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Planning as Satisfiability (SAT) is currently the best ap-
proach for optimally (wrt makespan) solving classical plan-
ning problems and the extension of this framework to in-
clude preferences is nowadays considered the reference ap-
proach to compute “optimal” plans in SAT-based planning. It
includes reasoning about soft goals and plans length as intro-
duced in the 2006 and 2008 editions of the International Plan-
ning Competitions (IPCs). Despite the fact that the planning
as satisfiability with preferences framework has helped to en-
hance the applicability of the SAT-based approach in plan-
ning, the actual approach used within the framework some-
how suffers from some main limitations: the metrics, i.e. lin-
ear optimization functions defined over goals and/or actions,
which account for plan quality issues, are fully reduced to
SAT formulas, further increasing the size of (often already)
big formulas; moreover, the search for optimal solutions is
performed by forcing a heuristic ordering.

In this paper we address these issues by reducing the IPC
planning problems with soft goals (from IPC-5) and/or ac-
tion costs (from IPC-6) to optimization problems extend-
ing SAT and that can naturally handle the integer “weights”
of the metrics, i.e. to Max-SAT and Pseudo-Boolean (PB)
problems. Our idea is partially motivated by the approach
followed by IPPLAN in the deterministic part of the IPC-5
and by the recent availability of efficient Max-SAT and PB
solvers. First, we prove that our approach is correct; then, we
implement these ideas inSATPLAN and run a wide experi-
mental analysis on planning problems from IPC-5 and IPC-6,
taking as references state-of-the-art planners on these com-
petitions and the previous SAT-based approach. Our analy-
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sis shows that our approach is competitive and helps to fur-
ther widen the set of benchmarks that a SAT-based frame-
work can efficiently deal with. At the same time, as a side
effect of this analysis, challenging Max-SAT and PB bench-
marks have been identified, as well as the Max-SAT and PB
solvers performing best on these planning problems.
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1. Introduction

Planning as Satisfiability (SAT) [KS92] is currently
the best approach for optimally (wrt makespan) solving
classical planning problems. The SAT-based planner
SATPLAN [KS99,KS06] was the winner of the deter-
ministic track for optimal planners in the 4th Interna-
tional Planning Competition (IPC-4)1[HE05] and co-
winner in the IPC-52[GHL+09] (together with another
SAT-based planner, MAX PLAN [XCZ06a,CXZ07]).
Then, the work on satisfiability planning has mainly fo-
cused on enhancing the efficiency of the SAT-based ap-
proach by e.g. improved encodings [RHN06,CHXZ09,
RGPS09,HCZ10] and the exceptions to this trend
are limited to particular forms of preferences and
plan quality measures (e.g., soft goals with uniform
costs [GM07], minimum-length plans [BR05], action
costs [RG07,CLH08]). In this context the recent ex-
tension of the planning as satisfiability framework to
include preferences [GM07,GM11] is nowadays con-
sidered the reference approach to compute “optimal”
plans in SAT-based planning, which includes reason-
ing about soft goals and plan length as (part of the fea-
tures) introduced in IPC-5 and IPC-6.3 It helped to en-
hance the applicability of the SAT-based approach in
planning, by allowing to deal with plan quality issues
other than the makespan, outside the “traditional” do-
mains of SAT-based technologies.

Despite the previously mentioned success story, the
actual approach employed within the framework suf-

1http://www.tzi.de/ ˜ edelkamp/ipc-4/ .
2http://zeus.ing.unibs.it/ipc-5/ .
3http://ipc.informatik.uni-freiburg.de/ .
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fers from the following limitations, somehow dimin-
ishing its value and applicability:(i) the metric of the
problem, i.e. an objective function (limited to be linear
in IPC-5 and IPC-6 benchmarks) defined over the goal
and/or action variables of the problem for taking into
account plan quality, is fully reduced to a SAT formula,
and (ii) the solving method is based on imposing an
ordering on the heuristic of the underlying SAT solver,
to be followed while branching, which can cause some
problems [JJN05].

In this paper we address these issues by reducing
planning problems at fixed makespan to optimization
problems providing a more natural and concise repre-
sentation, e.g. by natively handling integer coefficients
of the metrics4, i.e. to Max-SAT5 and Pseudo-Boolean
(PB) problems. Our idea is partially motivated by the
approach employed byIPPLAN [vdBK05,vdBKV06b]
in the deterministic part of the IPC-5 (further improved
and shown effective in [vdBVK08], but only in the op-
timal planning case). This approach reduces STRIPS
problems to 0-1 Integer Programming (IP) problems
and then callsCPLEX [ILO02]. It is also motivated by
the recent availability of efficient Max-SAT and PB
systems, owing to Evaluations and Competitions6 held
during the last few years. In particular, we consider all
domains in the “SimplePreferences” track of the IPC-
5 to have preferences defined on action preconditions
and/or goals, and the STRIPS domains with “simple”
action costs in the “net benefit” optimization track of
the IPC-6, i.e. with a single global cost, which is in-
creased by a positive integer when actions with costs
are executed. Given that our idea is to rely on classical
SAT-based encodings of STRIPS problems to generate
optimization problems, non-STRIPS7 IPC-5 and IPC-6
problems are compiled into STRIPS [FN71] problems
with a compilation technique similar to that one used
in [BKD06] (based on a technique for dealing with
conditional effects presented in [GK97]), and tech-
niques used in the FF pre-processor [HN01]. Planning
benchmarks are then reduced to (a series of) Weighted

4In IPC-5 and IPC-6 benchmarks not all weights applied to goals
violation and/or action costs are integers. Nonetheless, without loss
of generality, we can consider all weights to be integers.

5A Max-SAT formulation has been already used in the context
of optimal STRIPS planning [XCZ06b], but with a different us-
age, i.e. to minimize “directly” the number of time stamps (i.e., the
makespan) instead of using the basic incremental scheme as in the
original SATPLAN algorithm.

6Seehttp://maxsat.ia.udl.cat/ and http://www.
cril.univ-artois.fr/PB11/ for the last editions.

7Some constructs, e.g., the ADL construct “:preferences” in IPC-5
and “:actions-costs” requirements in IPC-6, are used.

Partial Max-SAT and PB problems: the first one is
from the categories of the recent Max-SAT Evalua-
tions, while for PB the resulting reduction falls into
the “OPT-SMALL-INT” category of the PB evalua-
tions, which restricts PB problems to having(i) no
constraint with a sum of coefficients greater than 220

(20 bits), and(ii) linear objective functions. With(ii)
PB problems correspond to 0-1 IP problems. A model-
ing of IPC-5 planning problems with preferences, ex-
pressed through the PDDL3 [GHL+09] (and [McD00]
for its original version) language, in 0-1 Integer Pro-
gramming has been presented in [vdBKV06a]. How-
ever no implementation and experimental analysis are
provided,8 as well as no formal results.

