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—— Abstract

Having in mind the task of improving the solving methods farsiver Set Programming (ASP), there
are two usual ways to reach this goal: (i) extending statéhefart techniques and ASP solvers, or (ii)
designing a new ASP solver from scratch. An alternative &sé¢htrends is to build on top of state-of-
the-art solvers, and to apply machine learning techniqoiesifoosing automatically the “best” available
solver on a per-instance basis.

In this paper we pursue this latter direction. We first defineeof cheap-to-compute syntactic
features that characterize several aspects of ASP progrdimsn, given the features of the instances
in a training set and the solvers performance on these instances, we amghssification method to
inductively learn algorithm selection strategies to beligdpto atestset. We report the results of an
experiment considering solvers and training and test datstances taken from the ones submitted to
the “System Track” of the 3rd ASP competition. Our analysieves that, by applying machine learning
techniques to ASP solving, it is possible to obtain very sitperformance: our approach can solve a
higher number of instances compared with any solver tharedthe 3rd ASP competition.
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1 Introduction

Having in mind the task of improving the robustness, i.ee, dbility to perform well across a wide
set of problem domains, and the efficiency, i.e., the qualfisolving a high number of instances, of
solving methods for Answer Set Programming (ASP) [13, 27280 14, 3], it is possible to extend
existing state-of-the-art techniques implemented in A&RPess, or design from scratch a new ASP
system with powerful techniques and heuristics. An altirado these trends is to build on top of
state-of-the-art solvers, leveraging on a number of efficdSP systems, e.g., [36, 22, 24, 10, 28, 21,
36], and applying machine learning techniques for indetyichoosing, among a set of available
ones, the “best” solver on the basis of the characteristiabed features of the input program.
This approach falls in the framework of tlagorithm selection problerf84]. Related approaches,
following a per-instance selection, have been exploitedddving propositional satisfiability (SAT),
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e.g., [40], and Quantified SAT (QSAT), e.g., [32] problems.AISP, an approach for selecting the
“best” cLAsP internal configuration is followed in [9], while another appch that imposes learned
heuristics ordering tsMODELSIs [2].

In this paper we pursue this direction, and design a muljirenapproach to ASP solving. We
first define a set of cheap-to-compute syntactic featuraésidsrribe several characteristics of ASP
programs, paying particular attention to ASP peculissitié/e then compute such features for the
grounded version of all benchmark submitted to the “Systesk’ of the 3rd ASP Competition [5]
falling in the “NP” and “Beyond NP categories of the competition: this track is well suited dair
study given that:) contains many ASP instanceg;) the language specification, ASP-Core, is a
common ASP fragment such th@t:) many ASP systems can deal with it.

Then, starting from the features of the instancestimmingset, and the solvers performance on
these instances, we apply the “Nearest-neighbor” claasiic method to inductively learn general
algorithm selection strategies to be applied testset. We perform an analyses that consider as test
set the instances evaluated to the 3rd ASP competition.

Our experiments show that it is possible to obtain a very sbparformance, by solving a higher
number of instances than all the solvers that entered thASRIcompetition and DLV [22].

The paper is structured as follow. Section 2 contains piefines about ASP and classification
methods. Section 3 then describes our benchmarks settiternis of dataset and solvers employed.
Section 4 defines how features and solvers have been selantégresents the classification meth-
ods employed. Section 5 shows the performance analysite ®action 6 and 7 end the paper with
discussion about related work and conclusions, respégtive

2 Preliminaries

In this section we recall some preliminary notions conaggrsinswer set programming and machine
learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3] is a datilee programming formalism
proposed in the area of non-monotonic reasoning and loggramming. The idea of ASP is to rep-
resent a given computational problem by a logic program wlaoswer sets correspond to solutions,
and then use a solver to find those solutions [26].

In the following, we recall both the syntax and semantics &PAThe presented constructs
are included in ASP-Core [5], which is the language spetiinathat was originally introduced
in the 3rd ASP Competition [5] as well as the one employed inexperiments (see Section 3).
Hereafter, we assume the reader is familiar with logic progning conventions, and refer the reader
to [14, 3, 12] for complementary introductory material onFA%nd to [4] for obtaining the full
specification of ASP-Core.

