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Abstract. In this paper we preseMEe-ASP, a new multi-engine solver for An-
swer Set Programming (ASR)E-ASP relies on machine learning techniques for
inductively determining its algorithm selection strategy for choosing the tmos
promising” ASP solver among the ones available. We describe the atcinéec

of ME-ASP and the classification methods it supports. An experimental analysis,
performed on benchmarks from the 3rd ASP competition, showsewasP per-
forms with the various methods, and outlines tki@-AsP can have very robust
performance.

1 Introduction

In order to improve the robustness, i.e., the ability to genf well across a wide set
of problem domains, and the efficiency, i.e., the quality @f/img a high number of
instances, of solving methods for Answer Set ProgrammingRA[14, 24, 27,23, 15,
3], the followed directions aré) extending existing state-of-the-art techniques imple-
mented in ASP solvers, d@fi) designing from scratch a new ASP system with powerful
techniques and heuristics. An alternative to these tresdshuild on top of state-of-the-
art solvers, leveraging on a number of ASP systems, e.g.2{821, 11, 25, 19, 33], and
applying machine learning techniques for inductively cdfing, among a set of available
ones, the “best” solver on the basis of the characteristalted features of the input
program. This approach falls in the framework of tiigorithm selection probleff32].
Related approaches, following a per-instance selectiave lbeen exploited for solv-
ing propositional satisfiability (SAT), e.g., [36], and Quidied SAT (QSAT), e.g., [29]
problems. In ASP, an approach for selecting the “be&stAsp internal configuration
is followed in [10], while another approach that imposesnred heuristics ordering to
SMODELSIs shown in [2].

In this paper we pursue the alternative direction, by priasgmME-ASP, a new multi-
engine solver for Answer Set Programming (ASP). We first @eéirset of cheap-to-
compute syntactic features that describe several chaistitte of ASP programs, paying
particular attention to ASP peculiarities. We then compuieh features for the grounded
version of all problems submitted to the “System Track” &f 81d ASP Competition [4]
falling in the “NP” and “Beyond NP categories of the competition: this track is well
suited for our study given thét) contains many ASP instancés;) the language spec-
ification, ASP-Core, is a common ASP fragment such ha} many ASP systems can
deal with it.



Then, we apply classification methods that, starting froefélatures of the instances
in a trainingset, and the solver performances on these instances, ivelydéarn gen-
eral algorithm selection strategies to be appliedt@séset. We consider five well-known
multinomial classification methods, some of them considiéene[29]. We perform a
number of analyses considering different training andgett taken from the grounded
instances submitted to the System Track of the 3rd ASP catigpeOur analysis shows
that ME-ASP has very robust performance, and can solve significantlyemwstances
than all the solvers that entered the 3rd ASP competitiorly @hd CLASPFOLIO, the
latter being the implementation of the approach in [10].

The paper is structured as follow. Section 2 contains piefines about ASP and
Machine Learning. Section 3 then describes our benchmatkag, in terms of dataset
and solvers employed. Section 4 defines how features anersdiave been selected, and
presents the classification methods employed. Sectionvissthe performance analysis,
while Section 6 ends the paper with conclusions.

2 Preliminaries

In this section we recall some preliminary notions conaegranswer set programming
and machine learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [14, 24,27, 23,15, 3] is a datilee programming for-
malism proposed in the area of non-monotonic reasoning@gid programming. The
idea of ASP is to represent a given computational problem logie program whose
answer sets correspond to solutions, and then use a soffiied thhose solutions [23].

In the following, we recall both the syntax and semantics &PAThe presented
constructs are included in ASP-Core [5], which is the lamguspecification that was
originally introduced in the 3rd ASP Competition [5] as wali the one employed in
our experiments (see Section 3). Hereafter, we assumedlderre familiar with logic
programming conventions, and refer the reader to [15, 3fdr3gomplementary intro-
ductory material on ASP, and to [4] for obtaining the full sifieation of ASP-Core.