First, we prove that our approach is correct and re-
turns plans with optimal plan metrics, at fixed makespan,
i.e. such that there is no plan with a “better” met-
ric at this makespan. Then, we implement our ideas
in SATPLAN and run a wide experimental analysis
on planning problems from IPC-5 and IPC-6, tak-
ing as references the state-of-the-art planners SG-
PLAN [HWHC06,HWHC07] and GAMER [EK09],
i.e. the winners of the “SimplePreferences” track
of the IPC-5 and of all optimizations tracks of the
IPC-6, and the previous SAT-based proposalSAT-
PLAN(P) [GM11]. Differently from our proposal and
[GM11], SGPLAN and GAMER can find sequential
plans with unbounded horizon, but they were the clear
winners of the competition tracks of interest, and thus
are used as references. Our analysis shows that our ap-
proach is competitive and helps to widen the set of
benchmarks that can be dealt with efficiently using
SAT-based technology, at the same time relying on a
more natural representation of the planning problem at
hand. We also evaluate the anytime performance of our
planner, by not stopping at the optimal makespan but
letting the planner run for all the allotted time limit: the
quality of the plans returned significant increases, ap-
proaching the results of state-of-the-art planners SG-
PLAN and GAMER.

As a side effect of our analysis, we identify the
solvers performing best on these planning problems, as
well as challenging Max-SAT and PB benchmarks.

The paper is structured as follows. First, we present
some basic preliminaries about planning (as satisfiabil-
ity), Max-SAT and PB problems in Section 2. In Sec-
tion 3 we show how we model the problems of inter-
est as PB/Max-SAT problems. We go on showing the

8This fact has been confirmed by personal communications with
Menkes van den Briel.
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new solving algorithms in Section 4, along with some
formal results, whose implementation and experimen-
tal evaluation is presented in Section 5. The last part
of the paper discusses related work in Section 6 and
draws some conclusions in Section 7.

2. Preliminaries

A fluent is a propositional variable that encodes in-
formation about the state of the world. LetF be the
set of all fluents, i.e. the fluent signature. Astate is
an interpretation of the fluent signature. Anaction is a
propositional variable that corresponds to an operator
that can change the state of the world. LetA be the set
of all actions, i.e., the action signature. Acomplex ac-
tion α is an interpretation of the action signature and
models the concurrent execution of the actions satis-
fied byα, i.e. it is a set of actions that can be executed
in parallel.

A planning problemis a triple〈I, tr,G〉 where

– I is a Boolean formula overF (more precisely,
a conjunctions of fluents thus having exactly one
satisfying assignment) and represents theinitial
state;

– tr is a Boolean formula overF ∪ A ∪ F ′ where
F ′ = {f ′ : f ∈ F} is a copy of the fluent signa-
ture and represents thetransition relationof the
automaton describing how (complex) actions af-
fect states (we assumeF ∩ F ′ = ∅);

– G is a Boolean formula overF and represents the
set ofgoal states.

Given that our focus is on classical planning, we thus
make the assumption that the description is determin-
istic: the execution of a (complex) actionα in a state
s can lead to at most one states′. More formally for
each states and complex actionα there is at most one
interpretation extendings ∪ α and satisfyingtr.

Consider a planning problemΠ = 〈I, tr,G〉. In the
following, for any integeri

– if F is a formula in the fluent signature,Fi is ob-
tained fromF by substituting eachf ∈ F with
fi;

– tri is the formula obtained fromtr by substituting
each symbolp ∈ F ∪ A with pi−1 and eachf ∈
F ′ with fi.

If n is an integer, theplanning problemΠ with
makespann is the Boolean formulaΠn defined as

I0 ∧
n∧

i=1

tri ∧ Gn, n ≥ 0 (1)

and aplan is an interpretation (or, equivalently, a set of
literals) satisfying (1).9

A Boolean formula is in Conjunctive Normal Form
(CNF) if it is a set of clauses, a clause being a set of lit-
erals. Given a Boolean formulaφ, we can always pro-
duce an equisatisfiable CNF formula efficiently, i.e. in
linear time in the size ofφ, by introducing additional
variables, see, e.g. [Tse70,PG86,JS05]. An assignment
π is a consistent set of literals. An assignmentπ cor-
responds to the partial interpretation mapping to true
the literalsl ∈ π. Given a formulaφ, we say thatφ is
satisfiableif there exists asatisfyingassignmentπ for
φ.

Consider a CNF formulaϕ := ϕh ∪ ϕs, where
ϕh andϕs define the set ofhard andsoft clauses re-
spectively. Hard clausesmustbe satisfied, while soft
clauses do not need to be satisfied, but their satisfaction
is preferred. A Max-SAT problem is defined as hav-
ing ϕh = ∅, and the goal is to find an assignment sat-
isfying as many as possible of the clauses inϕs. In a
SAT problem,ϕs = ∅. The Partial Max-SAT problem
is an extension of the Max-SAT problem where there
are both hard and soft clauses: in this case the goal is to
find an assignment satisfying all the clauses inϕh and
as many as possible of the clauses inϕs. The Weighted
Partial Max-SAT problem is a further extension of the
Max-SAT problem: in order to characterize the prob-
lem, consider a functionw that assigns a positive inte-
ger to each clause inϕs. Thus the goal of the Weighted
Partial Max-SAT problem is to find an assignmentπ

satisfying all the clauses inϕh and maximizing
∑

C∈ϕs:π|=C

w(C) (2)

i.e. the sum of the weights of satisfied soft clauses.
In a (linear) PB optimization problem, a PB con-

straint extends a CNF clause to possibly contain inte-
ger coefficients (ci), variables (xi) truth/falsity is inter-
preted as0/1 and there is a bound (b) on the value the
constraint can assume, i.e. linear PB constraints are of
the form

9In the following, we can switch between plans and satisfyingin-
terpretations, intuitively having the same meaning.
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∑

i

ci xi ≥ b (3)

A PB formula is a conjunction of PB constraints.
Moreover, an objective function can be applied10 to
the problem. If such an objective function is specified,
given a PB formulaϕPB

n , the goal is to find an as-
signment to the variables of the problem that satisfies
the formula (i.e., satisfies all PB constraints) and min-
imizes the objective function. In the objective func-
tion, coefficients may be negative and thus minimiza-
tion/maximization are exchangeable and will be used
both later on.

3. Modeling IPC problems as Boolean
optimization problems

Given thatSATPLAN can only handle STRIPS prob-
lems while IPC-5 and IPC-6 benchmarks can contain
constructs to represent preferences and action costs,
the overall reduction is, in general, carried out in two
steps. The first step adapts the original problem to com-
pile preferences away.

Here we need a more formal definition of actions.
An action A is a triple 〈HPre, SPre,Eff〉 where
HPre, SPre and Eff are Boolean formulas rep-
resenting hard preconditions, soft preconditions and
effects of A, denoted byHPre(A), SPre(A) and
Eff (A) respectively. The setG of goals is partitioned
into hard and soft goals represented by the Boolean
formulasHG and SG respectively.w is a function
mapping actions with soft preconditions and goals to
positive integer numbers. In the following⊤ denotes
the empty formula.