2.1.0.1 Syntax.

A variable or a constant is ®rm An atomis p(¢4, ..., t,,), wherep is a predicateof arity n and
ty,...,t, are terms. Alteral is either apositive literalp or anegative literalnot p, wherep is an
atom. A(disjunctive) ruler is of the form:

a; V -V ay —by, -+ by, not by, -, not by,.

whereay, ..., a,,b1,...,b, are atoms. The disjunction, Vv ...V a, is theheadof r, while the
conjunctionby, . .., bg,not by+1,...,not b, is thebodyof . We denote by (r) the set of atoms
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occurring in the head aof, and we denote by3(r) the set of body literals. A rule s.tH(r)| = 1
(i.e.,n = 1) is called anormal rule if the body is empty (i.es = m = 0) it is called afact (and the
:— sign is omitted); if H(r)| = 0 (i.e.,n = 0) is called aconstraint A rule r is safeif each variable
appearing in- appears also in some positive body literatof

An ASP programpP is a finite set of safe rules. Aot-free (resp.,v-free) program is called
positive(resp.,normal. A term, an atom, a literal, a rule, or a programgimundif no variable
appears in it.

2.1.0.2 Semantics.

Given a progranf?, the Herbrand Universel/p is the set of all constants appearing7 and
the Herbrand BaseBp is the set of all possible ground atoms which can be consgtuftom the
predicates appearing iR with the constants of/». Given a ruler, Ground(r) denotes the set
of rules obtained by applying all possible substitutior@frthe variables i to elements of/p.
Similarly, given a prograr®, theground instantiatiorof P is Ground(P) = U, cp Ground(r).

An interpretationfor a progranfP is a subsef of Bp. A ground positive literald is true (resp.,
false) w.rt. I if A € I (resp.,A € I). A ground negative literatot A is true w.r.t. I if A is false
w.r.t. I; otherwisenot A is false w.r.t.l.

The answer sets of a prografare defined in two steps using its ground instantiation:t s
answer sets of positive disjunctive programs are define the answer sets of general programs
are defined by a reduction to positive ones and a stabilitdition.

Letr be a ground rule, the headofs true w.r.t.T if H(r) NI # (. The body ofr is true w.r.t.]
if all body literals ofr are true w.r.t.I, otherwise the body of is false w.r.t.I. The ruler is satisfied
(or true) w.r.t. if its head is true w.r.tI or its body is false w.r.tI.

Given aground positiveprogramp,;, ananswer sefor P, is a subset-minimal interpretatiof
for P, such that every rule € P, is true w.r.t. A (i.e., there is no other interpretatidnC A that
satisfies all the rules a?,).

Given agroundprogramP, and an interpretatiod, the (Gelfond-Lifschitzyeduct[14] of P,
w.r.t. I is the positive progran®!, obtained fromP, by (i) deleting all rules- € P, whose negative
body is false w.r.t/, and (ii) deleting the negative body from the remaining swépr,.

An answer set (or stable model) of a general progfais an interpretatiod of 7P such thatl is
an answer set afround(P)”.

As an example consider the progr&n= { a \V b:—c., b:—not a,not ¢.,a V ¢:—not b., k :—a.,
k:=b. } andI = {b,k}. The reductP! is {a V b:—c., b. k:—a., k:=b.}. I is an answer set g/,
and for this reason it is also an answer sePof

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarelyeatkalgorithm to solve a given combina-
torial problem, while it is often the case that differentaithms perform well on different problem
instances. Among the approaches for solving this problarthis work we rely on a per-instance
selection algorithm in which, given a set f@fatures—i.e., numeric values that represent particular
characteristics of a given instance—, it is possible to shdbe best algorithm among a pool of them
—in our case, tools to solve ASP instances. In order to makle awselection in an automatic way,
we model the problem usingultinomial classificatiomlgorithms, i.e., machine learning techniques
that allow automatic classification of a set of instancegminstance features.