Syntax. A variable or a constantistarm Anatomisp(¢1, ..., t,, ), wherep is apredicate
of arityn andty, ..., t,, are terms. Aiteral is either goositive literalp or anegative literal
not p, wherep is an atom. A(disjunctive) ruler is of the form:

ai V -+ V a, = by, ,bg, not bgy1, -, not by,.
whereay, ..., a,,by,...,b, are atoms. The disjunctian V ...V a, is theheadof r,
while the conjunctiorby, .. ., by, not bgt1, ... ,not b, is thebodyof . We denote by

H(r) the set of atoms occurring in the headrofind we denote b§3(r) the set of body
literals. A rule s.tJH(r)| = 1 (i.e.,n = 1) is called anormal rule if the body is empty
(i.,e. k. = m = 0) it is called afact (and the:— sign is omitted); iff H(r)| = 0 (i.e.,

n = 0) is called anintegrity constraint A rule r is safeif each variable appearing in

appears also in some positive body literalof



An ASP progranf is a finite set of safe rules. Aot -free (resp.\-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a rule, or a prograngrsund
if no variable appears in it.

Semantics. Given a progran?, the Herbrand Universd/ is the set of all constants
appearing ir?, and theHerbrand BaseBr is the set of all possible ground atoms which
can be constructed from the predicates appearifgwith the constants dffp. Given a
ruler, Ground(r) denotes the set of rules obtained by applying all possitiletgutions
from the variables in- to elements ol/». Similarly, given a progran®, the ground
instantiationof P is Ground(P) = |, cp Ground(r). An interpretationfor a program

P is a subsef of Bp. A ground positive literald is true (resp., false) w.rfif A e I
(resp.,A ¢ I). A ground negative literahot A is true w.r.t.1 if A is false w.r.t.I;
otherwisenot A is false w.r.t.1.

The answer sets of a prografhare defined in two steps using its ground instantia-
tion: First the answer sets of positive disjunctive progsaare defined; then the answer
sets of general programs are defined by a reduction to pesities and a stability con-
dition.

Letr be a ground rule, the headofs true w.r.t.7 if H(r) NI # (. The body ofr is
true w.r.t. if all body literals ofr are true w.r.tZ, otherwise the body aof is false w.r.t.

1. The ruler is satisfied(or true) w.r.t. if its head is true w.r.t/ or its body is false
w.r.t. I. Given aground positivgorogramp,;, ananswer sefor P, is a subset-minimal
interpretationA for P, such that every rule € P, is true w.r.t.A (i.e., there is no other
interpretation/ C A that satisfies all the rules éf,). Given agroundprogram?, and an
interpretatior/, the (Gelfond-Lifschitzyeduct[15] of P, w.r.t. I is the positive program
Pgl, obtained fromP, by (i) deleting all rules: € P, whose negative body is false w.r.t.
1, and (ii) deleting the negative body from the remaining swér,.

An answer set (or stable model) of a general progfais an interpretatiod of P
such thatl is an answer set @fround(P)?.

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarelyestbalgorithm to solve a
given combinatorial problem, while it is often the case tfifferent algorithms perform
well on different problem instances. Among the approacbesdlving this problem, in
this work we rely on a per-instance selection algorithm inalvhgiven a set ofeatures
—i.e., numeric values that represent particular charaties of a given instance —, it is
possible to choose the best algorithm among a pool of thenodricase, tools to solve
ASP instances. In order to make such a selection in an autmay, we model the
problem usingmultinomial classificatioralgorithms, i.e., machine learning techniques
that allow automatic classification of a set of instancegmginstance features.