The semantic is defined as follows [GHL+09]: A

can be executed even ifSPre is not satisfied, but then
a cost is paid each time this happens. Hard goalsHG

need to be satisfied while soft goals are not mandatory,
but if a soft goalg is reached a rewardw(g) is gained.

Each actionA having soft preconditions (i.e. having
SPre(A) 6= ⊤)11 is split into two actions:

•A1:=〈HPre(A) ∧ SPre(A),⊤, Eff(A)〉; and
•A2:=〈HPre(A)∧¬SPre(A),⊤, Eff(A)∧goalA〉

10In fact, in the PB evaluations the categories take into account if
such function is specified (OPT) or not (DEC).

11For simplicity, we restrict to action having at most one soft pre-
condition formula: this is the case for all instances in the “Sim-
plePreferences” track of IPC-5. In general, we have to consider their
power set.

A1 andA2 are mutually exclusive: the second takes
into account whether the original actionA is executed
with its soft preconditions not satisfied and the intro-
duced effect (goalA) takes into account this fact, and
w(A2) = w(A). This technique of splitting actions is
similar to the ideas employed in [KG09] for STRIPS
problems.

Then, for each goalg ∈ SG we define a (dummy)
action whose precondition is the goal, and the effect is
a (dummy) literal, i.e.

Ag := 〈g,⊤, goalAg〉

This is inspired by the approaches in [GK97,BKD06].
All added actions can be non-STRIPS in general:

given that we want to rely on classical STRIPS sat-
isfiability planning encoding to generate Boolean op-
timization formulas we exploit classical methods (i.e.
the ones in FF’s pre-processor [HN01]) to compile into
STRIPS actions. At this point we have a STRIPS for-
mulation of our problem.G corresponds toHG.

Given a STRIPS planning problemΠ and a makespan
n, Boolean optimization formulas, in particular PB for-
mulas, are defined by

1. the clauses of classical SAT-based encodings, ex-
pressed as PB constraints; and

2. an optimization function.

Regarding1.,

– for the set of literals{l1, . . . , lm} of the initial
stateI the following PB constraints are added: for
eachj = 1 . . . m

sign(lj) var(lj)0 ≥ b

wherevar(l) returns the (fluent) variable the lit-
erall is built on,sign(l) is 1 if the literal l is pos-
itive, and−1 otherwise, andb is 1 if l is positive,
and0 otherwise.

– for eachi = 0 . . . n − 1, action executability at
time i is encoded in SAT as follows

Ai →
∧

p∈HPre(A)

pi ∧
∧

l∈Eff(A)

li+1 (4)

where p is an atom,l a literal, andHPre(A)
(resp.Eff(A)) are now (equivalently) consid-
ered as the set of preconditions (resp. effects) of
A. Thus, for each STRIPS actionA the PB for-
mula will contain
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∗ for eachp ∈ HPre(A) a PB constraint of the
form

−Ai + pi ≥ 0

∗ for eachl ∈ Eff(A) a PB constraint of the
form

−Ai + sign(l) var(l)i+1 ≥ b

and nowb is 0 if l is a positive literal and−1
otherwise.

The transition relation is composed of other PB
constraints, i.e. the ones corresponding to the
clauses arising fromframeandexclusionaxioms.

– for G (now equivalently considered as a set of
clauses), the following groups of PB constraints
are added: letg = {l1, . . . , lk} be a set of literals,
for eachg ∈ HG the PB constraint

k∑

i=1

sign(li) var(li)n ≥ 1 − neg(g)

whereneg(g) is the number of negated literals in
g; and

Consider a planπ and letSA be the set of all ac-
tions having soft action preconditions. In the formula-
tion above, ifA ∈ SA we consider all its instantiations
Ai, i = 0 . . . n − 1 to be inSA.

The metric of the problem is defined as follows

max :
∑

g∈SG,π|=g

w(g) −
∑

Ai∈SA,A2i∈π

w(A2)

IPC-6 benchmarks contain also action costs, i.e. a
cost associated with its execution. Considering action
costs in this work we restrict ourselves to what we
called “simple” action costs, i.e. we consider problems
with a single total cost increased by a positive integer
number if an action is executed. In IPC-6 benchmarks
this fact is expressed by using a construct of the form

(increase (total-cost) (stack-cost)) (5)

as effect of an actionA. The semantic of (5) is sim-
ple: if A is executed “total-cost” is increased by “stack-
cost”. Both total-costandstack-costare initialized in
the initial state. A dummy literal is added in place
of (5) as effect ofA (goal-act). w is extended to be de-

fined over the set of actions with action costs, called
AC: the metric of the problem becomes

max :
∑

g∈SG,π|=g

w(g)−
∑

Ai∈π,Ai∈AC

w(A)−
∑

Ai∈AS,A2i∈π

w(A2)

A Weighted Partial Max-SAT formulation is also
possible. ConsiderΠn as a set of clauses, the formula-
tion is a pair

〈Πn ∧ pref(Πn), w′〉 (6)

wherepref(Πn) is the formula

∧g∈SG (∨l∈gl) ∧ ∧Ai∈AC¬Ai ∧ ∧Ai∈SA¬A2i

that encodes the metric, and wherew′ is a (partial)
function mapping clauses to positive integer numbers.
w is defined as follows: a soft clause corresponding to

– a soft goalg has the related weightsw(g);
– for eachi = 0 . . . n − 1

∗ the (non-) execution of an actionA ∈ AS with
its soft precondition not satisfied has a weight
w′(¬A2i) = w(A2); and

∗ the (non-) execution of an actionA ∈ AC has
a weightw′(¬Ai) = w(A).

3.1. Example

We consider instance #1 of the Traveling and Pur-
chase Problem (TPP) domain containing preferences
on both action preconditions and goals, “Grounded-
Preferences” variant (referred as “tpp1” below). In the
following we show the part of interest and how they
have been modeled. In the tpp1 instance there is an ac-
tion “drive” represented as follows

(:action drive
:parameters (?t - truck ?from ?to - place)
:precondition (and

(at ?t ?from) (connected ?from ?to)
(preference p-drive (and

(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))))

:effect (and (not (at ?t ?from)) (at ?t ?to)))

(7)

(Soft) Goals and the metric are represented with
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(:goal (and
(preference p4A (and

(ready-to-load goods3 market1 level0)
(loaded goods3 truck1 level0)))

...
(preference p0A (stored goods3 level1))
...

))

(:metric minimize (+
(* 1 (is-violated p0A))
...
(* 16 (is-violated p4A))
(* 1 (is-violated p-drive))))

(8)

For the preferencep4A we introduce the following
action

(:action dummy-p4A
:parameters ()
:precondition (and

(ready-to-load goods3 market1 level0)
(loaded goods3 truck1 level0))

:effect (and (goal-p4A))).