More in detail, in multinomial classification we are giverea of patterns, i.e., input vectoks =
{z4,...z;,} with z;, € R", and a corresponding set of labels, i.e., output valies {1,...,m},
whereY is composed of values representing thelasses of the multinomial classification problem.
In our modeling, then classes aren ASP solvers. We think of the labels as generated by some
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Problem \ Class \ #Instances
DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying NP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
WeightAssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51
Table 1 Problems and instances considered, coming from\R@ndBeyond NRclasses of the 3rd ASP

competition.

unknown functionf : R™ — {1,...,m} applied to the patterns, i.ef(z,) = y; fori € {1,... ,k}
andy; € {1,...,m}. Given a set of pattern¥ and a corresponding set of labéfs the task of a
multinomial classifier is to extrapolatef given X andY, i.e., construct from X andY so that
when we are given some" € X we should ensure thafa*) is equals tof (z*). This task is called
training, and the paif X, Y) is called thetraining set

3 Benchmark data and Settings

In this section we report some information concerning thechenark settings employed in this
work, which is needed for properly introducing the techeisj@escribed in the remainder of the
paper. In particular, we report some data concerning: bwadk problems, instances and ASP
solvers employed, as well as the hardware platform, anddbeion settings for reproducibility of

experiments.

3.1 Dataset

The benchmarks considered for the experiments belong teuite of the 3rd ASP Competition [5].
This is a large and heterogeneous suite of hard benchmahksh was already employed for eval-
uating the performance of state-of-the-art ASP solversghvare encoded in ASP-Core. That suite
includes planning domains, temporal and spatial scheglplioblems, combinatorial puzzles, graph
problems, and a number of application domains i.e., datghafrmation extraction and molecu-
lar biology field! More in detail, we have employed the encodings used in théeBy3rack of
the competition, and all the problem instances madkglable (in form of facts) from the contribu-
tors of the problem submission stage of the competitionclviaire available from the competition
website [4]. Note that this is a superset of the instancasaligtselected for running (and, thus

1 An exhaustive description of the benchmark problems can be fioujad.
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evaluatedn) the competition itself. Hereafter, withstancewe refer to the complete input program
(i.e., encoding+facts) to be fed to a solver for each ingariche problem to be solved.

The techniques presented in this paper are conceived ftingewith propositional programs,
thus we have grounded all the mentioned instances by usikig&o (v.3.0.3) [11] to obtain a
setup very close to the one of the competition.We considemgdcomputationally-hard benchmarks,
corresponding to all problems belonging to the categdtieandBeyond NRf the competition. The
dataset is summarized in Table 1, which also reports the keqitypclassification and the number of
available instances for each problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that edtigre System Track of the 3rd ASP
Competition [4] with the addition of DLV [22] (which did notggticipate in the competition since
it is developed by the organizers of the event). In this wayhaee covered —to the best of our
knowledge-— all the state-of-the-art solutions fitting tlemthmark settings. In detail, we have run:
CLASP [10], cLASPD [7], CLASPFOLIO[9], IDP [39], CMODELS [24], SuP [25], SMODELS [36],
and several solvers from both the2sAT [20] andLP2DIFF [21] families, namely:.LP2GMINISAT,
LP2LMINISAT, LP2LGMINISAT, LP2MINISAT, LP2DIFFGZ3,LP2DIFFLGZ3,LP2DIFFLZ3, andLP2DIFFZ3.
More in detail,CLASPis a native ASP solver relying on conflict-driven nogood iéag; CLASPD

is an extension oCLASP that is able to deal with disjunctive logic programs, whileAsPFO-
LIO exploits machine-learning techniques in order to chooseb#st-suited execution options of
CLASP; IDP is a finite model generator for extended first-order logimties, which is based on
MiniSatID [28]; SMODELS is one of the first robust native ASP solvers that have beereragaalil-
able to the community; DLV [22] is one of the first systems @bleope with disjunctive programs;
CMODELS exploits a SAT solver as a search engine for enumerating Isioded also verifying
model minimality whenever needesly P exploits nonclausal constraints, and can be seen as a com-
bination of the computational ideas behiostODELS and SWODELS; the LP2SAT family employs
several variants (indicated by the trailicg L andLG) of a translation strategy to SAT and resorts
on MINISAT [8] for actually computing the answer sets; the2DIFF family translates programs
in difference logic over integers [37] and expldi8 [6] as underlying solver (agairg, L andLG
indicate different translation strategies). Solvers wareon the same configuration (i.e., parameter
settings) as in the competition.

Concerning the hardware employed and the execution sgttitighe experiments were carried
out on CyberSAR [29], a cluster comprised of 50 Intel Xeon Ebblades equipped with 64 bit
Gnu Scientific Linux 5.5. Unless otherwise specified, theueses granted to the solvers are 600s
of CPU time and 2GB of memory. Time measurements were caotiedsing the i me command
shipped with Gnu Scientific Linux 5.5.