In more detail, in multinomial classification we are givenet sf patterns, i.e.,
input vectorsX = {z,,...z,} with z; € R", and a corresponding set of labels,
i.e., output valued” € {1,...,m}, whereY is composed of values representing the
m classes of the multinomial classification problem. In ourdelng, them classes
arem ASP solvers. We think of the labels as generated by some wikifignction
f:R* — {1,...,m} applied to the patterns, i.ef(z,) = y; fori € {1,...,k} and
y; € {1,...,m}. Given a set of pattern¥ and a corresponding set of lab&lsthe task



of a multinomial classifiet is to extrapolatg’ given X andY’, i.e., construct from X
andY so that when we are given somé € X we should ensure thafz*) is equal to
f(x*). This task is calledraining, and the paif X, Y) is called theraining set

3 Benchmark data and Settings

In this section we report some information concerning thechenark settings employed
in this work, which is needed for properly introducing theheiques described in the
remainder of the paper. In particular, we report some dataeming: benchmark prob-
lems, instances and ASP solvers employed, as well as thevaggglatform, and the
execution settings for reproducibility of experiments.

3.1 Dataset

The benchmark problems considered for the experimentsigétothe benchmark suite
of the third ASP Competition [5]. This is a large and heteragmus suite of hard bench-
marks, which was already employed for evaluating the peréorce of state-of-the-art
ASP solvers, which are encoded in a common fragment of ASPdcASP-Core. That
suite includes planning domains, temporal and spatialsdhmgy problems, combinatory
puzzles, graph problems, and a number of applicative dariaken from the database,
information extraction and molecular biology field.In mdegtail, we have employed the
encodings used in the system track of the competition, drileainstances made avail-
able from the contributors of the problem submission stag#hne competition. Note
that this is a superset of the instances actually selectedifming the competition it-
self. These benchmarks, along with their descriptionsaeaéable from the competition
website [4].

The techniques presented in this paper are conceived ftingegth propositional
programs, thus we have grounded all the mentioned problstarines by usingrRINGO
(v.3.0.3) [12] to obtain a setup very close to the one of themetition.We considered
only computationally-hard problems, that is all problenetobnging to the categories
NP and Beyond NPof the competition. The dataset is summarized in Table 1¢chvhi
also reports the complexity classification and the numbewailable instances for each
problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that editdre system track of
the last ASP Competition [4] with the addition of DLV [20] (vdh did not partici-
pate in the competition since it is developed by the orgagiaéthe event). In this way
we have covered —to the best of our knowledge— all the sfatieeeart solutions fitting
the benchmark settings. In detail, we have ranasp [11], CLASPD [8], CLASPFO
LIO [10], iDP [35], cMODELS[21], suP[22], SMODELS [33], and several solvers from
both theLP2sAT [18] andLP2DIFF [19] families, namelyLP2GMINISAT, LP2LMINISAT,
LP2LGMINISAT, LP2MINISAT, LP2DIFFGZ3, LP2DIFFLGZ3,LP2DIFFLZ3, andLP2DIFFZ3.



Table 1.Benchmark problems and instances.

[Problem [Class  [#Instances
DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQueryinlP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
WeightAssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

In more detail,cCLASP is a native ASP solver relying on conflict-driven nogood tear
ing; CLASPD is an extension oELASP that is able to deal with disjunctive logic pro-
grams, whilecLASPFOLIO exploits machine-learning techniques in order to choose th
best-suited execution options o ASp; IDP is a finite model generator for extended
first-order logic theories, which is based MimiSatID [25]; SMODELS is one of the first
robust native ASP solvers that have been made available wotmmunity; DLV [20] is
one of the first systems able to cope with disjunctive programoDELS that exploits
an SAT solver as a search engine for enumerating models, laodserifying model
minimality whenever neededupr exploits nonclausal constraints, and can be seen as a
combination of the computational ideas beh@tMODELS and S10DELS; the LP2SAT
family employs several variants (indicated by the trailiag. andLG) of a translation
strategy to SAT and resorts oniM SAT [9] for actually computing the answer sets; the
LP2DIFF family translates programs in difference logic over intsg84] and exploit
Z3[7] as underlying solver (agai, L andLG indicate different translation strategies).
Concerning the hardware employed and the execution sgttatigthe experiments
were carried out on CyberSAR [26], a cluster comprised ofriél Xeon E5420 blades
equipped with 64 bit GNU Scientific Linux 5.5. Unless othesagpecified, the resources
granted to the solvers are 600s of CPU time and 2GB of memane Teasurements
were carried out using the me command shipped with GNU Scientific Linux 5.5.

