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Abstract
Having in mind the task of improving the solving methods for Answer Set Programming (ASP), there

are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP solvers, or (ii)
designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-
the-art solvers, and to apply machine learning techniques for choosing automatically the “best” available
solver on a per-instance basis.

In this paper we pursue this latter direction. We first define aset of cheap-to-compute syntactic
features that characterize several aspects of ASP programs. Then, given the features of the instances
in a training set and the solvers performance on these instances, we applya classification method to
inductively learn algorithm selection strategies to be applied to a testset. We report the results of an
experiment considering solvers and training and test sets of instances taken from the ones submitted to
the “System Track” of the 3rd ASP competition. Our analysis shows that, by applying machine learning
techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve a
higher number of instances compared with any solver that entered the 3rd ASP competition.
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1 Introduction

Having in mind the task of improving the robustness, i.e., the ability to perform well across a wide
set of problem domains, and the efficiency, i.e., the qualityof solving a high number of instances, of
solving methods for Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3], it is possible to extend
existing state-of-the-art techniques implemented in ASP solvers, or design from scratch a new ASP
system with powerful techniques and heuristics. An alternative to these trends is to build on top of
state-of-the-art solvers, leveraging on a number of efficient ASP systems, e.g., [36, 22, 24, 10, 28, 21,
36], and applying machine learning techniques for inductively choosing, among a set of available
ones, the “best” solver on the basis of the characteristics,called features, of the input program.
This approach falls in the framework of thealgorithm selection problem[34]. Related approaches,
following a per-instance selection, have been exploited for solving propositional satisfiability (SAT),
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2 Applying Machine Learning Techniques to ASP Solving

e.g., [40], and Quantified SAT (QSAT), e.g., [32] problems. In ASP, an approach for selecting the
“best” CLASP internal configuration is followed in [9], while another approach that imposes learned
heuristics ordering toSMODELS is [2].

In this paper we pursue this direction, and design a multi-engine approach to ASP solving. We
first define a set of cheap-to-compute syntactic features that describe several characteristics of ASP
programs, paying particular attention to ASP peculiarities. We then compute such features for the
grounded version of all benchmark submitted to the “System Track” of the 3rd ASP Competition [5]
falling in the “NP” and “Beyond NP” categories of the competition: this track is well suited for our
study given that(i) contains many ASP instances,(ii) the language specification, ASP-Core, is a
common ASP fragment such that(iii) many ASP systems can deal with it.

Then, starting from the features of the instances in atrainingset, and the solvers performance on
these instances, we apply the “Nearest-neighbor” classification method to inductively learn general
algorithm selection strategies to be applied to atestset. We perform an analyses that consider as test
set the instances evaluated to the 3rd ASP competition.

Our experiments show that it is possible to obtain a very robust performance, by solving a higher
number of instances than all the solvers that entered the 3rdASP competition and DLV [22].

The paper is structured as follow. Section 2 contains preliminaries about ASP and classification
methods. Section 3 then describes our benchmarks setting, in terms of dataset and solvers employed.
Section 4 defines how features and solvers have been selected, and presents the classification meth-
ods employed. Section 5 shows the performance analysis, while Section 6 and 7 end the paper with
discussion about related work and conclusions, respectively.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming and machine
learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3] is a declarative programming formalism
proposed in the area of non-monotonic reasoning and logic programming. The idea of ASP is to rep-
resent a given computational problem by a logic program whose answer sets correspond to solutions,
and then use a solver to find those solutions [26].

In the following, we recall both the syntax and semantics of ASP. The presented constructs
are included in ASP-Core [5], which is the language specification that was originally introduced
in the 3rd ASP Competition [5] as well as the one employed in our experiments (see Section 3).
Hereafter, we assume the reader is familiar with logic programming conventions, and refer the reader
to [14, 3, 12] for complementary introductory material on ASP, and to [4] for obtaining the full
specification of ASP-Core.