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several stépsdesign of (syntactic) features that
are both significant for classifying the instances and ctieagpmpute (so that the classifier can
be fast and accurate)ji) selection of solvers that are representative of the stateeort (to be
able to obtain the best possible performance in any coresidestance); angiii) selection of the
classification algorithm, and fair design of training ansttsets, to obtain a robust and unbiased
classifier.

In the following we describe the choices we have made forgiésy ME-ASP, which is our
multi-engine solver for ground ASP programs.
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Solver | Solvedl Unique H Solver | Solvedl Unique
CLASP 445 26 || LP2DIFFz3 307 -
CMODELS 333 6 LP2SAT2GMINISAT 328 —
DLV 241 37 LP2SAT2LGMINISAT 322 —
IDP 419 15 LP2SAT2LMINISAT 324 —
LP2DIFFGZ3 254 — LP2SAT2MINISAT 336 -
LP2DIFFLGZ3 242 - SMODELS 134 —
LP2DIFFLZ3 248 - SUP 311 1

Table 2 Results of a pool of ASP solvers on thi# instances of the 3rd ASP Competition. The table is
organized as follows: ColumrSblver’ reports the solver name, colum®btlved reports the total amount of
instances solved with a time limit of 600 seconds, and, finally, in coludmidue” we report the total amount
of instances solved uniquely by the corresponding solver.

4.1 Features

We consider syntactic features that are cheap-to-competesomputable in linear time in the size
of the input, given that in previous work (e.g., [32]) syrnitadeatures have been profitably used for
characterizing (inherently) ground instances. The featthiat we compute for each ground program
are divided into four groups: problems size, balance, “pnity to horn” and ASP-based peculiar
features. This categorization is borrowed from [31]. Thebpem size features are: number of rules
r, number of atoms, ratiosr /a, (r/a)?, (r/a)? and ratios reciprocal/r, (a/r)* and(a/r)*. The
balance features are: fraction of unary, binary and ternalgs. The “proximity to horn” features
are: fraction of horn rules and number of occurrences in a hde for each atom. We have added
a number of ASP peculiar features, namely: number of trued&@jdnctive facts, fraction of normal
rules and constraints Also some combinations, e.g,r, are considered for a total of 52 features.

We were able to ground with @NGo 1425 instances out of a total of 1462 in less than 600s.
Our system for extracting features from ground programsloam compute all features (in less than
600s) for 1371 programs: to have an idea of its performahcanicompute all features of a ground
program of approximately 20MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solverg thaepresentative of the state-of-the-
art solver 60TA), i.e., considering a problem instance, the oracle thaaydwares the best among
available solvers. In order to do that, we ran preliminarpezkments, and we report the results
(regarding theNP class) in Table 2. Looking at the table, first we notice thatdeenot report
results related to botbhLASPD andcLASPFOLIO. Concerning the results afLASPD, we report that
—considering th&P class— its performance is subsumed by the performanceasgr. Considering
the performance afLASPFOLIO, we exclude such system from this analysis because we @oritid
as a yardstick system, i.e., we will compare its performagagnst the ones related ME-ASP.
Looking at Table 2, we can see that only 4 solvers out of 16laleeta solve a noticeable amount
of instanceainiquely namelycLAsSP, CMODELS, DLV, andibpP. ConcerningBeyond NRAnstances,
we report that only three solvers are able to cope with suedsaf problems, nan@. AsPD, CMOD-
ELS, and DLV. Considering that botbmoDELSand DLV are involved in the previous selection, the

2 The exceptions are 10 and 27 instances of DisjunctiveSchmegatid PackingProblem, respectively.
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Solver NP Beyond NP Total
#Solved | Time #Solved | Time #Solved Time
CLASP 60 | 5132.45 - - - -
CLASPD - - 13 | 2344.00 - -
CMODELS 56 | 5092.43 9 | 2079.79 65 | 7172.22
DLV 37 | 1682.76 15 | 1359.71 52 | 3042.47
IDP 61 | 5010.79 - - - -
ME-ASP (NN) 66 | 4854.78 15 | 3187.31 81 | 8042.09
CLASPFOLIO 62 | 4824.06 - - - -
SOTA 71 | 5403.54 15 | 1221.01 86 | 6624.55

Table 3 Results of the various solvers on the grounded instances evaluated3attA&P competition.
ME-ASP(NN) has been trained on thesl training set.

pool of engines used ime-AsPwill be composed of 5 solvers, nameaty ASpP, CLASPD, CMODELS,
DLV, andIDP.