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver based on multinomiasifecation (see Section 2.2)
involves several stepsi) design of (syntactic) features that are both significantlas-
sifying the instances and cheap-to-compute (so that thesifiler can be fast and accu-
rate); (i7) selection of solvers that are representative of the statieecdrt (to be able to
obtain the best possible performance in any consideredrios}; andiii) selection of



Table 2.Results of a pool of ASP solvers on the NP benchmark suite of the thirdJs&#petition.
The table is organized as follows: Column “Solver” reports the solverenamlumn “Solved”
reports the total amount of instances solved with a time limit of 600 CPU seewl, finally, in
column “Unique” we report the total amount of instances solved uniduethe related solver.

| Solver  [Solved Unique]| Solver [Solved Unique]
CLASP 445 26||LP2DIFFZ3 307 -
CMODELS 333 6|/ LP2SAT2GMINISAT 328 -
DLV 241 37||LP2SAT2LGMINISAT 322 —
IDP 419 15|| LP2SAT2LMINISAT 324 -
LP2DIFFGZ3 254 —||LP2SAT2MINISAT 336 -
LP2DIFFLGZ3| 242 —||SMODELS 134 -
LP2DIFFLZ3 248 —||supP 311 1

the classification algorithm, and fair design of trainingldest sets, to obtain a robust
and unbiased classifier.

In the following we describe the choices we have made foiguésiME-ASP, which
is our multi-engine solver for ground ASP programs.

4.1 Features

We consider syntactic features that are cheap-to-comipeitezomputable in linear time
in the size of the input, given that in previous work (e.g9])&yntactic features have
been profitably used for characterizing (inherently) gburstances. The features that
we compute for each ground program are divided into four gsoproblems size, bal-
ance, “proximity to horn” and ASP-based peculiar featulédss categorization is bor-
rowed from [28]. The problem size features are: number adst)l number of atoms
a, ratiosr/a, (r/a)?, (r/a)® and ratios reciprocal/r, (a/r)* and(a/r)>. The balance
features are: fraction of unary, binary and ternary rulé "proximity to horn” features
are: fraction of horn rules and number of occurrences in a hde for each atom. We
have added a number of ASP peculiar features, namely: nuofibere and disjunctive
facts, fraction of normal rules and constraint#\lso some combinations, e.g,r, are
considered for a total of 52 features.

We were able to ground witBRINGO 1425 programs out of a total of 1462 in less
than 6008, Our system for extracting features from ground programstteen compute
all features (in less than 600s) for 1371 programs: to havdeaof its performance, it
can compute all features of a ground program of approxima@MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers theepresentative of the state
of the art (SOTA) solver, i.e., considering a problem ins&nhe oracle that always fares
the best among available solvers. In order to do that — coimagNP instances —, we

! The exceptions are 10 and 27 instances of the DisjunctiveSchedulir@eahihgProblem do-
mains, respectively.



ran preliminary experiments, and we report the results iera. Looking at the table,
first we notice that we do not report results related to kmthsPD and CLASPFOLIO.
Concerning the results afLASPD, we report that — considering NP benchmarks — its
performance is subsumed by the performancelofsp. Considering the performance
of cCLASPFOLIO, we exclude such system from our analysis because we corilsaie

a “rival” system, i.e., we will compare its performance amgaithe performance ofie-
ASP.

Looking at Table 2, we can see that only 4 solvers out of 16 ble @ solve a
noticeable amount of instancesiquely namelycLASP, CMODELS, DLV, and IDP.
ConcerningBeyond NHnstances, we report that only three solvers are able towithe
such class of problems, nanee AsPD, CMODELS, and DLV. Considering that both
cMoDELSand DLV are involved in the previous selection, the pool dfieas used in
ME-ASP will be composed of 5 solvers, namety Asp, CLASPD, CMODELS, DLV, and
IDP.