2.1.0.1 Syntax.

A variable or a constant is aterm. An atom is p(t1, ..., tn), wherep is a predicateof arity n and
t1, ..., tn are terms. Aliteral is either apositive literalp or anegative literalnot p, wherep is an
atom. A(disjunctive) ruler is of the form:

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

wherea1, . . . , an, b1, . . . , bm are atoms. The disjunctiona1 ∨ . . . ∨ an is theheadof r, while the
conjunctionb1, . . . , bk, not bk+1, . . . , not bm is thebodyof r. We denote byH(r) the set of atoms
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occurring in the head ofr, and we denote byB(r) the set of body literals. A rule s.t.|H(r)| = 1

(i.e.,n = 1) is called anormal rule; if the body is empty (i.e.,k = m = 0) it is called afact (and the
:– sign is omitted); if|H(r)| = 0 (i.e.,n = 0) is called aconstraint. A rule r is safeif each variable
appearing inr appears also in some positive body literal ofr.

An ASP programP is a finite set of safe rules. Anot-free (resp.,∨-free) program is called
positive(resp.,normal). A term, an atom, a literal, a rule, or a program isground if no variable
appears in it.

2.1.0.2 Semantics.

Given a programP, the Herbrand UniverseUP is the set of all constants appearing inP, and
the Herbrand BaseBP is the set of all possible ground atoms which can be constructed from the
predicates appearing inP with the constants ofUP . Given a ruler, Ground(r) denotes the set
of rules obtained by applying all possible substitutions from the variables inr to elements ofUP .
Similarly, given a programP, theground instantiationof P isGround(P) =

⋃
r∈P Ground(r).

An interpretationfor a programP is a subsetI of BP . A ground positive literalA is true (resp.,
false) w.r.t.I if A ∈ I (resp.,A 6∈ I). A ground negative literalnot A is true w.r.t.I if A is false
w.r.t. I; otherwisenot A is false w.r.t.I.

The answer sets of a programP are defined in two steps using its ground instantiation: First the
answer sets of positive disjunctive programs are defined; then the answer sets of general programs
are defined by a reduction to positive ones and a stability condition.

Let r be a ground rule, the head ofr is true w.r.t.I if H(r)∩ I 6= ∅. The body ofr is true w.r.t.I
if all body literals ofr are true w.r.t.I, otherwise the body ofr is false w.r.t.I. The ruler is satisfied
(or true) w.r.t.I if its head is true w.r.t.I or its body is false w.r.t.I.

Given aground positiveprogramPg, ananswer setfor Pg is a subset-minimal interpretationA
for Pg such that every ruler ∈ Pg is true w.r.t.A (i.e., there is no other interpretationI ⊂ A that
satisfies all the rules ofPg).

Given agroundprogramPg and an interpretationI, the (Gelfond-Lifschitz)reduct [14] of Pg
w.r.t. I is the positive programP Ig , obtained fromPg by (i) deleting all rulesr ∈ Pg whose negative
body is false w.r.t.I, and (ii) deleting the negative body from the remaining rules ofPg.

An answer set (or stable model) of a general programP is an interpretationI of P such thatI is
an answer set ofGround(P)I .

As an example consider the programP = { a ∨ b :–c., b :–not a, not c., a ∨ c :–not b., k :–a.,
k :–b. } andI = {b, k}. The reductPI is {a ∨ b :–c., b. k :–a., k :–b.}. I is an answer set ofPI ,
and for this reason it is also an answer set ofP.

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarely a best algorithm to solve a given combina-
torial problem, while it is often the case that different algorithms perform well on different problem
instances. Among the approaches for solving this problem, in this work we rely on a per-instance
selection algorithm in which, given a set offeatures–i.e., numeric values that represent particular
characteristics of a given instance–, it is possible to choose the best algorithm among a pool of them
–in our case, tools to solve ASP instances. In order to make such a selection in an automatic way,
we model the problem usingmultinomial classificationalgorithms, i.e., machine learning techniques
that allow automatic classification of a set of instances, given instance features.

More in detail, in multinomial classification we are given a set of patterns, i.e., input vectorsX =

{x1, . . . xk} with xi ∈ R
n, and a corresponding set of labels, i.e., output valuesY ∈ {1, . . . ,m},

whereY is composed of values representing them classes of the multinomial classification problem.
In our modeling, them classes arem ASP solvers. We think of the labels as generated by some
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Problem Class #Instances

DisjunctiveScheduling NP 10

GraphColouring NP 60

HanoiTower NP 59

KnightTour NP 10

MazeGeneration NP 50

Labyrinth NP 261

MultiContextSystemQuerying NP 73

Numberlink NP 150

PackingProblem NP 50

SokobanDecision NP 50

Solitaire NP 25

WeightAssignmentTree NP 62

MinimalDiagnosis Beyond NP 551

StrategicCompanies Beyond NP 51

Table 1 Problems and instances considered, coming from theNP andBeyond NPclasses of the 3rd ASP
competition.

