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Abstract. The train load planning problem is very important in the context of
transportation and logistics in seaport container terminals. It allows to dptima
assign containers to wagons of a train in order to satisfy capacity cornstrain
while optimizing re-handling operations and train utilization. In this paper, we
first present a basic mathematical model of the problem, inspireddn@al case

of an Italian port. Then, we extend the basic model in order to more realigtic
represent the re-handling operations in the storage area. We finadlgrpréne
results obtained by running several Boolean optimization, i.e. LP, RBSMiT
solvers, on a set of benchmarks coming from the two models. A prelignaa
perimental analysis shows th@) challenging problems can be generated even
with a relatively low number of containers and wagons, that in our modets-c
spond to relatively small formulagji) cPLEX shows the best results, afdq)

the only other solver evaluated that performs well in this doma#cis.

1 Problem description and formulation

The need for optimization in container terminals has becamees and more impor-
tant in recent years; among the different planning problansng in a terminal, an
important decision aspect is the train load planning problespecially for those ter-
minals characterized by high rail traffic volumes [17, 16hisTis a peculiar problem,
basically different from other loading problems (for insta the ship stowage prob-
lem that presents completely different characteristioegause the weight constraints
and the loading operations are specific for rail wagons. érithrature, there are some
papers dealing with the train load planning problem in whieithematical models are
proposed for the optimal assignment of containers to waggohwithout taking into ac-
count the real weight restrictions [2, 4, 15] (often simpljnaximum weight constraint
for each wagon is considered in the related problems). lyghper, instead, the pro-
posed model considers explicitly the real weight constsdior wagons, as also done in
[3]. In comparison with [3], in the present paper differeostterms and container types
are considered and, first of all, re-handling operationhiénstorage areas are explic-
itly modeled; this is an important aspect to be considereéahapplications since the
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minimization of re-handling operations is a crucial issaethe optimal management
of storage areas.

The problem under investigation regards the definition efltading plan for one
train at a time, given a set of containers stocked in the gweaea characterized by
different weights, lengths and commercial values. Eachowagj the train has a speci-
fied length and some weight constraints coming from realasenodel is defined in
order to find the optimal assignment of containers to eachd$lthe train wagons in
order to satisfy length and weight constraints while maxing the train utilization and
minimizing the re-handling operations in the storage akéareover, in this work the
train is supposed to be loaded sequentially by cranes. Ghagrin our setting traffic
volumes by rail are not so high and there is one crane loadingim at a time, it is
not possible that more trains are loaded at the same timethasdt is reasonable to
generate a different plan for each train. Let us introdueddowing notation:

— C is the set of containers in the storage arealant the set of wagons;

— w; is the weight of container € C andr; is the penalty paid if containeris not
loaded, taking into account the urgency and commercialevafithe container (it
is important to consider different penalties for the camas in order to take into
account their different urgency and commercial priorjties

- 7ij, 4,J € C, i # j, indicates the relative position between contaihandj in
the storage area; in particulas, ; = 1 means that containéris located belowj,
7,5 = 0 otherwise;

- 12, and{? are, respectively, the weight capacity of wagore )V and of the train;

— S is the set of slotsS,, is the set of possible slots for waganand, analogously,
wy indicates the wagon including slet

— B, is the set of weight configurations for wagerandd, s is the maximum weight
for slot s in the weight configuration;

— «is the unitary re-handling cost in the storage area&iiglthe maximum number
of tiers.

In the notation it is assumed that the indexes associatéoweijons describe their
position along the train; since the train is supposed to bddd sequentially, wagons
with a smaller index are loaded before those with a highemin@he same applies for
the indexes of the slots which indicate their position inttiaén.
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Fig. 1. Sketch of wagon weight restriction.



In order to better clarify the meaning of the real weight ¢waiats, consider the
example sketch provided in Figure 1: there are two possitald tonfigurations, i.e. it
can be loaded either with three 20’ containers or with onec2@itainer and one 40’
container. Considering for example the first load configamatthere are 3 slots, i.e.
s1, so andss, and three different weight configuratiorts, b, andbs (for instance if
the first weight configuration is chosen, the three slots @toaded with maximum
weightsdy, s, = 13, dp,s, = b anddy, s, = 13, respectively).

The decision variables are the following:

— x;s € {0,1}, equal to 1 if container is assigned to slof;

— twp € {0,1}, equal to 1 if weight configuratiohis chosen for wagow;

— yiw € {0,1}, equal to 1 if containef is re-handled (i.e. it is moved but not as-
signed) when wagomw is loaded.

