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1 Problem description and formulation

The definition of the train loading plan is one of the decisional aspects to be dealt with

in a container terminal [1]. In the literature, few research studies have been devoted

to the train load planning problem; among them, in [2] three different integer linear

programming formulations are proposed in which the real weight restrictions related to

wagons configurations are considered, as in the present work. The model proposed in

this paper is the extended version of the models described in [3]; the main new modelling

aspects of this work in comparison with [3] refer to considering multiple trains, with

different destinations, and taking into account the minimization of the distances between

the stocking area and the train.

In the proposed model, the trains are supposed to be loaded by cranes sequentially and

some rehandling operations in the stocking area are allowed. The decision problem can

be defined as follows: given a set of containers characterized by different weights, lengths,

commercial values and stowage positions in the yard and a set of trains composed by a

set of wagons characterized by different lengths and weight restrictions, the problem is to

determine how to assign containers to wagons in order to satisfy the physical constraints

of wagons, while maximizing the train utilization and minimizing both the rehandling cost

in the stoking area and the distances covered to transfer containers from the stocking area

to the wagons.

The following notation is considered: C is the set of containers, ωi is the weight of

container i, πi is the commercial value of container i, γij = 1 indicates that container i is

located below j, T is the (ordered) set of trains, W is the (ordered) set of wagons, S is

the (ordered) set of slots, Sw ⊂ S is the set of slots of wagon w, St ⊂ S is the set of slots

of train t, ws indicates the wagon including slot s, NS = |S| is the total number of slots

(i.e., the largest index associated with the slots), Bw is the set of weight configurations

for wagon w, δbs is the maximum weight for slot s in the weight configuration b, dis is
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Figure 1: Sketch of wagon weight restriction.

the distance between container i and slot s, Ωw is the weight capacity of wagon w, Ωt is

the total weight capacity of train t, α is the unitary rehandling cost, β is the coefficient

weighting the cost term relevant to the distances in the cost function. In the notation it is

assumed that the index associated with each slot univocally identifies it and that the slots

indexes indicate the position of slots in the train; since the train is supposed to be loaded

sequentially, slots with a smaller index are loaded before those with a higher index.

In order to clarify the notation regarding the wagon weight restrictions, consider the

example sketch provided in Figure 1 in which a wagon with a capacity of 3 TEUs is shown;

this car can be loaded either with three 20’ containers or with one 20’ container and one 40’

container. Considering for example the first load configuration, there are 3 slots, i.e. s1, s2

and s3, and three different weight configurations, b1, b2 and b3, indicating the maximum

weight per slot (for instance if the first weight configuration is chosen, the three slots can

can be loaded with maximum weights δb1s1
= 13, δb1s2

= 5 and δb1s3
= 13, respectively).

The problem decision variables are the following: xis ∈ {0, 1} is equal to 1 if container

i is assigned to slot s; ybw ∈ {0, 1} is equal to 1 if weight configuration b is chosen for

wagon w; zij ∈ {0, 1}, defined for all the pairs of containers (i, j) such that γji = 1, is equal

to 1 if container i is rehandled in order to load container j. Note that the xis variables

are defined only if the assignment of containers to slots is feasible and this can take into

account different aspects; first of all, it is necessary to consider the fitting of the container

length with the slot length, i.e. if the considered container is 40’ long and the slot is

20’, the corresponding variable is not defined. Moreover, given that trains with different

destinations are considered, for each slot of a given train the xis variables are defined only

for the containers with the same destination of the train.