(9)

and similarly for the other soft goals.
Regarding the action precondition we split action

“drive” into two actions as we have explained before

(:action drive
:parameters (?t - truck ?from ?to - place)
:precondition (and

(at ?t ?from) (connected ?from ?to)
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))

:effect (and (not (at ?t ?from)) (at ?t ?to)))

(10)

(:action dummydr

:parameters (?t - truck ?from ?to - place)
:precondition (and

(at ?t ?from) (connected ?from ?to)
(not (and

(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))))

:effect (and (not (at ?t ?from)) (at ?t ?to)
(goal-p-drive)))

(11)

The new goal of the problem is the conjunction of
the dummy literals related to goal preferences and ac-
tion preconditions and costs introduced (all goals are
soft in this instance).

The resulting problem is then given in input to the
ADL 2STRIPStool to be compiled into a STRIPS prob-
lem. As a consequence the (dummy) actions intro-
duced are compiled into STRIPS actions. There could
be (multiple) STRIPS actions in place of those in the
original formulation.

Consider the simple case in which a single STRIPS
action is in place of each action and consider that the
related STRIPS action has the same name. With refer-
ence to our working example and with fixed makespan
n, for each0 ≤ j ≤ 4 the PB constraints resulting
from action executability are

∧
p∈HPre(dummy-pjA)−dummy-pjAn−1+pn−1≥0(12)

−dummy-pjAn−1 + goal-pjAn ≥ 0 (13)

Then for eachi, 1 ≤ i ≤ n, regarding action drive,
the following PB constraints are added because of its
precondition

∧p∈HPre(drive) − drivei + pi ≥ 0 (14)

while the following constraints are added for its effects

∧l∈Eff(drive) − drivei + sign(l) var(l)i+1 ≥ b (15)

whereb is 0 if the literal is positive and−1 otherwise.
The last PB constraint added is

−drivei + goal-p-drivei+1 ≥ 0 (16)

Similarly for action dummydr from (11). Now the
question remains of how to express the optimization
function: in (8) the idea is to minimize the violation of
preferences (expressed with (is-violated p) in PDDL3
having the following meaning: given a preferencep,
(is-violated p) takes value1 if the preference is not
satisfied and0 otherwise [GHL+09]). With our for-
mulation the new goal literals of introduced actions
are reached when a preference is satisfied and this
is “mimicked” by the related action’s execution: thus
the characterization of the metric function in (8) can
be expressed using both fluents and actions, i.e. with
the (linear) optimization functions (17) and (18), to be
maximized, whereπ is a satisfying interpretation, and
π(p) is1 if p is true and0 otherwise. If actions are used,
the weights are associated with action executions. The
characterization with fluents is instead more similar to
PDDL3 syntax, where the metric is mostly defined on
states (but for action costs).
∑4

j=0 2j π(goal-pjA)−
∑n

i=1 π(goal-p-drivei) (17)

∑4
j=0 2j π(dummy-pjA)−

∑n−1
i=0 π(dummydr,i) (18)
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∑4
j=0 2j π(goal-pjA)− π(goal-p-drive) (19)

In general, action preconditions and costs can hold
at any time stamp. If we know that instead actions
can be only executed once, we can add a single fluent
goal-p-drivefor all instantiations and the optimization
function is expressed with (19) (similar changes apply
to (18)). Even if on the one hand this hypothesis on
(ground) action executions underlying (19) can be seen
as a further approximation (other than the makespan)
of the (unbounded) optimal metric, such a hypothesis
holds in various cases, e.g. on a classical, real-world
planning domain like blocks-world and logistics.

3.2. Algorithms for finding optimal plans

Now we define approaches for finding “optimal”
plans, compiling the problem at fixed makespan into
an optimization problem as shown before. Consider a
STRIPS problemΠ, and a makespann.
In the following figures

1. cnf(ϕ), whereϕ is a formula, is a set of clauses
such that

– for any interpretationπ′ in the signature of
cnf(ϕ) such thatπ′ |= cnf(ϕ) it is true also that
π |= ϕ, whereπ is the interpretationπ′ but
restricted to the signature ofϕ; and

– for any interpretationπ |= ϕ there exists an in-
terpretationπ′, π′ ⊇ π, such thatπ′ |= cnf(ϕ).

There are well-known methods for computing
cnf(ϕ) in linear time by introducing additional
variables, e.g., [Tse70,PG86,JS05];

2. cnf2pb(ϕ,P,w) is cnf(ϕ) and then following
Section 3

a. each clauseC in cnf(ϕ) is expressed as the
corresponding PB constraint, and

b. the optimization function is built;

3. cnf2wcnf(ϕ,P,w, top) corresponds to Eq. (6);
4. PBO and PWMAX SAT are generic Weighted

Partial Max-SAT and PB solvers: differently
from SAT, in these research fields there is no a
single underlying basic algorithm like DPLL for
SAT12, but a wide range of effective approaches
exist.

12In this case, instead of DPLL, we could refer to the CDCL
(Conflict Driven Clause Learning) algorithm [Mit05] given thatSAT-
PLAN(P) relies onMINISAT as SAT solver.

function QT-PLAN-PB(Π,P ,w)
1 n := 1
2 while (true)
3 if (PBO(cnf2pb(Πn, P, w), π))
4 return π

5 else
6 n := n + 1

Fig. 1. The algorithm ofQT-PLAN-PB.

Assume now that PBO returnsFALSE if a satisfy-
ing assignment does not exist, orTRUE with an opti-
mal solutionπ, i.e. we assume that the underlying al-
gorithm is sound and complete. Moreover, we assume
that a plan always exists.

Now we are ready to state the following theorem.

Theorem 1 LetΠ be a planning problem,n a makespan,
and let〈P,w〉 be a quantitative preference.QT-PLAN-
PB(Π,P ,w) returns an optimal plan forΠ wrt 〈P,w〉
at minimum makespann for which a plan exists.

Proof. Given φPB=cnf2pb(Πn, P, w), from the as-
sumptions on PBO we know that PBO(φPB,P ,w) re-
turns

– FALSE if φPB is unsatisfiable, or
– an optimal solutionπ which maximizes (17) oth-

erwise.

Given these, in order for the actual theorem to hold, we
have first to show that for each assignmentπ in the sig-
nature ofφPB such thatπ satisfiesφPB , it must also
hold thatπ′ |= Πn, whereπ′ corresponds toπ but re-
duced to the signature ofΠn, and for each assignment
π′ in the signature ofΠn such thatπ′ |= Πn, there
exists an assignmentπ, π ⊇ π′, such thatπ satisfies
φPB .

The point holds from

– the assumptions oncnf in 1. above ; and
– the assumption in2a above about the one-to-one

mapping between the clauses incnf(Πn) and the
PB constraints inφPB , i.e. an assignmentπ satis-
fying C ∈ cnf(Πn) satisfies also the related con-
straintscnf2pb(C,P,w), and vice-versa.

The minimality ofn holds simply from the iterative
deepening approach of the algorithm in Fig.1.