4.3 Classification algorithms and training

The classification method employed in our analysidesrest-neighbor(NN), already considered in
[32] in QBF solving: it is a classifier yielding the label oftlraining instance which is closer to the
given test instance, whereby closeness is evaluated using proximity measure, e.g., Euclidean
distance; we use the method described in [1] to store thaitiainstances for fast look-up.

As mentioned in Section 2.2, in order to train the classifierhave to select a pool of instances
for training purpose, i.e., the training set. Concerninghsselection, our aim is twofold. On the one
hand, we want to compose a training set in order to train astabodel.

As result of the considerations above, we design a trairetg sl in the following— composed
of the 320 instances solved uniquely —without taking intocamt the instances involved in the
competition— by the pool of engines selected in Section 7t rational of this choice is to try to
“mask” noisy information during model training.

Our next experiment is devoted to training the classified, tarassessing its accuracy. Referring
to the notation introduced in Section 2.2, even assumingahaaining set is sufficient to learn
f, it is still the case that different sets may yield a diffar¢n The problem is that the resulting
trained classifier may underfit the unknown pattern —i.e piediction is wrong— or overfit —i.e., be
very accurate only when the input pattern is in the trainieg 8|oth underfitting and overfitting
lead to poorgeneralizationperformance, i.e.¢ fails to predictf(z*) whenz* # z. However,
statistical techniques can provide reasonable estiméthe generalization error. In order to test the
generalization performance, we use a technigue knowtratsfied 10-times 10-fold cross validation
to estimate the generalization in termsagturacy i.e., the total amount of correct predictions with
respect to the total amount of patterns. Given a trainind Xet"), we partitionX in subsetsX;
with i € {1,...10} such thatX = J;°, X; andX, N X; = 0 wheneveii # j; we then trairc(;, on
the patternsX ;) = X \ X; and corresponding labelg;). We repeat the process 10 times, to yield
10 differentc and we obtain the global accuracy estimate.

We finally report the accuracy results related to the expemindescribed above for our classifi-
cation method: 92.81%.
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5 Performance analysis

In this section we present the results of the analysis we perfermed. We consider the training sets
Ts1 introduced in Section 4, composed of uniquely solved iesta, and as test set the successfully
grounded instances evaluated at the 3rd ASP Competitiastghdf 88 instances): the goal of this
analysis is to test thefficiencyof our approach on all the evaluated instances when the ni®del
trained on the whole space of the uniquely solved instances.

The results are reported in a table structured as follows:fitet column reports the name of
a solver, the second, third and fourth columns report thelteesf each solver oNP, Beyond NP
classes, and on both classes, respectively, in terms otihéer of solved instances within the time
limit and sum of their solving times (a sub-column is devdieéach of these numbers). About the
last column, numbers are reported only f@-AspP and the engines that have been selected on both
classes in Section 4.2 (note tfatAspPD always performs worse tharLAsP on NP instances, and
CLASPFoLIOcan only handIdNP instances).

We report the results obtained by runnimgg-Aspwith theNN classification method introduced
in Section 4.3, denoted witkiE-ASP(NN) the component engines employed lg-AspP on each
class as explained in Section 4@,AsPFOLIO and SOTA, which is the ideal multi-engine solver
(considering the engines employed).

We remind the reader that, fefE-ASP, the number of instances on whiste-ASP is run is
further limited to the ones for which we were able to compuitéeatures, and its timings include
both the time spent for extracting the features from the igdanstances, and the time spent by the
classifier.

Results are shown in Table 3. We can see that, on problems bifRlclass ME-ASP(NN) solves
the highest number of instances, 5 more ttar) 6 more tharcLAsPand 4 more thagLASPFOLIO,
that we remind the fastest solver in tN@ class that entered the System Track of the competition.
On theBeyond NRoroblems, insteadye-AsSP(NN) and DLV solve 15 instances (DLV having best
mean CPU time), followed bgLAsPD andCMODELS, which solve 13 and 9 instances, respectively.
It is interesting to report the overall result of ASPD, i.e., the overall winner of the System Track
of the competition on bothNNP andBeyond NRclasses: it solves a total of 62 instances (i.e.NB2
instances and 1Beyond NHnstances), thus a total of 19 instances less thanSP(NN).

