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Abstract. The train load planning problem is very important in the context of
transportation and logistics in seaport container terminals. It allows to optimally
assign containers to wagons of a train in order to satisfy capacity constraints
while optimizing re-handling operations and train utilization. In this paper, we
first present a basic mathematical model of the problem, inspired froma real case
of an Italian port. Then, we extend the basic model in order to more realistically
represent the re-handling operations in the storage area. We finally present the
results obtained by running several Boolean optimization, i.e. LP, PB, and SMT
solvers, on a set of benchmarks coming from the two models. A preliminary ex-
perimental analysis shows that(i) challenging problems can be generated even
with a relatively low number of containers and wagons, that in our models corre-
spond to relatively small formulas;(ii) CPLEX shows the best results, and(iii)
the only other solver evaluated that performs well in this domain isSCIP.

1 Problem description and formulation

The need for optimization in container terminals has becomemore and more impor-
tant in recent years; among the different planning problemsarising in a terminal, an
important decision aspect is the train load planning problem, especially for those ter-
minals characterized by high rail traffic volumes [17, 16]. This is a peculiar problem,
basically different from other loading problems (for instance the ship stowage prob-
lem that presents completely different characteristics),because the weight constraints
and the loading operations are specific for rail wagons. In the literature, there are some
papers dealing with the train load planning problem in whichmathematical models are
proposed for the optimal assignment of containers to wagonsbut without taking into ac-
count the real weight restrictions [2, 4, 15] (often simply amaximum weight constraint
for each wagon is considered in the related problems). In this paper, instead, the pro-
posed model considers explicitly the real weight constraints for wagons, as also done in
[3]. In comparison with [3], in the present paper different cost terms and container types
are considered and, first of all, re-handling operations in the storage areas are explic-
itly modeled; this is an important aspect to be considered inreal applications since the
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minimization of re-handling operations is a crucial issue for the optimal management
of storage areas.

The problem under investigation regards the definition of the loading plan for one
train at a time, given a set of containers stocked in the storage area characterized by
different weights, lengths and commercial values. Each wagon of the train has a speci-
fied length and some weight constraints coming from real cases. A model is defined in
order to find the optimal assignment of containers to each slot of the train wagons in
order to satisfy length and weight constraints while maximizing the train utilization and
minimizing the re-handling operations in the storage area.Moreover, in this work the
train is supposed to be loaded sequentially by cranes. Giventhat in our setting traffic
volumes by rail are not so high and there is one crane loading atrain at a time, it is
not possible that more trains are loaded at the same time, andthus it is reasonable to
generate a different plan for each train. Let us introduce the following notation:

– C is the set of containers in the storage area andW is the set of wagons;
– ωi is the weight of containeri ∈ C andπi is the penalty paid if containeri is not

loaded, taking into account the urgency and commercial value of the container (it
is important to consider different penalties for the containers in order to take into
account their different urgency and commercial priorities);

– γi,j , i, j ∈ C, i 6= j, indicates the relative position between containeri andj in
the storage area; in particular,γi,j = 1 means that containeri is located belowj,
γi,j = 0 otherwise;

– Ωw andΩ are, respectively, the weight capacity of wagonw ∈ W and of the train;
– S is the set of slots;Sw is the set of possible slots for wagonw and, analogously,

ws indicates the wagon including slots;
– Bw is the set of weight configurations for wagonw andδb,s is the maximum weight

for slots in the weight configurationb;
– α is the unitary re-handling cost in the storage area andT is the maximum number

of tiers.

In the notation it is assumed that the indexes associated with wagons describe their
position along the train; since the train is supposed to be loaded sequentially, wagons
with a smaller index are loaded before those with a higher index. The same applies for
the indexes of the slots which indicate their position in thetrain.
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Fig. 1.Sketch of wagon weight restriction.
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In order to better clarify the meaning of the real weight constraints, consider the
example sketch provided in Figure 1: there are two possible load configurations, i.e. it
can be loaded either with three 20’ containers or with one 20’container and one 40’
container. Considering for example the first load configuration, there are 3 slots, i.e.
s1, s2 ands3, and three different weight configurations,b1, b2 andb3 (for instance if
the first weight configuration is chosen, the three slots can be loaded with maximum
weightsδb1s1

= 13, δb1s2
= 5 andδb1s3

= 13, respectively).

The decision variables are the following:

– xi,s ∈ {0, 1}, equal to 1 if containeri is assigned to slots;
– tw,b ∈ {0, 1}, equal to 1 if weight configurationb is chosen for wagonw;
– yi,w ∈ {0, 1}, equal to 1 if containeri is re-handled (i.e. it is moved but not as-

signed) when wagonw is loaded.