2
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function QT-PLAN-MAXSAT (Π,P ,w,top)
1 n := 1
2 while (true)
3 if (PWMAX SAT(cnf2wcnf(Πn, P, w, top), π))
4 return π

5 else
6 n := n + 1

Fig. 2. The algorithm ofQT-PLAN-MAXSAT .

Now we move to the Max-SAT formulation. Fig. 2
presents the solving procedure based on Max-SAT: in
the algorithmtop is defined as

top :=
∑

p∈P

w(p) + 1 (20)

and it is used to define hard clauses in the Weighted
Partial Max-SAT problem (details on the format are
presented in the next section).

We assume that, similarly to PBO, the PWMAX SAT
is sound and complete.

We are now ready to state the following theorem,
similar to Theorem 1.

Theorem 2 LetΠ be a planning problem,n a makespan,
and let〈P,w〉 be a quantitative preference.QT-PLAN-
MAXSAT (Π,P ,w,top) returns an optimal plan forΠ
wrt 〈P,w〉 at minimum makespann for which a plan
exists.

The proof is similar to Theorem 1.

Before ending the section, we would like to under-
line a few things. An alternative way to present our
approach would be to rely on a unique characteriza-
tion of the underlying solvers for Boolean optimization
instead of using PWMAX SAT and PBO separately.
There are encodings mapping Max-SAT to PB prob-
lems and vice-versa. In addition since the PB compe-
tition 2010 there has been even a track on “soft PB
constraints’ called “Weighted Boolean Optimization”
making an attempt to combine the two problems (see
also [MSP09]). However we preferred to keep the pre-
sentations separated: this is because the Max-SAT and
PB formalisms are well-known and established in the
literature with their own formats, and often the related
systems use different techniques for solving the two
problems.

4. Comparison to SAT-based encoding

In this section we compare the actual solutions with
the framework of planning as satisfiability with prefer-
ences first presented in [GM07].

instance PB [GM11]

#VAR #CL #VAR #CL

storage1 227 933 291 1321

storage2 541 3819 661 4554

storage3 728 8073 976 9642

storage4 902 22535 1212 24488

storage5 8789 92748 14340 128129

storage6 13725 235711 22821 294077

storage7 20646 350862 35915 449197

tpp1 763 4510 967 5819

tpp2 1031 6046 1331 7971

tpp3 1238 7572 1586 9805

tpp4 1438 9712 1810 12099

tpp5 3409 42247 4151 47070

tpp6 3736 47728 4548 53006

tpp7 4156 55852 5052 61676

tpp8 4590 64557 5598 71109

tpp9 8535 197084 10103 207374

tpp10 9022 215879 10670 226694

pegsol1 245 909 377 1602

pegsol2 245 909 635 3407

pegsol9 699 4120 831 4813

pegsol10 699 4120 1089 6618

pathways1 415 3583 450 3797

pathways17 15249 534526 16040 539775

trucks1 3113 47403 3182 47831

trucks2 8213 160654 8396 161800

trucks3 13374 375755 13467 376343

open1-ipc2008 1318 12664 1390 13084

open2-ipc2008 1936 24097 2029 24658

open1 3643 43983 3883 45453

Table 1

Sizes of the evaluated formulas. The pegsol and pathways domains
contain more than20 instances: for such domains we only show the
data for the smallest and biggest instances in the pool.

The approach described in [GM07,GM11] is com-
pletely based on a compilation into a SAT problem:
non-uniform weights, described by a non-constant
function w, are dealt by reducingw to a SAT for-
mula by using the encoding in [War98], to be conjoined
with the SAT-based encoding of classical planning ex-
plained before.
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Given that, this approach can further increase the
sizes of the formulas to be evaluated. Moreover, from
a knowledge representation viewpoint, integers are not
naturally represented with SAT.

The last two columns of Table 1 report the number
of variables and clauses of the first satisfiable resulting
CNF formula. This is done for most of the instances
evaluated in this work (whose details will be given in
the next section).

In this work we are interested in optimization prob-
lems that can more naturally and in a concise way
represent the problems of interest, from a knowledge
representation point of view: PB and Max-SAT for-
malisms. The second and third columns of Table 1 re-
port the number of variables and clauses of the re-
sulting PB formula as defined in the previous sec-
tion. We can note that, in general, the new encodings
are not that much smaller than those in [GM11]: the
size of the added formula depends on how many vari-
ables are involved inw, and on the coefficients. Sev-
eral benchmarks are described by a functionw hav-
ing relatively few actions and goals involved, and with
relatively low coefficients. On the other hand, there
are cases, e.g. some pegsol instances, in which the ap-
proach in [GM11] produces formulas up to a factor
of 3 (resp.4) bigger in the number of variables (resp.
clauses) than the approach in this paper. Moreover, as
we said before, the approach in [GM11] relies on an or-
dering of the heuristic that can hit performance, while
the optimization solvers employed do not rely on such
heuristics.

5. Implementation and experimental evaluation

As we already mentioned in the introduction, we
have evaluated the instances of all domains of the
“SimplePreferences” track of the IPC-5 i.e. the TPP,
Pathways, Storage, Trucks and Openstacks, with pref-
erences grounded (when available), and the STRIPS
domains of the “net benefit” optimization track of the
deterministic part of the IPC-6 having “simple” (as de-
fined in this paper) action costs. When preferences are
expressed on action preconditions and/or costs we have
used the optimization function (19).

At implementation level, we used(i) ADL 2STRIPS

for compiling non-STRIPS actions into STRIPS ac-
tions: ADL 2STRIPS was introduced in IPC-4 and is
based on FF’s pre-processor [HN01], while in our
analysis we employed the version used in IPC-5 based
on LPG [GS02,GSS03,GSS08], and(ii) SATPLAN for

the encoding: we modifiedSATPLAN at each makespan
of theSATPLAN’s approach, in order to implementQT-
PLAN-PB/QT-PLAN-MAXSAT . Thus the main changes
in SATPLAN were related to the adaptation of the plain
CNF creation to the new formats.