SummarizingME-ASP(NN) is the solver that solves the highest number of instancesrimpar-
ison with (i) its engines, (iilCLASPFOLIQ, i.e., the fastest solver in tHeP class that entered the
System Track of the competition, and (iGL.ASPD, i.e., the overall winner of the System Track of
the competition. It is further very interesting to note thatperformance is very close to tls®TA
solver which, we remind, has the ideal performance that wedcexpect in these instances with
these engines.

6 Related Work

Starting from the consideration that, on empirically hardiglems, there is rarely a “global” best
algorithm, while it is often the case that different algonits perform well on different problem
instances, Rice [34] defined the algorithm selection prokds the problem of finding an effective,
or good, or best algorithm, based on an abstract model of ihiglggn at hand. Along this line,
several works have been done to tackle combinatorial pnablefficiently. [16, 23] described the
concept of “algorithm portfolio” as a general method for d@ning existing algorithms into new
ones that are unequivocally preferable to any of the commoalgorithms. Most related papers
to our work are [40, 32] for solving SAT and QSAT problems. B{O0] and [32] rely on a per-
instance analysis, like the one we have performed in thiempap [32], which is the work closest
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to our, the goal is to design a multi-engine solver, i.e. d that can choose among its engines
the one which is more likely to yield optimal results. The aggeh in [40] has also the ability
to compute features on-line, e.g., by running a solver foaldstted amount of time and looking
“internally” to solver statistics, with the option of chang the solver on-line: this is a per-instance
algorithm portfolio approach. The algorithm portfolio apach is employed also in, e.g., [16] on
Constraint Satisfaction and MIP, [35] on QSAT and [15] onnplimg problems. The advantage of
the algorithm portfolio over a multi-engine is that it is gdsge, by combining algorithms, to reach,
in each instance, better performance than the best enghile, this is the bound for a multi-engine
solver. On the other hand, an algorithm portfolio needsivalechanges in the code of the engines,
while the multi-engine treats the engines as black-boxs tiainternal modification, even minor, is
requested, resulting in higher modularity for this apphoaghen a new engine is added, there is just
the need to update the model. It has to be noticed that botlaf&R [40] reached very good results,
e.g.,AQME, the multi-engine solver implementing the approach in 324 top performance at the
2007 QBF competitiod.[33] extends [32] by introducing a self-adaptation of tharfeed selection
policies when the approach fails to give a good prediction.

Other approaches work by designing methods for automBbticeding and configuring the solver
parameters: this approach is followed in, e.g., [19, 18Ffdving SAT and MIP problems, and [38]
for planning problems. An overview can be found in [17]. InFA$he approach implemented in
CLASPFOLIO[9] mixes characteristics of the algorithm portfolio apgeh with others more similar
to this second trend: it works by selecting the most prorgisinAsp internal configuration on the
basis of both static and dynamic features of the input pragthe latter obtained by runnirg.AsP
for a given amount of time. IICLASPFOLIQ, features are extracted by means of thespPrEtool.
Thus, like the algorithms portfolio approaches, it can catapboth static and dynamic features,
while trying to automatically configure the “bestt ASp configuration on the basis of the computed
features. An alternative approach is followed in thers framework of [2], where in the off-line
learning phase, carried out on representative progranmns &@iven domain, a heuristic ordering
is selected to be then usedsmoDELSwhen solving other programs from the same domain. The
target of this work seems to be real-world problem domainsre/instances have similar structures,
and heuristic ordering learned in some (possibly smaltpimses in the domain can help to improve
the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniquésSt® solving with the goal of devel-
oping a fast and robust multi-engine ASP solver. To this evelhave: (i) specified a number of
cheap-to-compute syntactic features that allow for atewrtassification of ground ASP programs;
(#4) applied a multinomial classification method to learningoaiiym selection strategieéiii) im-
plemented these techniques in our multi-engine salerasP, which is available for download at
http://ww. mat. unical .it/riccal me-asp. The performance afie-Aspwas assessed
on an experiment, which was conceived for checking effigiexfour approach, involving training
and test sets of instances taken from the ones submitte@ tSytstem Track of the 3rd ASP com-
petition. Our analysis shows that, our multi-engine solwerAsp is very robust and efficient, and
outperforms both its component engines and state of thelaers.
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