4.3 Classification algorithms and training

In the following, we briefly review the classifiers that we us@ur empirical analysis.
Considering the wide range of multinomial classifiers diéstt in the scientific litera-
ture, we test a subset of algorithms built on different irtthecbiases in the computation
of their classification hypotheses:

e Aggregation Pheromone density based pattern Classificatin(APC): It is a pat-
tern classification algorithm modeled on the ants colonyabi and distributed
adaptive organization in nature. Each data pattern is deresil as an ant, and the
training patterns (ants) form several groups or colonigedding on the number of
classes present in the data set. A new test pattern (antinwile along the direc-
tion where average aggregation pheromone density (at ta¢idm of the new ant)
formed due to each colony of ants is higher and hence evéniualill join that
colony. We direct the reader to [16] for further details.

e Decision rules(FURIA): A classifier providing a set of “if-then-elsif” constrisGt
wherein the “if” part contains a test on some attributes &ed‘then” part contains
a label; we us&URIA [17] to induce decision rules.

e Decision trees(348): A classifier arranged in a tree structure, wherein eaohri
node contains a test on some attributes, and each leaf natireoa label; we use
J48, an optimized implementation o#.5 [31], to induce decision trees.

e Nearest-neighbor(NN): It is a classifier yielding the label of the training instan
which is closer to the given test instance, whereby closeisesvaluated using some
proximity measure, e.g., Euclidean distance; we use thaadadescribed in [1] to
store the training instances for fast look-up.

e Support Vector Machine (svm): It is a supervised learning algorithm used for both
classification and regression tasks. Roughly speakindyakie training principle of
svwms is finding an optimal linear hyperplane such that the exgueclassification
error for (unseen) test patterns is minimized. We addresssthder to [6] for further
details.
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Table 3. Accuracy of the trained models ®fe-ASP using cross-validation. The table is structured
as follows. In the first column Classifier”), we report the classifier, and it is followed by a group
of columns (‘Accuracy”). The group is composed of two columns, reporting the accuracy — in
percentage — related toob1 andmoDbD?2 (columns MoD1” and “MOD2", respectively).

Classifier Accuracy
MoD1l| mMoD2
APC 96.58% 89.83%
FURIA 94.09% 83.39%
48 93.12%) 79.46%
NN 92.81% 80.71%)
SVM 94.38% 82.32%

As mentioned in Section 2.2, in order to train the classifierhave to select a pool
of instances for training purpose, i.e., the training seme¢erning such selection, our
aim is twofold. On the one hand, we want to compose a traingignsorder to train a
robust model, while, on the other hand, we want to test themgdination performance
of ME-ASPalso on instances comprised in benchmarks not comprisée imdining set.

As result of the considerations above, we compute two trgisets. The first one —
751 in the following — is composed of the 320 instances solvequely — without taking
into account the instances involved in the 3rd ASP Competiti by the pool of engines
selected in Section 4.2. The rational of this choice is toterymask” noisy informa-
tion during model training. The second ongs2 in the following — is a subset afsl,
and it is composed of the 77 instances uniquely solved ceriaglonly the benchmarks
G aphCol ouri ng,Labyri nt h,Nunber | i nk,andSt r at egi cConpani es. The
rationale of this choice is to draw some considerations atheutrained models consid-
ering unknown parts of the instances space.

In order to depict both the differencesdl andTs2 and the coverage of our train-
ing set with respect to the whole available dataset, in [Eiduwe considered each in-
stance as a point in the multidimensional feature spacédiplots, we consider a two-
dimensional projection obtained by means of a principal ponents analysis (PCA),
and considering only the first two principal components (AQex-axis and thej-axis
in the plots are the first and the second PCs, respectivety gaint in the plots is la-
beled by the best solver on the related instance. In the togt-plot, we add a label
denoting the benchmark name of the depicted instancesgar tr give a hint about the
“location” of each benchmark.