Regarding the back-end solvers, we used the best
solvers which participated in Max-SAT and PB evalu-
ations and competitions, in particular to the Weighted
Partial and OPT-SMALL-INT categories, of interest
in our work. Specifically the solvers we used are:
M INI MAX SAT ver. 1.0 [HLO08], based onMINISAT +
ver. 1.13, WMAX SATZ [LMMP09] ver. 2.5 submit-
ted to the 2010 Max-SAT evaluation (a first ver-
sion of the solver has been presented in [ALM07]),
INCWMAX SATZ [LS07,LSL08],13 MSUNCORE ver.
1.2 and ver. 4 [MSM08,MSP08];MINISAT + ver. 1.14
[ES06], GLPPB ver. 0.2 (by the same authors of
PUEBLO [SS05]), as submitted to the 2007 evalua-
tion,14 BSOLO ver. 3.0.17 [MMS06], SAT4J ver. 2.1
and SCIPSPXver. 1.2.0 [ABKW08].15 M INI MAX SAT

was the winner of the 2007 Max-SAT evaluation in
the Partial Max-SAT category. WMAX SATZ and IN-
CWMAX SATZ extend the MAX SATZ solver [LS07],
winner of the Max-SAT category at the 2007 Max-
SAT evaluation and themselves have achieved very
good results in the 2009 Max-SAT evaluation. In
fact, INCWMAX SATZ was the winner on random and
crafted benchmarks of the Weighted Partial category
and WMAX SATZ was the second and third best on the
benchmarks of the same categories. MSUNCORE was
the winner on industrial Max-SAT benchmarks at the
2010 Max-SAT evaluation.MINISAT + was the solver
able to prove unsatisfiability and optimality on a larger
number of instances than all the other solvers which
entered into the PB evaluation 2005 [MR06] and the
best performing solver (together withBSOLO) also in
the 2006 PB evaluation, category OPT-SMALLINT-

13Both WMAX SATZ and INCWMAX SATZ versions we used are
slightly different from the one used in the evaluation, because the
evaluation versions caused some memory problems (due to the fact
that clause number is set statically in the code) if the testedin-
stance is large, i.e. storage6 and storage7. Personal communications
by Josep Argelich and Han Lin.

14http://www.eecs.umich.edu/ ˜ hsheini/pueblo/
15Solvers have been downloaded fromhttp://www.

lsi.upc.edu/ ˜ fheras/docs/m.tar.gz,http:
//www.minisat.se/MiniSat+.html,http://
www.eecs.umich.edu/ ˜ hsheini/pueblo,http:
//forge.ow2.org/projects/sat4j/,http://www.
csi.ucd.ie/staff/jpms/soft/soft.php,http:
//scip.zib.de/ , or obtained on request to the authors. For
the ones downloaded, we have used the version submitted to the
evaluations or the last available.
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Fig. 3. Results for Weighted Partial Max-SAT and PB solvers on IPC-5 instances.

LIN. BSOLO andGLPPB have been the best perform-
ing PB solvers in the OPT-SMALLINT-LIN category
of the 2007 PB evaluation. SCIPSPXand SAT4J were
the winners of the OPT-SMALL-INT and Industrial
Weighted Partial category of the respective evaluations
in 2009.

As input format, MINI MAX SAT and SAT4J accept
instances in the format of both Max-SAT and PB eval-
uations, and the best results are presented;MINISAT +
reads instances in the format of the PB evaluations with
a minor exception, i.e. the symbol “*” has to be added
between coefficients and variables like in the first eval-
uation. About MSUNCORE, we will not show results
for both versions given that they perform very similarly
on our benchmarks.

The timeout has been set to 900s on a Linux box
equipped with a Pentium IV 3.2GHz processor and
1GB of RAM and memory limit to 900MB.

The next two subsections show detailed results
about the IPC-5 and IPC-6 benchmarks respectively,

and are organized as follows: at first it is presented
an experimental analysis among all Max-SAT and PB
solvers mentioned above on the first satisfiable and
last unsatisfiable formulas of all instances created fol-
lowing theSATPLAN approach, in order to choose the
“best” overall back-end system. Note that satisfiable
instances are the vast majority in both cases. We will
see that overallMINISAT + (resp. MINI MAX SAT on
problems expressed in PB format) is the best solver on
IPC-5 (resp. IPC-6) benchmarks. The resulting planner
is called PBPLAN.

For each planning domain both plan metrics of and
CPU times to find plans are shown. In the analysis,
we considered PBPLAN, SATPLAN(P) [GM11] and,
as a reference, SGPLAN on IPC-5 benchmarks and
GAMER on IPC-6 benchmarks.

5.1. IPC-5

Figure 3 reports the analysis mentioned above, on
Max-SAT and PB instances, where results are pre-
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Fig. 5. Plan metrics (Left) and CPU time (Right) for PBPLAN, SGPLAN andSATPLAN(P) on Pathways instances.

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5  6  7  8  9  10

P
la

n 
m

et
ric

#instance

TPP domain - SimplePreferences category

PBplan
SGPLAN

 0.01

 0.1

 1

 10

 100

 1  2  3  4  5  6  7  8  9  10

C
P

U
 ti

m
e 

(lo
g 

sc
al

e)

#instance

TPP domain - SimplePreferences category

PBplan
SGPLAN

SATPLAN(P)

Fig. 6. Plan metrics (Left) and CPU time (Right) for PBPLAN, SGPLAN andSATPLAN(P) on TPP instances.



12 M. Maratea / Planning as Satisfiability with IPC Simple Preferences and Action Costs

sented according toMINISAT + performance, which is
the best solver on these benchmarks, i.e. instances are
put on x-axis according to increasing CPU times of
MINISAT +, which is used as back-end of PBPLAN on
IPC-5 problems. Other ways of presenting the results
are possible, e.g. the one used in Max-SAT evaluations.
We rely on the current form, which allows the results
of all solvers on each single instance along the x-axis
to be compared.

Results for the planning domains Pathways, Storage
and TPP are instead presented as in the IPC-5 in Fig-
ures 4-6 in terms of both plan metrics and CPU time
for PBPLAN, SATPLAN(P) and SGPLAN . About plan
metrics, the results of PBPLAN also refer to the re-
sults ofSATPLAN(P), and the goal here is to minimize
the metric. The ones for the Trucks and Openstacks
domains are only mentioned given that few instances
could be compiled byADL 2STRIPS. Most of the path-
ways instances contain weights, related to goals vi-
olation, corresponding to real numbers: we made it
integer numbers by multiplying each weight by10n,
wheren is the maximum number of (significant) dec-
imal digits of the instance. In the evaluation of the
results we have to underline that PBPLAN and SG-
PLAN solve two different problems: SGPLAN is tar-
geted for sequential, unbounded planning, thus we ex-
pect to be faster. Nonetheless it is added as reference,
in particular for plan metrics, given it has been the
clear winner at the IPC-5 on the track considered. Fig-
ure 4 contains results for the Storage domain on the
first 7 instances (as numbered in the IPC-5), i.e. the
onesADL 2STRIPScould compile. On these instances
we can see that SGPLAN is, indeed, much faster than
PBPLAN of more than1 order of magnitude (Right),
while PBPLAN is faster thanSATPLAN(P) of almost1
order of magnitude; PBPLAN solves the instances in
less than (around)30s while notably both PBPLAN and
SATPLAN(P) have better plan metrics than SGPLAN

on most instances. The results for the first20 instances
of the Pathways domain are presented in Figure 5.
On these instances the CPU times in Figure 5 (Right)
for PBPLAN, SATPLAN(P) and SGPLAN are compa-
rable, except for5 instances, which are only solved
by SGPLAN (even if in tens of seconds). Results of
PBPLAN and SATPLAN(P) are comparable, PBPLAN

being slightly better on the biggest instances solved.
Regarding plan metrics, in Figure 5 (Left), on the in-
stances solved by all systems the results are compara-
ble, except for few instances where SGPLAN (#1, #8,
#9, #15 and #20) gives back plans of better quality.
Among the instances from #21 to #30, not shown in