It is worth noting that thexi,s variables are defined only if the assignment of con-
tainers to slots is feasible as regards the fitting of the container length with the slot
length; if for instance the considered container is 40’ longand the slot is 20’, the cor-
responding variable is not defined at all. Herewith we present a first model for the train
loading problem.

min α ·
∑

i∈C

∑

w∈W

yi,w +
∑

i∈C

πi ·

(

1 −
∑

s∈S

xi,s

)

(1)

s.t.
∑

s∈S

xi,s ≤ 1 ∀i ∈ C (2)

∑

i∈C

xi,s ≤ 1 ∀s ∈ S (3)

∑

b∈Bw

tw,b = 1 ∀w ∈ W (4)

∑

i∈C

ωi · xi,s ≤
∑

b∈Bws

δb,s · tw,b ∀s ∈ S (5)

∑

i∈C

∑

s∈Sw

ωi · xi,s ≤ Ωw ∀w ∈ W (6)

∑

i∈C

∑

s∈S

ωi · xi,s ≤ Ω (7)

∑

j∈C:γj,i=1

∑

s∈Sw

xj,s ≤ (T − 1) ·

(

yi,w +
∑

r∈Sh:h<w

xi,r

)

∀i ∈ C ∀w ∈ W (8)

xi,s ∈ {0, 1} ∀i ∈ C ∀s ∈ S (9)

tw,b ∈ {0, 1} ∀w ∈ W ∀b ∈ Bw (10)
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yi,w ∈ {0, 1} ∀i ∈ C ∀w ∈ W (11)

The cost function (1) to be minimized includes a term for re-handling operations
and a term for the penalty of not loading containers (this term allows to maximize the
train load). It is worth noting that the costsπi, i ∈ C, are always much higher than the
costα, in order to assure that the train is loaded as much as possible. Constraints (2)
and (3) ensure that each container is assigned at most to one slot and that in each slot
no more than one container is loaded. Constraints (4) imposethat for each wagon only
one weight configuration is chosen, whereas (5), (6) and (7) impose that the maximum
weight conditions are respected for slots, wagons and the train, respectively. Constraints
(8) guarantee that re-handling operations are correctly defined: containeri is re-handled
(thenyi,w must be equal to 1) if containerj (stocked belowi) is loaded on a wagonw
and containeri is not loaded on any wagonh with h < w.

In this model, the definition of theyi,w variables is associated with wagons but this is
a limitation since it could be better, instead, to associatethese variables to slots. In other
words, the use ofyi,w variables is generally suitable for the train load planningbut it is
not completely precise. In fact, it does not correctly evaluate the re-handling operations
in case containerj (stocked belowi) is loaded on the same wagon in which containeri

is loaded but in a slot with a smaller index (i.e. a slot that isloaded before): in such a
case, the re-handling operation takes place in the reality but it is not correctly modeled
in the optimization problem. Hence, we have defined an extended version of the model
presented above in order to represent more precisely the re-handling movements, by
adopting a different set of decision variableszi,s, s ∈ S, instead ofyi,w, w ∈ W. In
the new model, cost function (1) and constraints (8) are substituted, respectively, by the
following:

min α ·
∑

i∈C

∑

s∈S

zi,s +
∑

i∈C

πi ·

(

1 −
∑

s∈S

xi,s

)

(12)

∑

j∈C:γj,i=1

xj,s ≤ zi,s +
∑

r∈S:r<s

xi,r ∀i ∈ C ∀s ∈ S (13)

In this way, containeri is re-handled (thenzi,s must be equal to 1) if containerj
(stocked belowi) is loaded on a slots and containeri is not loaded on any slotr with
r < s. Obviously, this extended model captures the real-life situation more precisely,
but with an increase in the size of the problem, in terms of number of variables and
constraints.

2 Implementation, Benchmarks and Experiments

We generated instances in 0-1 Linear Programming (LP), Pseudo-Boolean (PB) and
Satisfiability Modulo Theories (SMT) ver. 1 formats1 of the two models, and organized

1 See, e.g. http://cgm.cs.mcgill.ca/ ˜ avis/courses/567/cplex/
reffileformatscplex.pdf , http://www.cril.univ-artois.fr/PB11/
format.pdf and http://goedel.cs.uiowa.edu/smtlib/docs.html for 0-1
LP, PB and SMT formats, respectively.
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the benchmarks into four groups A-D of10 instances each: the number of contain-
ers and wagons can be found in the second and third rows of Tables 1, respectively.
We considered real data (referring to a container terminal in the North of Italy) about
the characteristics of wagons, the weight constraints, thestorage area, whereas we ran-
domly generated the characteristics of containers (e.g. length, weight, percentage of 20’
and 40’ containers) and the train composition. The fourth and fifth (resp. sixth and sev-
enth) columns of Table 1 report the mean number of variables and constraints for the
LP instances of the first (resp. extended) model.

Table 1.Characteristics of the groups of instances.