Considering the classification algorithms listed above, rext experiment is de-
voted to training the classifiers, and to assessing theuracyg. Referring to the notation
introduced in Section 2.2, even assuming that a trainingssitfficient to learnf, it is
still the case that different sets may yield a differégnhe problem is that the resulting
trained classifier may underfit the unknown pattern — i.e.piediction is wrong — or
overfit —i.e., be very accurate only when the input pattein ike training set. Both un-
derfitting and overfitting lead to pogeneralizatiorperformance, i.e fails to predict
f(z*) whenz* # z. However, statistical techniques can provide reasonaimates of
the generalization error. In order to test the generabimapierformance, we use a tech-



nique known astratified 10-times 10-fold cross validatibmestimate the generalization
in terms ofaccuracy i.e., the total amount of correct predictions with respgedhe to-
tal amount of patterns. Given a training $&f, Y'), we partitionX in subsetsX; with
i€ {1,...10} such thatt = [J!2, X; andX; N X; = () whenever # j; we then train
c(;) on the patterns(;) = X \ X; and corresponding labels;,. We repeat the process
10 times, to yield 10 different and we obtain the global accuracy estimate.

In Table 3 we report the accuracy results related to the éxpat described above.
Looking at the table, we denote &OD1 andMoD?2 the inductive models computed
training the classifiers oms1 andTs2, respectively. Notice that, in this stage, we also
explore for each algorithm its parameter space, in ordeurie it. Looking at Table 3,
we report a 90% greater accuracy for each classificatiomriiigotrained onrsl. Con-
cerningMoD2, we report a lower accuracy with respecmoD1. The main motivation
for this result is thatrs2 is composed of a smaller number of instances with respect to
Ts1, so the classification algorithms are not able to generalith the same accuracy.
This result is not surprising, also considering the plotBigure 1 and, as we will see in
the experimental section, this will influence the perforcenofME-ASP.

5 Performance analysis

In this section we present the results of the analysis we pavi@rmed. We consider
three different combinations of training and test sets,reltige training sets are thesl
andTts2 sets introduced in Section 4, composed of uniquely solv&dinces, and the test
set ranges over the 3rd ASP competition ground instancgmrticular, the first (resp.
second) experiment hasl as training set, and as test set the successfully grounded i
stances evaluated (resp. submitted) to the 3rd ASP Corapetite goal of this analysis
is to test theefficiencyof our approach on all the evaluated (resp. submitted)ricsi
when the model is trained on the whole space of the uniquékgdinstances. The third
experiment considerss2 as a training set, composed of uniquely solved instances of
some domains, and all the successfully grounded instanbesitied to the competition
as test set: in this case, given that the model is not trainedl the space of the uniquely
solved instances, but on a portion, and that the test sediosritunseen” instances, the
goal is to test, in particular, th@bustnessf our approach.

We devoted one subsection to each of our experiments. Foree@eriment the re-
sults are reported in a table structured as follows: thedoktmn reports the name of a
solver, the second, third and fourth columns report theltestieach solver oNP, and
Beyond NPrespectively, in terms of the number of solved instancésinvthe time limit
and sum of their solving times (a sub-column is devoted th @i¢these numbers). We
report the results obtained by runninge-Asp with the five classification methods in-
troduced in Section 4.3, in particulsie-AspP(X) indicatesME-ASP employing the clas-
sification method X {APC, FURIA, J48,NN, SVM }, the component engines employed
by ME-ASPoON each class as explained in Section 4.2, and as refecens®rFoLIOand
SOTA, the latter being the ideal (State-Of-The-Art) multi-emgsolver (considering the
engines employed).

We remind the reader that, foiE-ASP, the number of instances on whipte-ASPis
run is further limited to the ones for which we were able to paoite all features, and its



Table 4. Results of the various solvers on the grounded instances evaluated3ad th& P com-
petition.ME-ASP has been trained on thesl training set.