Figure 5, PBPLAN andSATPLAN solve two instances,
#23 and #29, in a few seconds and with plan met-
rics of 25.5 and 26.7 respectively. On the same in-
stances, SGPLAN has metrics of18 and22, while it
solves the remaining instances with a mean time of
around 100s. Results for the TPP domain are pre-
sented in Figure 6. On the10 instances shown the be-
havior is similar in terms of CPU times to the Path-
ways domain, with PBPLAN having slightly better per-
formance thanSATPLAN(P) up to a factor of2; the
plan quality of SGPLAN is better than the one of PB-
PLAN (andSATPLAN(P)) in particular on instances #9
and #10. Instances from #11 to #15 can be compiled
by ADL 2STRIPSbut not solved by both PBPLAN and
SATPLAN(P): these instances contain more than20000
variables and800000 constraints, up to3000000 con-
straints, and the solving time for SGPLAN is more than
100s. Instances from #16 to #20 can not be compiled.
About the last two domains Trucks and Openstacks,
on the first7 instances of the Trucks domain that can
be compiled byADL 2STRIPS, only the first two in-
stances can be solved by PBPLAN in 10 and800 sec-
onds, approximately, with plan metrics of1 and2. SAT-
PLAN(P) solves only the first instance. The same two
instances are solved very fast by SGPLAN , but with
plan metrics of13 and52, thus much higher. On the
same domain, finally note that for instances #3 to #7
even checking satisfiability of the first satisfiable in-
stance is difficult forMINISAT . The same holds for the
Openstacks domain, where only1 instance is compiled
by ADL 2STRIPS.

5.2. IPC-6

We focus on the STRIPS domains of “net benefit”
optimization track of the deterministic track at the IPC-
6 that contain “simple” action costs, i.e. the pegsol and
Openstacks16 domains. We remind the reader that here
the goal is to maximize the plan metric. All30 in-
stances of the pegsol domain can be compiled and eval-
uated, except for instances #7 and #8. About the Open-
stacks domain, only1 instance can be solved by PB-
PLAN: note that this domain is overall the hardest for
IPC-6 planners (according to the results of the com-
petition considering the number of solved instances).
Figure 7 reports the analysis on Max-SAT and PB
instances: results are presented according to MINI -
MAX SAT performance, which is the overall best solver

16Precisely, the instances of this domain contains negated action
preconditions, thus theADL 2STRIPStool has still to be used.
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Fig. 7. Results for Weighted Partial Max-SAT and PB solvers on IPC-6 instances.

on these benchmarks17 slightly better thanMINISAT +
and it is used as back-end of PBPLAN on IPC-6 prob-
lems.

Results for the planning domain pegsol are pre-
sented in Figure 8. Here the results ofSATPLAN(P)
are not added for sake of readability: all instances are
solved very easily bySATPLAN(P) and with results
similar to PBPLAN. It is easy to see that on this domain
PBPLAN is much faster than GAMER, while GAMER

returns plans of much better quality. GAMER runs out
of memory on the last instances (from #27 to #30),
solved instead quite easily by PBPLAN.

17These results are reached with the PB formulation. Note that
for most of the “simple” instances in the figure INCWMAX SATZ is
the fastest, except for the (only) two “hard” instances in which IN-
CWMAX SATZ runs out of memory. On these two instances MIN-
IMAX SAT is the best and further solves the other instances in less
than 0.5s. For these reasons MINI MAX SAT has been employed in
this analysis.

For the Openstacks domain only6 instances are
solved by GAMER and only1 by PBPLAN and SAT-
PLAN(P), with plan metrics of16 and9 respectively.
GAMER is also much faster on this instance (around5
and60 seconds respectively).

5.3. Anytime results

We then performed a further analysis with the focus
on plan metrics. This is because the fixed makespan
approach followed can significantly limit the quality
of the plans returned by PBPLAN: considering an in-
stance where there is a high gap between the plan
quality of PBPLAN/SATPLAN(P) and GAMER, e.g. in-
stance #24 of pegsol domain. This instance is solved
at (optimal) makespan3 with plan metric44. Running
the instance at makespan4 leads to a plan metric of
105 thus much better than the previous and very close
to the global optimal plan metric of GAMER.
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Given this precise result, we decided to test in this
direction all the planning problems analyzed: instead
of stopping our procedure at the first makespan for
which a plan exists, we continue to run PBPLAN for
the full allowed CPU time and return the best solution
found within the time limit. We call the resulting pro-
cedure A-PBPLAN.

The results are presented in Figures 9 and 10 that are
organized as Fig. 4- 8 (Left). We can immediately see
that the plan quality improves substantially on most of
the instances: the plan metric returned by A-PBPLAN

is now consistently better than SGPLAN in the Storage
domain, in the first instance of the TPP domain, and
on many instances of the Pathways, and the gap with
SGPLAN is often diminished in the other instances. In
particular the Pegsol instances were the more “prob-
lematic” on this side: now the plan metric returned by
A-PBPLAN is almost always the same of GAMER (see
Fig. 10 (Right)), being slightly worse on few instances.
On the remaining domains, A-PBPLAN returns the
same plan metric as of PBPLAN on the three instances
solved by PBPLAN, given that no problems with higher
makespan than the optimal are solved within the time
limit.

5.4. Summary of the results.

A first contribution of our analysis is a wide com-
parison of Max-SAT and PB solvers on benchmarks
coming from compilation of IPC-5/IPC-6 benchmarks
(with a fixed makespan). Later we analyze why par-
ticular solvers perform well on particular instances.
About PBPLAN, there are some very positive results
that have to be underlined, further considering that
SGPLAN and GAMER are, often by far, the best plan-
ning systems in the categories of interest in this work.
On the Storage and Pathways domains, the plan met-
rics returned by PBPLAN are comparable, and some-
times better than, the ones of SGPLAN . The same
holds for the smallest instances of the Trucks do-
main. On the pegsol domain, PBPLAN is faster than
GAMER, and can even solve some instances in the do-
main not solved by GAMER. This holds at the price of
a lower plan quality, but we have seen that PBPLAN

can get close to the results of GAMER by increasing
the makespan. Finally, note that when PBPLAN does
not solve an instance within the time limit, it is often
the case that the instance is hard to solve even by SG-
PLAN , or GAMER, and/or bySATPLAN (e.g., Trucks
and IPC-5 Openstacks). As far as efficiency is con-
cerned, we expect PBPLAN to become (much) faster

thanks to the availability of new/improved solvers in
the next Max-SAT/PB evaluations.