Global setting First model Extended model
Instance group #containers #wagons #variables #constraints #variables #constraints

A 20 10 941 345 1909 1337
B 30 10 1352 458 2884 2050
C 30 15 1977 670 4605 3151
D 40 15 2593 829 5855 4098

We evaluated a number of Boolean optimization solvers on theresulting instances,
featuring not only different formats but, more importantly, different techniques and
heuristics for solving the resulting optimization problems. The solvers that we con-
sidered areCPLEX ver. 122, the PB solversWBO [13] ver. 1.6,MINISAT + [6] ver. 1.14,
PBCLASP(based on the Answer Set Programming systemCLASP [8] ver. 1.3.6),BSOLO

ver. 3.0.17 [12],GLPPB ver. 0.2 (by the same authors of PUEBLO [14]) andSCIP ver.
2.0.2 [1], and the SMT solvers YICES [5] ver. 1.0 and HYSAT ver. 0.8.6 [7] via the
QF LIA logic of SMT-LIB 3, augmented with optimization features.4 The timeout has
been set to 1200s and the memory limit to 500MB on a Linux box equipped with a
Pentium IV 3.2GHz processor and 512MB of RAM.

The first observation is that no solver other thanCPLEX or SCIP was able to solve
any of the generated instances in the allotted time. This is quite surprising given that
the instances contain a relatively low number of variables and constraints, as showed in
Table 1. The results ofCPLEX andSCIPare shown in Table 2, where the first column is
the instance group, the second and the third columns report the results for the first and
extended models, respectively, and are further divided into two columns, one forCPLEX

and one forSCIP. Results of each solver are presented in the formx(y) wherex is the
mean solving time of they solved instances out of10, as customary, e.g. in Max-SAT

2 Through the IBM Academic Initiative athttps://www.ibm.com/developerworks/
university/academicinitiative/ .

3 http:www.smtlib.org .
4 Solvers have been downloaded fromhttp://www.minisat.se/MiniSat+.html,

http://www.eecs.umich.edu/ ˜ hsheini/pueblo,http://www.csi.
ucd.ie/staff/jpms/soft/soft.php,http://scip.zib.de/ ,http:
//yices.csl.sri.com/download.shtml,http://hysat.inf ormatik.
uni-oldenburg.de/26273.html , or made available by authors.
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evaluations5. We can see thatCPLEX is the best solver on these problems: it solves the
highest number of instances in all instance groups, and in the shortest time.CPLEX is
in fact the most used system in the field of transportation andlogistics to solve linear
programming problems. Despite this, we can nonetheless note thatSCIPperforms quite
well, having results sometimes close toCPLEX, thus confirming its good results in re-
cent PB Competitions. The poor performances of SMT solvers can be explained by the
fact that they are not tuned for optimization problems and can solve much more expres-
sive problems than the ones considered in our work. Finally note that the instances of
group B (resp. D) are in general easier the the ones of group A (resp. C), even if the in-
stances are bigger: this is because, having the number of wagons fixed, more containers
allow for more options for loading each wagon.

Table 2. First and extended models: mean CPU time of solved instances and number of solved
instances (in parenthesis) forCPLEX andSCIP.

Instance group First model Extended model
CPLEX SCIP CPLEX SCIP

A 106.82(10) 116.86(8) 50.23(9) 164.17(9)
B 2.5(10) 75.9(10) 3.96 (10) 72.4(10)
C 68.47(8) 165.51(6) 230.42(3) 440.98(1)
D 15.37(9) 424.31(6) 285.23(6) 294.53(3)

3 Conclusions and Future Work

We have presented two mathematical models for the train loadplanning problems, in-
spired by a real-world scenario. Then, we have expressed these models as Boolean
optimization problems, and we have run several solvers, relying on different formats,
optimization techniques and heuristics on these problems.Our analysis shows that(i)
relatively small but difficult benchmarks can be generated,and (ii) only CPLEX and
SCIPcan effectively handle the generated instances: whileCPLEX is the best,SCIPcan
have good performance as well.

About future work, on the modeling side we plan to further extend the model by
considering, on the one hand, a more detailed treatment of the movements and localiza-
tions in the storage area and, on the other hand, more complextrain loading policies.
More specifically, an important evolution of the model regards the loading plan of more
trains with different destinations (for which it is necessary to know the destinations of
containers and, in some cases, compulsory assignments of some containers to some
trains, due to specific requests of freight forwarders). Another interesting direction in
extending the proposed model regards the definition of loading plans in case trains are
loaded by more than one crane at the same time or, in some othercases, one crane
loads two trains contemporaneously. On the solving side, wefirst would like to evaluate
other Boolean optimization solvers, possibly taken from the up-coming Evaluations and

5 See, e.g.,http://maxsat.ia.udl.cat for the last.
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Competitions of interest, by testing all available solversalso in the new models that we
have outlined above. Then, given that our ultimate goal is tostrengthen as much as pos-
sible the efficient solution of these problems, if also the new benchmarks confirm the
superior performance ofCPLEX, we plan to investigate the use of automatic algorithm
configuration framework for tuning the performance ofCPLEX on our domain: results
on SAT and Mixed Integer Linear Programming problems on other domains, e.g. [11,
10, 9], are very promising.

The instances generator and the scripts to the various formats, together with other
materials, can be found at:

http://www.star.dist.unige.it/ ˜ marco/TLPP/.
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