unknown functionf : R
n → {1, . . . ,m} applied to the patterns, i.e.,f(xi) = yi for i ∈ {1, . . . , k}

andyi ∈ {1, . . . ,m}. Given a set of patternsX and a corresponding set of labelsY , the task of a
multinomial classifierc is to extrapolatef givenX andY , i.e., constructc from X andY so that
when we are given somex⋆ ∈ X we should ensure thatc(x⋆) is equals tof(x⋆). This task is called
training, and the pair(X,Y ) is called thetraining set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed in this
work, which is needed for properly introducing the techniques described in the remainder of the
paper. In particular, we report some data concerning: benchmark problems, instances and ASP
solvers employed, as well as the hardware platform, and the execution settings for reproducibility of
experiments.

3.1 Dataset

The benchmarks considered for the experiments belong to thesuite of the 3rd ASP Competition [5].
This is a large and heterogeneous suite of hard benchmarks, which was already employed for eval-
uating the performance of state-of-the-art ASP solvers, which are encoded in ASP-Core. That suite
includes planning domains, temporal and spatial scheduling problems, combinatorial puzzles, graph
problems, and a number of application domains i.e., database, information extraction and molecu-
lar biology field.1 More in detail, we have employed the encodings used in the System Track of
the competition, and all the problem instances madeavailable(in form of facts) from the contribu-
tors of the problem submission stage of the competition, which are available from the competition
website [4]. Note that this is a superset of the instances actually selected for running (and, thus

1 An exhaustive description of the benchmark problems can be foundin [4].
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evaluatedin) the competition itself. Hereafter, withinstancewe refer to the complete input program
(i.e., encoding+facts) to be fed to a solver for each instance of the problem to be solved.

The techniques presented in this paper are conceived for dealing with propositional programs,
thus we have grounded all the mentioned instances by using GRINGO (v.3.0.3) [11] to obtain a
setup very close to the one of the competition.We consideredonly computationally-hard benchmarks,
corresponding to all problems belonging to the categoriesNPandBeyond NPof the competition. The
dataset is summarized in Table 1, which also reports the complexity classification and the number of
available instances for each problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that entered the System Track of the 3rd ASP
Competition [4] with the addition of DLV [22] (which did not participate in the competition since
it is developed by the organizers of the event). In this way wehave covered –to the best of our
knowledge– all the state-of-the-art solutions fitting the benchmark settings. In detail, we have run:
CLASP [10], CLASPD [7], CLASPFOLIO [9], IDP [39], CMODELS [24], SUP [25], SMODELS [36],
and several solvers from both theLP2SAT [20] andLP2DIFF [21] families, namely:LP2GMINISAT,
LP2LMINISAT , LP2LGMINISAT , LP2MINISAT , LP2DIFFGZ3, LP2DIFFLGZ3, LP2DIFFLZ3, andLP2DIFFZ3.
More in detail,CLASP is a native ASP solver relying on conflict-driven nogood learning; CLASPD
is an extension ofCLASP that is able to deal with disjunctive logic programs, whileCLASPFO-
LIO exploits machine-learning techniques in order to choose the best-suited execution options of
CLASP; IDP is a finite model generator for extended first-order logic theories, which is based on
MiniSatID [28]; SMODELS is one of the first robust native ASP solvers that have been made avail-
able to the community; DLV [22] is one of the first systems ableto cope with disjunctive programs;
CMODELS exploits a SAT solver as a search engine for enumerating models, and also verifying
model minimality whenever needed;SUPexploits nonclausal constraints, and can be seen as a com-
bination of the computational ideas behindCMODELS and SMODELS; the LP2SAT family employs
several variants (indicated by the trailingG, L andLG) of a translation strategy to SAT and resorts
on MINI SAT [8] for actually computing the answer sets; theLP2DIFF family translates programs
in difference logic over integers [37] and exploitZ3 [6] as underlying solver (again,G, L and LG

indicate different translation strategies). Solvers wererun on the same configuration (i.e., parameter
settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments were carried
out on CyberSAR [29], a cluster comprised of 50 Intel Xeon E5420 blades equipped with 64 bit
Gnu Scientific Linux 5.5. Unless otherwise specified, the resources granted to the solvers are 600s
of CPU time and 2GB of memory. Time measurements were carriedout using thetime command
shipped with Gnu Scientific Linux 5.5.