As far as Max-SAT and PB solvers performance is
concerned, from Figures 3 and 7 we can note that gen-
erally MINISAT + performs well. By analyzing the re-
sults, we noticed that the vast majority of the shown
instances do not exceed150K constraints, which is a
reasonable size to be efficiently handled byMINISAT +.
Thus this fact seems to be a major factor for its good
results. About the two “exceptions”, they refer to in-
stances #36 and #37 of Figure 3 ( coming from the
Storage and Openstacks domains respectively) where
the dimensions of the formulas are about500K and
300K constraints respectively. About instances from
IPC-6 benchmarks in Figure 7, we have to remember
that MINI MAX SAT is based on (a version of)MIN -
ISAT+: on these instances its additional simplification
techniques help to improve slightly the overall per-
formance. Interestingly, the best solvers rely on a PB
formulation: PB systems can solve problems with a
more general representation of constraints, while the
instances in our analysis involve clauses, thus in prin-
ciple “best suited” for a Max-SAT formulation.

Finally, as far as anytime performance are con-
cerned, we have seen that PBPLAN, when allotted
all available time and not stopped at the optimal
makespan, often improves significantly the quality of
the returned plans.

6. Related work

The literature about planning based on constraint
satisfaction techniques is vast and subject to a num-
ber of research papers and a series of workshop (e.g.
Workshop on Constraint Satisfaction Techniques for
Planning and Scheduling Problems). In this section
we refer just to the papers related to our approach
more closely and with other approaches implemented
in planners having distinguished performance in the
“SimplePreferences” track of the IPC-5 and on the op-
timization tracks of the IPC-6.

Two of the most related approaches in planning
based on constraint satisfaction techniques are the ones
in [BC05,BR05]. In [BC05] the authors show how to
extend GP-CSP [DK01] in order to plan with pref-
erences expressed as a TCP-net [BBD+04]. In the
Boolean case, TCP-net can be expressed as Boolean
formulas. Though this work is not based on satisfia-
bility, the problem they consider is the same as that
we deal with but with qualitative preferences: find
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an optimal plan wrt the given preferences among the
plans with makespann. An iterative deepening ap-
proach, similar to what we did in Subsection 5.3, is
the approach followed in [BR05], where the consid-
ered problem is to extend the planning as satisfiability
approach in order to find plans with optimal sequential
length. Even if they solve a different problem to us, the
overall goal is the same as in our paper, i.e. to allow
the planning as satisfiability approach to take into ac-
count plan quality issues other than the makespan. It is
interesting to note that the authors use a Boolean for-
mula to encode the function representing the sequen-
tial length of the plan. In their approach, for a given
n, the search for an optimal solution is done by itera-
tively calling the SAT solver, each time adding a con-
straint imposing a smaller value for the objective func-
tion (using [BB03]): when the SAT formula becomes
unsatisfiable,n is set ton+1 and the process is iterated
looking for a better plan than the one so far discov-
ered. For a fixedn the problem considered in [BR05]
is related to finding a plan with the minimum number
of actions for a planning problemΠ with makespan
n. Our approach can also deal with “soft” goals and
non-uniform weights. Non-uniform weights associated
with the action’s executions are taken into account in
PLAN -A [CLH08], which relies on ideas and results
obtained by the author of this paper in [GM06,GM07].

IPPLAN participated in the deterministic part of the
IPC-5 on classical domains. It reduces STRIPS bench-
marks to 0-1 IP problems and then callsCPLEX [ILO02].
In [vdBKV06a] the same authors ofIPPLAN presented
a compilation of PDDL3 benchmarks into 0-1 IP, on a
wider set of domains and features wrt the ones we have
dealt with in this paper. On the other hand no imple-
mentation and experimental analysis are provided, as
well as any formal result. Moreover, even if it should
be easy, in [vdBKV06a] there is no indication on how
weights are treated and we are not aware of compila-
tions of IPC-6 benchmarks in their framework.

SGPLAN ver. 5 [HWHC06,HWHC07] extends ver.
4 for PDDL2.2 [HE05] in order to deal with the new
constructs of PDDL3. Its basic idea is to partition a
problem into sub-problems, one for each (soft) goal
(considered as hard), to solve the sub-problems indi-
vidually by a modified version of an existing plan-
ner i.e. METRIC-FF [Hof03] and then to resolve in-
consistencies across sub-problems. GAMER has been
the winner of the optimization tracks of the IPC-6;
it uses BDDs and relies on “multi-actions” for tackle
conditional effects and soft goals. The advantages of
BDDs wrt to SAT formulas is that their sizes do

not increase with plan horizon, but the representation
through BDDs “easily” runs out of memory.

In [KG09] it is shown and formally proved that
adding soft goals with linear impact on plan metrics
does not increase the expressive power of STRIPS
planning problems with action costs and the same
problems can be (equivalently) tackled considering
only action costs. We follow a similar approach also
in the treatments of action preconditions and costs,
which extends and adapts the approaches in [GK97,
BKD06]. [KG09] also shows that “classical” planners
with action costs can perform better than IPC-6 plan-
ners on IPC-6 benchmarks with action costs and soft
goals, when run on compiled (similarly as presented in
the paper) IPC-6 benchmarks,

7. Conclusions and future works

In this paper we presented a new approach for find-
ing plans with “optimal” metrics in satisfiability-based
planning, at a fixed makespan, based on compilation
into Max-SAT and PB problems. We also proved that
our approaches return an “optimal” plan, at a fixed
makespan. We have shown, on planning problems of
the IPC-5 and IPC-6, that the approach is viable and in-
deed can help to widen the set of benchmarks that can
be effectively solved with a SAT-based approach, often
computing good quality plans. Moreover, our analysis
(i) reveals what are the Max-SAT/PB solvers perform-
ing best on these planning domains, giving hints on
why this is the case, and(ii) individuates some weak-
ness of the approach, in particular where the difference
in plan metric wrt SGPLAN /GAMER is high due to the
fixed makespan. In this respect we have conducted a
further analysis in which our planner is not stopped at
the fixed makespan, but all the allotted time is used
for searching for high quality plans: results show that
plan quality increased significantly. Moreover, differ-
ently from the other planners, our approach can easily
rely on future improvements of Max-SAT/PB solvers
in order to reduce the overall CPU times.

In the near future we plan to evaluate whether our
approach can also effectively deal with other IPC-6
benchmarks having more “complex” action costs and
to consider methods to trade-off among plan quality
measures such as makespan and plan metric.



M. Maratea / Planning as Satisfiability with IPC Simple Preferences and Action Costs 17

References

[ABKW08] Tobias Achterberg, Timo Berthold, Thorsten Koch,
and Kati Wolter. Constraint integer programming: A
new approach to integrate CP and MIP. In Laurent
Perron and Michael A. Trick, editors,Proc. of the 5th
International Conference Integration of AI and OR
Techniques in Constraint Programming for Combina-
torial Optimization Problems (CPAIOR 2008), vol-
ume 5015 ofLecture Notes in Computer Science,
pages 6–20. Springer, 2008.

[ALM07] Joseph Argelich, Chu M. Li, and Felip Manyà. An im-
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