The train load planning problem can be stated with the following 0-1 linear program-

ming formulation.

min α ·
∑

i,j∈C:γji=1

zij + β ·
∑

i∈C

∑

s∈S

dis · xis +
∑

i∈C

πi ·

(

1 −
∑

s∈S

xis

)

(1)

s.t.
∑

s∈S

xis ≤ 1 ∀i ∈ C (2)



∑

i∈C

xis ≤ 1 ∀s ∈ S (3)

∑

b∈Bw

ybw = 1 ∀w ∈ W (4)

∑

i∈C

ωi · xis ≤
∑

b∈Bws

δbs · ybw ∀s ∈ S (5)

∑

i∈C

∑

s∈Sw

ωi · xis ≤ Ωw ∀w ∈ W (6)

∑

i∈C

∑

s∈St

ωi · xis ≤ Ωt ∀t ∈ T (7)

∑

s∈S

xjs ≤
∑

s∈S

xis + zij ∀i, j ∈ C : γji = 1 (8)

NS · (zij + 1) +
∑

s∈S

(s − NS) · xjs ≥
∑

s∈S

s · xis ∀i, j ∈ C : γji = 1 (9)

xis ∈ {0, 1} ∀i ∈ C,∀s ∈ S (10)

zij ∈ {0, 1} ∀i, j ∈ C : γji = 1 (11)

ybw ∈ {0, 1} ∀w ∈ W,∀b ∈ Bw (12)

Cost function (1) is the weighted sum of rehandling costs, costs associated with dis-

tances and costs of not loading containers. Constraints (2) impose that each container can

be assigned at least to one slot, whereas (3) ensure that no more than one container is

assigned to each slot. Constraints (4) guarantee that for each wagon only one weight con-

figuration is chosen, while constraints (5), (6) and (7) are relative to the maximum weight

for slots, wagons and trains, respectively. Constraints (8) and (9) impose the correct

relation between the assignment variables xis and the variables counting the rehandling

operations zij . Finally, (10), (11) and (12) impose that the decision variables are binary.

2 Experimental tests and conclusions

We ran some experimental tests on a set of randomly generated problem instances in

order to evaluate the effectiveness of the planning methodology described above. We used

Cplex 12.1 to solve the 0-1 linear optimization problem and we adopted the ILOG Concert

technology for building the model from the C♯ language. For space limitations, we cannot

provide here many details on the computational tests but we simply give some general

indications.

We considered real data (referred to a container terminal in the North of Italy) about

the characteristics of wagons, the weight constraints, the storage area, the distances among

the positions of containers in the storage area and the train slots, whereas we randomly

generated the characteristics of containers (length, weight, priority, percentage of 20’ and



40’ containers and so on) and the train composition. More specifically, containers were

supposed to be stored along the railway tracks in two rows, up to the 4th tier; in each slot

containers have the same length (20’ or 40’) and different commercial values. Moreover,

we considered 5 types of wagons, either with a 2 TEU or 3 TEU capacity, 3 priority levels

for containers, and the weight of containers varying randomly between 5 t and 30 t.

A preliminary experimental evaluation was devoted to a set of instances corresponding

to the case of 300 containers in the stocking area and 4 trains composed of 30 wagons

each, with 2 different destinations. Considering 10 instances of these dimensions, the

solver was stopped after a time limit of 600 seconds, showing an optimality gap lower

than 2%, on average, despite the large problem dimensions (280000 binary variables and

8000 constraints, on average). Because of the very low gap, we can conclude that with

problem instances of such dimensions the mathematical programming formulation solved

with Cplex is an effective way to realize the loading plan for multiple trains.

It is worth noting that the model described in this work is suitable for those real

cases in which the loading plan for trains is realized when all the containers are ready in

the stocking area and it is supposed that no new containers are brought to the stocking

area while loading the trains. Of course, this situation can happen in some real cases,

especially when the traffic volumes are not very high. Anyway, in many other cases, when

a high number of trains per day must leave the terminal, it could be necessary to take into

account in the problem formulation that the situation of the stocking area is dynamic.

The future research will be devoted to extend the proposed model formulation to take

into account the dynamic evolution of the stocking area. To do that, it is necessary to

consider the time explicitly in the model (i.e. the total time horizon can be discretized

in some time steps); then, the storage position of containers is defined as a state variable

and some state equations must be introduced in the model as constraints. In these state

equations, of course, the position of the containers is updated depending on the train

loading operations and the arrivals of new containers in the stocking area.
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