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several steps:(i) design of (syntactic) features that
are both significant for classifying the instances and cheap-to-compute (so that the classifier can
be fast and accurate);(ii) selection of solvers that are representative of the state ofthe art (to be
able to obtain the best possible performance in any considered instance); and(iii) selection of the
classification algorithm, and fair design of training and test sets, to obtain a robust and unbiased
classifier.

In the following we describe the choices we have made for designing ME-ASP, which is our
multi-engine solver for ground ASP programs.
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Solver Solved Unique Solver Solved Unique

CLASP 445 26 LP2DIFFZ3 307 –

CMODELS 333 6 LP2SAT2GMINISAT 328 –

DLV 241 37 LP2SAT2LGMINISAT 322 –

IDP 419 15 LP2SAT2LMINISAT 324 –

LP2DIFFGZ3 254 – LP2SAT2MINISAT 336 –

LP2DIFFLGZ3 242 – SMODELS 134 –

LP2DIFFLZ3 248 – SUP 311 1

Table 2 Results of a pool of ASP solvers on theNP instances of the 3rd ASP Competition. The table is
organized as follows: Column “Solver” reports the solver name, column “Solved” reports the total amount of
instances solved with a time limit of 600 seconds, and, finally, in column “Unique” we report the total amount
of instances solved uniquely by the corresponding solver.

4.1 Features

We consider syntactic features that are cheap-to-compute,i.e., computable in linear time in the size
of the input, given that in previous work (e.g., [32]) syntactic features have been profitably used for
characterizing (inherently) ground instances. The features that we compute for each ground program
are divided into four groups: problems size, balance, “proximity to horn” and ASP-based peculiar
features. This categorization is borrowed from [31]. The problem size features are: number of rules
r, number of atomsa, ratiosr/a, (r/a)

2, (r/a)3 and ratios reciprocala/r, (a/r)
2 and(a/r)

3. The
balance features are: fraction of unary, binary and ternaryrules. The “proximity to horn” features
are: fraction of horn rules and number of occurrences in a horn rule for each atom. We have added
a number of ASP peculiar features, namely: number of true anddisjunctive facts, fraction of normal
rules and constraintsc. Also some combinations, e.g.,c/r, are considered for a total of 52 features.

We were able to ground with GRINGO 1425 instances out of a total of 1462 in less than 600s.2

Our system for extracting features from ground programs canthen compute all features (in less than
600s) for 1371 programs: to have an idea of its performance, it can compute all features of a ground
program of approximately 20MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative of the state-of-the-
art solver (SOTA), i.e., considering a problem instance, the oracle that always fares the best among
available solvers. In order to do that, we ran preliminary experiments, and we report the results
(regarding theNP class) in Table 2. Looking at the table, first we notice that wedo not report
results related to bothCLASPD andCLASPFOLIO. Concerning the results ofCLASPD, we report that
–considering theNPclass– its performance is subsumed by the performance ofCLASP. Considering
the performance ofCLASPFOLIO, we exclude such system from this analysis because we consider it
as a yardstick system, i.e., we will compare its performanceagainst the ones related toME-ASP.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a noticeable amount
of instancesuniquely, namelyCLASP, CMODELS, DLV, and IDP. ConcerningBeyond NPinstances,
we report that only three solvers are able to cope with such class of problems, nameCLASPD, CMOD-
ELS, and DLV. Considering that bothCMODELSand DLV are involved in the previous selection, the

2 The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respectively.
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Solver NP Beyond NP Total

#Solved Time #Solved Time #Solved Time

CLASP 60 5132.45 – – – –

CLASPD – – 13 2344.00 – –

CMODELS 56 5092.43 9 2079.79 65 7172.22

DLV 37 1682.76 15 1359.71 52 3042.47

IDP 61 5010.79 – – – –

ME-ASP (NN) 66 4854.78 15 3187.31 81 8042.09

CLASPFOLIO 62 4824.06 – – – –

SOTA 71 5403.54 15 1221.01 86 6624.55

Table 3 Results of the various solvers on the grounded instances evaluated at the3rd ASP competition.
ME-ASP(NN) has been trained on theTS1 training set.

pool of engines used inME-ASPwill be composed of 5 solvers, namelyCLASP, CLASPD, CMODELS,
DLV, and IDP.