Solver NP Beyond NP Total
#Solved Time [#Solved Time [#Solved Time
CLASP 60|5132.45 — - - -
CLASPD - — 13|2344.0( — —
CMODELS 56|5092.43 9/2079.79 65|7172.22
DLV 37|1682.76 15/1359.71 52/3042.47
IDP 61/5010.74 - - - -
ME-ASP (APC) 63|5531.64 15/3286.24 78/8817.96
ME-ASP (FURIA) 63|5244.73 15/|3187.73 78/8432.446
ME-ASP (348) 68/5873.24 15/3187.73 83/9060.94
ME-ASP (NN) 66|4854.78 15/3187.31 81/8042.09
ME-ASP (SVM) 60|4830.7( 15/2308.6( 75|7139.3(
CLASPFOLIO 62/4824.06 — — — —
SOTA 71/5403.54 15/1221.01 86|6624.54

timings include both the time spent for extracting the feadudrom the ground instances,
and the time spent by the classifier.

5.1 Efficiency ofME-ASPOnN instances evaluated at the Competition

In the first experiment, we considesl introduced in Section 4 as training set, and
as test set all the instances evaluated at the 3rd ASP Cdiopdt total of 88 in-
stances). Results are shown in Table 4. We can see that, grapre of theNP class,
ME-ASP(FURIA) solves the highest number of instances, 6 more thayspFoLIOand,
moreover, 4 out of 5 classification methods leag-Asp to have better performance
than each of its engines, and@fAsPFoLIO. On theBeyond NRprograms, instead, all
versions ofMe-AsP and DLV solve 15 instances (DLV having best mean CPU time),
followed bycLAasPD andCcMODELS, which solve 13 and 9 instances, respectively. Sum-
marizing,ME-ASP(FURIA) is the solver that solves the highest number of instaneags: h

it is very interesting to note that its performance is vensel to thesoTA solver which,

we remind, has the ideal performance that we could expebesetinstances with these
engines.

5.2 Efficiency ofME-ASP oOnN instances submitted to the Competition

In the second experiment we consider the same training det #se previous experi-
ment, while the test set is composed of all successfullyrmypted instances submitted to
the 3rd ASP competition.

The results are now shown in Table 5. It is immediately natde here that in both
NP andBeyond NFnstances, alME-ASP versions solve more instances (or in shorter
time in one case) than their engines and\sPFOLIC; in particular, in theNPinstances,
ME-ASP(APC) solves the highest number of instances, 52 more thaxsp, which is



Table 5. Results of the various solvers on the grounded instances submitted taltASBrcom-
petition.ME-ASP has been trained on thes1 training set.

Solver NP Beyond NP Total
#Solved Time [#Solved Time [#Solved Time
CLASP 44547096.14 - - - -
CLASPD - - 43352029.74 - -
CMODELS 33340357.3( 27038654.29 603 79011.59
DLV 241]21678.4¢ 364 9150.47 605 30828.93
IDP 41937582.47 - - - -
ME-ASP (APC) 497/55334.1% 51660537.67 1013115871.82
ME-ASP (FURIA) 48048563.26  51860009.23 998108572.49
ME-ASP (348) 49049564.19 51059922.8¢ 1000109487.05
ME-ASP (NN) 49046780.31 51855043.39 1008101823.70
ME-ASP (SVM) 44540917.7( 51852553.84 963 93471.54
CLASPFOLIO 431]41874.53 - - - -
SOTA 51639857.7¢  52024300.82 1036 64158.58

the best engine in this class, and 66 more thensprFoLIO, while in theBeyond NRn-
stances thremE-AsPversions solve 518 instances, i.e., 85 more instancestthasrD
which is the engine that solves more instances. As far asaimparison with thesoTA
solver is concerned, the besk-AsP version solves only 25, out of 1036, instances less
than thesoTA solve, mostly from thé&lP class.