It is worth noting that ther; ; variables are defined only if the assignment of con-
tainers to slots is feasible as regards the fitting of theaioat length with the slot
length; if for instance the considered container is 40’ lang the slot is 20, the cor-
responding variable is not defined at all. Herewith we preadinst model for the train
loading problem.

min a-z Z Yiw +Z7Ti- (1 _in,s> 1)
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viw €{0,1}  VieC YweW (11)

The cost function (1) to be minimized includes a term for amdiling operations
and a term for the penalty of not loading containers (thisitalows to maximize the
train load). It is worth noting that the costs, ¢ € C, are always much higher than the
costa, in order to assure that the train is loaded as much as pes§ibhstraints (2)
and (3) ensure that each container is assigned at most tdairend that in each slot
no more than one container is loaded. Constraints (4) impagdor each wagon only
one weight configuration is chosen, whereas (5), (6) andhfgbse that the maximum
weight conditions are respected for slots, wagons anddie tespectively. Constraints
(8) guarantee that re-handling operations are correcflgel# containet is re-handled
(theny; ,, must be equal to 1) if containgr(stocked below) is loaded on a wagow
and containef is not loaded on any wagdnwith i < w.

In this model, the definition of thg, ,, variables is associated with wagons but this is
a limitation since it could be better, instead, to assodlase variables to slots. In other
words, the use o§; ., variables is generally suitable for the train load planrbogit is
not completely precise. In fact, it does not correctly eadithe re-handling operations
in case containef (stocked below) is loaded on the same wagon in which container
is loaded but in a slot with a smaller index (i.e. a slot thdb&ded before): in such a
case, the re-handling operation takes place in the realitjt 5 not correctly modeled
in the optimization problem. Hence, we have defined an extgrédrsion of the model
presented above in order to represent more precisely thanéling movements, by
adopting a different set of decision variablgs, s € S, instead ofy; ,,, w € W. In
the new model, cost function (1) and constraints (8) aretgutedd, respectively, by the
following:

min o - Z Z Zis T Zm ‘ (1 — me) (12)

i€C seS ieC seS
S g <zet Y @,  VieC VseS (13)
JEC:;,i=1 reS:r<s

In this way, containet is re-handled (then; ; must be equal to 1) if containgr
(stocked below) is loaded on a slat and containef is not loaded on any slatwith
r < s. Obviously, this extended model captures the real-lifeagibn more precisely,
but with an increase in the size of the problem, in terms of Ioemof variables and
constraints.

2 Implementation, Benchmarks and Experiments

We generated instances in 0-1 Linear Programming (LP), d&®sBoolean (PB) and
Satisfiability Modulo Theories (SMT) ver. 1 formétsf the two models, and organized

! see, e.g. http://cgm.cs.mcgill.ca/ ~ avis/courses/567/cplex/
reffileformatscplex.pdf ,  http:/www.cril.univ-artois.fr/PB11/
format.pdf and http://goedel.cs.uiowa.edu/smtlib/docs.html for 0-1
LP, PB and SMT formats, respectively.



the benchmarks into four groups A-D @6 instances each: the number of contain-
ers and wagons can be found in the second and third rows oégdblrespectively.
We considered real data (referring to a container termm#hé North of Italy) about
the characteristics of wagons, the weight constraintsstihige area, whereas we ran-
domly generated the characteristics of containers (engthe weight, percentage of 20’
and 40’ containers) and the train composition. The fourthf#th (resp. sixth and sev-
enth) columns of Table 1 report the mean number of variabidscanstraints for the
LP instances of the first (resp. extended) model.

Table 1.Characteristics of the groups of instances.

Global setting First model Extended model
Instance group #containers #wagons| #variables #constraintg| #variables| #constraints
A 20 10 941 345 1909 1337
B 30 10 1352 458 2884 2050
C 30 15 1977 670 4605 3151
D 40 15 2593 829 5855 4098

We evaluated a number of Boolean optimization solvers omekelting instances,
featuring not only different formats but, more importantjfferent techniques and
heuristics for solving the resulting optimization probkenThe solvers that we con-
sidered arepPLEX ver. 12, the PB solversvso [13] ver. 1.6,MINISAT + [6] ver. 1.14,
PBCLASP(based on the Answer Set Programming systemsP[8] ver. 1.3.6),BSOLO
ver. 3.0.17 [12]GLPPB ver. 0.2 (by the same authors afEsLO [14]) andscip ver.
2.0.2 [1], and the SMT solversI¥Ees [5] ver. 1.0 and HSAT ver. 0.8.6 [7] via the
QF_LIA logic of SMT-LIB 3, augmented with optimization featuré3he timeout has
been set to 1200s and the memory limit to 500MB on a Linux baxipeed with a
Pentium IV 3.2GHz processor and 512MB of RAM.