4.3 Classification algorithms and training

The classification method employed in our analysis isNearest-neighbor(NN), already considered in
[32] in QBF solving: it is a classifier yielding the label of the training instance which is closer to the
given test instance, whereby closeness is evaluated using some proximity measure, e.g., Euclidean
distance; we use the method described in [1] to store the training instances for fast look-up.

As mentioned in Section 2.2, in order to train the classifier,we have to select a pool of instances
for training purpose, i.e., the training set. Concerning such selection, our aim is twofold. On the one
hand, we want to compose a training set in order to train a robust model.

As result of the considerations above, we design a training set–TS1 in the following– composed
of the 320 instances solved uniquely –without taking into account the instances involved in the
competition– by the pool of engines selected in Section 4.2.The rational of this choice is to try to
“mask” noisy information during model training.

Our next experiment is devoted to training the classifier, and to assessing its accuracy. Referring
to the notation introduced in Section 2.2, even assuming that a training set is sufficient to learn
f , it is still the case that different sets may yield a different f . The problem is that the resulting
trained classifier may underfit the unknown pattern –i.e., its prediction is wrong– or overfit –i.e., be
very accurate only when the input pattern is in the training set. Both underfitting and overfitting
lead to poorgeneralizationperformance, i.e.,c fails to predictf(x∗) whenx∗ 6= x. However,
statistical techniques can provide reasonable estimates of the generalization error. In order to test the
generalization performance, we use a technique known asstratified 10-times 10-fold cross validation
to estimate the generalization in terms ofaccuracy, i.e., the total amount of correct predictions with
respect to the total amount of patterns. Given a training set(X,Y ), we partitionX in subsetsXi
with i ∈ {1, . . . 10} such thatX =

⋃10
i=1Xi andXi ∩Xj = ∅ wheneveri 6= j; we then trainc(i) on

the patternsX(i) = X \Xi and corresponding labelsY(i). We repeat the process 10 times, to yield
10 differentc and we obtain the global accuracy estimate.

We finally report the accuracy results related to the experiment described above for our classifi-
cation method: 92.81%.
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5 Performance analysis

In this section we present the results of the analysis we haveperformed. We consider the training sets
TS1 introduced in Section 4, composed of uniquely solved instances, and as test set the successfully
grounded instances evaluated at the 3rd ASP Competition (a total of 88 instances): the goal of this
analysis is to test theefficiencyof our approach on all the evaluated instances when the modelis
trained on the whole space of the uniquely solved instances.

The results are reported in a table structured as follows: the first column reports the name of
a solver, the second, third and fourth columns report the results of each solver onNP, Beyond NP
classes, and on both classes, respectively, in terms of the number of solved instances within the time
limit and sum of their solving times (a sub-column is devotedto each of these numbers). About the
last column, numbers are reported only forME-ASP and the engines that have been selected on both
classes in Section 4.2 (note thatCLASPD always performs worse thanCLASP on NP instances, and
CLASPFOLIOcan only handleNP instances).

We report the results obtained by running:ME-ASPwith theNN classification method introduced
in Section 4.3, denoted withME-ASP(NN) the component engines employed byME-ASP on each
class as explained in Section 4.2,CLASPFOLIO and SOTA, which is the ideal multi-engine solver
(considering the engines employed).

We remind the reader that, forME-ASP, the number of instances on whichME-ASP is run is
further limited to the ones for which we were able to compute all features, and its timings include
both the time spent for extracting the features from the ground instances, and the time spent by the
classifier.

Results are shown in Table 3. We can see that, on problems of theNPclass,ME-ASP(NN) solves
the highest number of instances, 5 more thanIDP, 6 more thanCLASPand 4 more thanCLASPFOLIO,
that we remind the fastest solver in theNP class that entered the System Track of the competition.
On theBeyond NPproblems, instead,ME-ASP(NN) and DLV solve 15 instances (DLV having best
mean CPU time), followed byCLASPD andCMODELS, which solve 13 and 9 instances, respectively.
It is interesting to report the overall result ofCLASPD, i.e., the overall winner of the System Track
of the competition on bothNP andBeyond NPclasses: it solves a total of 62 instances (i.e., 52NP
instances and 13Beyond NPinstances), thus a total of 19 instances less thanME-ASP(NN).