5.3 Robustness ofME-ASP on instances submitted to the Competition

In this experiment, we use thes2 training set as introduced in Section 4, and the same
test set as that of previous experiment. The rationale sfiéist experiment is to test our
approach on “unseen” instances, i.e., in a situation whereest set contains instances
that come from program domains whose instances have notiseerio train the model.
We can thus expect this experiment to be particularly chglteg for our multi-engine
approach. Results are presented in Table 6. By looking atthdts, it is clear thave-
ASP(APC) performs much better that the other alternatives, ancesalé instances more
thancLAspin theNP class, 60 instances more thenAspFoLIOIN the same class, and
11 more instances tharLAsPD in theBeyond NRclass,cLASPandCLASPD being the
best engines in the two classes. However, even if with a realjine approach we can
solve also in this case far more instances than all the emgineé rival solvers, we report
that in this case the performance of our best configuratiemat that close to theoTa
solver, which solves in total 101 more instances, the nigjeoming from theBeyond
NP class in this case.

5.4 Discussion

Summing up the three experiments, the first comment is tiatlear thaMe-AsP has
a very robust and efficient performance: it often can solvarfy) more instances than
its engines an@LASPFOLIO, even considering the singhdP andBeyond NFclasses.



Table 6. Results of the various solvers on the grounded instances submitted taltASBrcom-
petition.ME-ASP has been trained on thes2 training set.

Solver NP Beyond NP Total
#Solved Time [#Solved Time [[#Solved Time
CLASP 44547096.14 - - - -
CLASPD - - 43352029.74 - -
CMODELS 33340357.30  27038654.29 603 79011.59
DLV 241|21678.46 364 9150.47 605 30828.93
IDP 41937582.47 - - - -
ME-ASP (APC) 491|53875.41  444/57555.34  935111430.7%
ME-ASP (FURIA) 45050495.5( 36510483.81 815 61429.31
ME-ASP (348) 45053272.7( 366/10486.43 816 63759.13
ME-ASP (NN) 48452191.49  364/10550.01 848 62741.5
ME-ASP (SVM) 38336786.04  364/10543.00) 747 47329.04
CLASPFOLIO 43141874.53 - — — —
SOTA 51639857.76  52024300.82 103§ 64158.58

Further, we also rurtLASPD on NP instances: it solves, as expected, less instances
thancLASP, i.e., 52 instances in the first experiment, and 402 in therstand third
experiments. Considering the column “Total”, |k -ASP versions solve more instances
than cLASPD on each experiment, but fone-Asp(svMm) in the last. Moreover, it is
interesting to note that even considering the performanderms of solved instances,
of cLAsP on NP benchmarks andLAsPD on Beyond NPbenchmarks together, there
is always at least one version @E-AsP that solves more instances in each of the three
experiments. We also report that all versionsi@ AspP return reasonable performance,
so — from a machine learning point of view — we can concludg tva one hand, we
computed a representative pool of features, and, on the loéimel, the robustness of our
inductive models let us conclude that we made a good seteafithe instances used for
classifier training purpose.

A final consideration is about experiment 3: we have seenttiigis the only ex-
periment where the difference in performance betweemspandsoTAis significant.
One option to try to reduce the gap is to introduce adaptatifrihe learned selection
policies when the approach fails to give a good predictioneig., [30], this proved to
be effective on QSAT problems.

6 Conclusion

In this paper we have applied machine learning techniquaS®@solving with the goal
of developing a fast and robust multi-engine ASP system.hi® eénd, we havef{i)
specified a number of cheap-to-compute syntactic feathegsatlow for accurate clas-
sification of ground ASP programsii) applied five multinomial classification meth-
ods to learning algorithm selection strategigs;) implemented these techniques in our
multi-engine solveME-ASP, which is available for download &t t p: / / ww. nmat .

uni cal .it/riccal downl oads/ neasp20120323. zi p . The performance of



ME-ASP was assessed on three experiments, which were conceivetidoking effi-
ciency and robustness of our approach, involving diffeteaiting and test sets of in-
stances taken from the ones submitted to the System Trable &t ASP competition.
Our analysis shows thate-AsP is very robust and efficient, and outperforms both its
component engines and rival solvers.
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