The first observation is that no solver other tlerLEX or scipwas able to solve
any of the generated instances in the allotted time. Thisliie gurprising given that
the instances contain a relatively low number of variables@nstraints, as showed in
Table 1. The results afPLEX andscipare shown in Table 2, where the first column is
the instance group, the second and the third columns represults for the first and
extended models, respectively, and are further dividemitimd columns, one focPLEX
and one forscip. Results of each solver are presented in the fofg) wherex is the
mean solving time of thg solved instances out df), as customary, e.g. in Max-SAT

2 Through the IBM Academic Initiative dtttps://www.ibm.com/developerworks/
university/academicinitiative/

3 http:www.smtlib.org

4 Solvers have been downloaded frdwttp://www.minisat.se/MiniSat+.html,

http://www.eecs.umich.edu/ ~ hsheini/pueblo, http://www.csi.
ucd.ie/staff/jpms/soft/soft.php, http://scip.zib.de/ ,http:
Ilyices.csl.sri.com/download.shtml, http://hysat.inf ormatik.
uni-oldenburg.de/26273.html , or made available by authors.



evaluations. We can see thatPLEX is the best solver on these problems: it solves the
highest number of instances in all instance groups, andershiortest timecPLEX is

in fact the most used system in the field of transportationlagistics to solve linear
programming problems. Despite this, we can nonethelesgsthatscipperforms quite
well, having results sometimes closedpLEX, thus confirming its good results in re-
cent PB Competitions. The poor performances of SMT solvansbe explained by the
fact that they are not tuned for optimization problems andstdve much more expres-
sive problems than the ones considered in our work. Finalte that the instances of
group B (resp. D) are in general easier the the ones of groupsp(C), even if the in-
stances are bigger: this is because, having the number @insdixed, more containers
allow for more options for loading each wagon.

Table 2. First and extended models: mean CPU time of solved instances and nafdmdved
instances (in parenthesis) forLEx andscIP.

Instance group First model Extended model
CPLEX scIP CPLEX scIP

A 106.82(10) | 116.86(8) || 50.23(9) | 164.17(9)

B 2.5(10) 75.9(10) || 3.96 (10) | 72.4(10)

C 68.47(8) | 165.51(6) || 230.42(3) | 440.98(1)

D 15.37(9) | 424.31(6) || 285.23(6) | 294.53(3)

3 Conclusions and Future Work

We have presented two mathematical models for the trainptething problems, in-
spired by a real-world scenario. Then, we have expressext thmdels as Boolean
optimization problems, and we have run several solverginglon different formats,
optimization techniques and heuristics on these probl@us.analysis shows thét)
relatively small but difficult benchmarks can be generated] (ii) only cPLEX and
scipcan effectively handle the generated instances: wiwleEX is the bestscipcan
have good performance as well.

About future work, on the modeling side we plan to furthereext the model by
considering, on the one hand, a more detailed treatmeneahtivements and localiza-
tions in the storage area and, on the other hand, more corrpiextoading policies.
More specifically, an important evolution of the model refgathe loading plan of more
trains with different destinations (for which it is necegst know the destinations of
containers and, in some cases, compulsory assignmentsnaf sontainers to some
trains, due to specific requests of freight forwarders). tAapinteresting direction in
extending the proposed model regards the definition of fmadians in case trains are
loaded by more than one crane at the same time or, in some edkes, one crane
loads two trains contemporaneously. On the solving siddiratenvould like to evaluate
other Boolean optimization solvers, possibly taken froeth-coming Evaluations and

5 See, e.g.http://maxsat.ia.udl.cat for the last.



Competitions of interest, by testing all available sohadso in the new models that we
have outlined above. Then, given that our ultimate goal &rengthen as much as pos-
sible the efficient solution of these problems, if also ther benchmarks confirm the
superior performance afPLEX, we plan to investigate the use of automatic algorithm
configuration framework for tuning the performancec#fLEX on our domain: results
on SAT and Mixed Integer Linear Programming problems onotteenains, e.g. [11,
10, 9], are very promising.

The instances generator and the scripts to the various fsyitagether with other
materials, can be found at:

http://www.star.dist.unige.it/ ~marco/TLPP/.
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