Summarizing,ME-ASP(NN) is the solver that solves the highest number of instances incompar-
ison with (i) its engines, (ii)CLASPFOLIO, i.e., the fastest solver in theNP class that entered the
System Track of the competition, and (iii)CLASPD, i.e., the overall winner of the System Track of
the competition. It is further very interesting to note thatits performance is very close to theSOTA

solver which, we remind, has the ideal performance that we could expect in these instances with
these engines.

6 Related Work

Starting from the consideration that, on empirically hard problems, there is rarely a “global” best
algorithm, while it is often the case that different algorithms perform well on different problem
instances, Rice [34] defined the algorithm selection problem as the problem of finding an effective,
or good, or best algorithm, based on an abstract model of the problem at hand. Along this line,
several works have been done to tackle combinatorial problems efficiently. [16, 23] described the
concept of “algorithm portfolio” as a general method for combining existing algorithms into new
ones that are unequivocally preferable to any of the component algorithms. Most related papers
to our work are [40, 32] for solving SAT and QSAT problems. Both [40] and [32] rely on a per-
instance analysis, like the one we have performed in this paper: in [32], which is the work closest
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to our, the goal is to design a multi-engine solver, i.e. a tool that can choose among its engines
the one which is more likely to yield optimal results. The approach in [40] has also the ability
to compute features on-line, e.g., by running a solver for anallotted amount of time and looking
“internally” to solver statistics, with the option of changing the solver on-line: this is a per-instance
algorithm portfolio approach. The algorithm portfolio approach is employed also in, e.g., [16] on
Constraint Satisfaction and MIP, [35] on QSAT and [15] on planning problems. The advantage of
the algorithm portfolio over a multi-engine is that it is possible, by combining algorithms, to reach,
in each instance, better performance than the best engine, while this is the bound for a multi-engine
solver. On the other hand, an algorithm portfolio needs internal changes in the code of the engines,
while the multi-engine treats the engines as black-box, thus no internal modification, even minor, is
requested, resulting in higher modularity for this approach: when a new engine is added, there is just
the need to update the model. It has to be noticed that both [32] and [40] reached very good results,
e.g.,AQME, the multi-engine solver implementing the approach in [32]had top performance at the
2007 QBF competition.3 [33] extends [32] by introducing a self-adaptation of the learned selection
policies when the approach fails to give a good prediction.

Other approaches work by designing methods for automatically tuning and configuring the solver
parameters: this approach is followed in, e.g., [19, 18] forsolving SAT and MIP problems, and [38]
for planning problems. An overview can be found in [17]. In ASP, the approach implemented in
CLASPFOLIO [9] mixes characteristics of the algorithm portfolio approach with others more similar
to this second trend: it works by selecting the most promising CLASP internal configuration on the
basis of both static and dynamic features of the input program, the latter obtained by runningCLASP

for a given amount of time. InCLASPFOLIO, features are extracted by means of theCLASPREtool.
Thus, like the algorithms portfolio approaches, it can compute both static and dynamic features,
while trying to automatically configure the “best”CLASPconfiguration on the basis of the computed
features. An alternative approach is followed in theDORS framework of [2], where in the off-line
learning phase, carried out on representative programs from a given domain, a heuristic ordering
is selected to be then used inSMODELS when solving other programs from the same domain. The
target of this work seems to be real-world problem domains where instances have similar structures,
and heuristic ordering learned in some (possibly small) instances in the domain can help to improve
the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniques toASP solving with the goal of devel-
oping a fast and robust multi-engine ASP solver. To this end,we have:(i) specified a number of
cheap-to-compute syntactic features that allow for accurate classification of ground ASP programs;
(ii) applied a multinomial classification method to learning algorithm selection strategies;(iii) im-
plemented these techniques in our multi-engine solverME-ASP, which is available for download at
http://www.mat.unical.it/ricca/me-asp. The performance ofME-ASP was assessed
on an experiment, which was conceived for checking efficiency of our approach, involving training
and test sets of instances taken from the ones submitted to the System Track of the 3rd ASP com-
petition. Our analysis shows that, our multi-engine solverME-ASP is very robust and efficient, and
outperforms both its component engines and state of the art solvers.
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