bn−1, . . . , b0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n}∪{α ≺ bi : α ∈ S, 0 ≤ i < n}〉.

This preference, e.g., forces nOPT-DLL1 to consider first 〈S,≺〉 and then 〈S′, c〉,
2. or which among the optimal models according to a quantitative preference 〈S′, c〉,

are optimal according to a qualitative preference 〈S,≺〉: Such assignments corre-
spond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S∪{bn−1, . . . , b0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n}∪{bi ≺ α : α ∈ S, 0 ≤ i < n}〉.



5 Discussion and Related work

Our procedures have been implemented on top of MINISAT [24], the 2005 version, win-
ner of the SAT 2005 competition on the industrial benchmarks category (together with
the SAT/CNF minimizer SATELITE [23]). We have used MINISAT as models generator
in both algorithms, given it is a CDCL [48, 57, 29] solver and thus satisfies the terms of
Section 3. We also rely on MINISAT for the SAT test at line 4 of nOPT-DLL2. Experi-
mental analysis of our procedures for finding both one optimal solution and a complete
set of optimal solutions, on both randomly generated and real-world SAT problems,
with both qualitative and quantitative preferences, can be found in [19–21].

In the context of SAT and Constraint Satisfaction (CSP) problems with qualitative
preferences, the idea of computing “optimal” (according to some given definition) mod-
els by modifying the heuristic in order to follow the expressed preferences on literals
has been already proposed in [13] for SAT and in [5] for acyclic CP-nets [4]. [13]
introduced the idea to compute all optimal models by adding constraints pruning the
models dominated by the already computed optimal models: Other works which exploit
further techniques to eliminate previously computed solutions in SAT include [46, 54,
41, 40] in the context of symbolic model checking [47]. CP-nets [4] (where CP stands
for Conditional Preference) are a well-known and powerful method for expressing and
graphically representing qualitative preferences. In [5] the authors have presented an
algorithm, SEARCHCP, for finding more than one optimal solution. The algorithm,
similarly to nOPT-DLL1, follows the given partial order on qualitative preferences, but
it is backtracking-free. From the computation point of view, if compared with nOPT-
DLL1, SEARCHCP computes also non-optimal models that has to be tested with all
previously computed optimal solutions and, if compared with nOPT-DLL2, it does not
run in polynomial space when looking for all solutions. Moreover, as far as we know,
no related implementation is available. Other differences wrt out work and the under-
lying formalisms used in [13, 5] for expressing preferences are (i) in the language:
Both [13] and [5] allow for expressing preferences on literals, but in these approaches
it is not possible to rank the preferences according to a partial order; and (ii) in the
semantics: Even considering the case in which preferences are expressed as a consis-
tent set S of literals, the order on models induced by S in [13, 5] is different from our
(see [20] for details). On the other hand, [5] can deal with non-Boolean domains. As
far as the generate-and-test approach is concerned, the idea of adding a constraint that
forces a new solution to be better than the current one has been previously employed
in, e.g., [26, 52] in the context of constraint optimization problem and constraint logic
programming, respectively.

In the context of ASP, several works have dealt with qualitative preferences: In [49],
a similar way, in comparison with our approach, of extending preferences on literals to
total assignments is used. In [18], several preference handling approaches, not restricted
to ASP, are reviewed and compared. Logic Programs with Ordered Disjunction [6] is
an extension of normal logic programs with a connective which allows representing
alternative, ranked options for problem solutions in the heads of ASP rules: An im-
plementation based on the SMODELS ASP system [58] is presented in [6, 9]. Answer
Set Optimization (ASO) programs [10] are another extension of normal logic program
for representing qualitative preferences on rule heads, also allowing for formulas in the



heads. Extensions of ASO are presented in, e.g., [7, 55], allowing for “complex pref-
erences” and aggregates in ASO programs. Another approach for computing preferred
answer sets has been followed in [25], where meta-interpreters are used to implement
different combinations of ASP and preferential information, i.e., the approaches in [8,
17, 60] on top of the DLV ASP system [43]. Recently, in [28], another framework based
on meta-interpreters to various forms of qualitative preferences among answer sets, e.g.,
inclusion-based minimization or Pareto efficiency, is presented.

In the literature of quantitative SAT and CSP, the kind of problem solved in (6) is
also known as Binate Covering Problem [14], recently generalized in [44] to Weighted
Boolean Optimization problems. In the context of ASP, quantitative preferences are
taken into account in, e.g., [12], for computing weighted solutions, [50] for solving
Max-ASP problems, [11] with weak constraints, solving pseudo-Boolean problems
with CLASP [29] and ASP under multi-criteria optimization [27].

Similar modeling approaches for reducing preferences on formulas to preferences
on literals, by introducing definitions [59] or “names” [51], have been presented in,
e.g., [36, 53, 2, 1].

6 Conclusions

In this paper we have presented a complete picture of our work on computing opti-
mal solutions in satisfiability problems with preferences, by reviewing some results
and presenting new ones. In particular, we have presented two solving procedures,
different forms of preferences, ranging from qualitative on literals to mixed qualita-
tive/quantitative on formulas, for finding two types of complete sets of optimal models.

The system implementing the presented procedures is available at http://www.
star.dist.unige.it/˜emanuele/sat&pref/.

Acknowledgement.. The authors would like to thank Emanuele Di Rosa for the
implementation of the system, and Torsten Schaub for useful comments on the topic of
the paper.
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