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Planning as Satisfiability (SAT) is currently the best ap-
proach for optimally (wrt makespan) solving classical plan-
ning problems and the extension of this framework to in-

clude preferences is nowadays considered the reference ap-q

proach to compute “optimal” plans in SAT-based planning. It

sis shows that our approach is competitive and helps to fur-
ther widen the set of benchmarks that a SAT-based frame-
work can efficiently deal with. At the same time, as a side
effect of this analysis, challenging Max-SAT and PB bench-
marks have been identified, as well as the Max-SAT and PB
solvers performing best on these planning problems.
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Introduction

includes reasoning about soft goals and plans length as intro- . P .
duced in the 2006 and 2008 editions of the International Plan- Planning as Satisfiability (SAT) [KS92] is currently

ning Competitions (IPCs). Despite the fact that the planning the Pestapproach for optimally (wrt makespan) solving
as satisfiability with preferences framework has helped to en- classical planning problems. The SAT-based planner
hance the applicability of the SAT-based approach in plan- SATPLAN [KS99,KS06] was the winner of the deter-
ning, the actual approach used within the framework some- ministic track for optimal planners in the 4th Interna-
how suffers from some main limitations: the metrics, i.e. lin-  tional Planning Competition (IPC-4HEO05] and co-
ear optimization functions defined over goals and/or actions, winner in the IPC-S[GHL*OQ] (together with another
which account for plan quality issues, are fully reduced to  SAT-based planner, MxPLAN [XCZ06a,CXZ07]).
SAT formulas, further increasing the size of (often already) Then, the work on satisfiability planning has mainly fo-
big formulas; mor_eover, the_ sgarch fqr optimal solutions is cused on enhancing the efficiency of the SAT-based ap-
performed by forcing a heuristic or_denng. . proach by e.g. improved encodings [RHN06,CHXZ09,
In this paper we address these issues by reducing the IPC h .
planning problems with soft goals (from IPC-5) and/or ac- RGP,SO,Q‘HCZ]‘O] a,nd the exceptions to this trend
are limited to particular forms of preferences and

tion costs (from IPC-6) to optimization problems extend- i - )
ing SAT and that can naturally handle the integer “weights” Plan quality measures (e.g., soft goals with uniform

of the metrics, i.e. to Max-SAT and Pseudo-Boolean (PB) COsts [GMO7], minimum-length plans [BRO5], action
problems. Our idea is partially motivated by the approach costs [RG07,CLHO8]). In this context the recent ex-
followed by IPPLAN in the deterministic part of the IPC-5  tension of the planning as satisfiability framework to
and by the recent availability of efficient Max-SAT and PB  include preferences [GM07,GM11] is nowadays con-
solvers. First, we prove that our approach is correct; then, we sjdered the reference approach to compute “optimal”
implement these ideas ®ATPLAN and run a wide experi- plans in SAT-based planning, which includes reason-
me_ntal analysis on planning problems from IPC-5 and IPC-6, ing about soft goals and plan length as (part of the fea-
taktl_?_g as re;etrﬁnces s_tate-g;tThE-artglanners ?]n tohese Cc:m'tures) introduced in IPC-5 and IPC26t helped to en-
pefitions and the previous ~oased approach. LUranaly” pance the applicability of the SAT-based approach in
planning, by allowing to deal with plan quality issues
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Despite the previously mentioned success story, the
actual approach employed within the framework suf-
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fers from the following limitations, somehow dimin-
ishing its value and applicability) the metric of the
problem, i.e. an objective function (limited to be linear
in IPC-5 and IPC-6 benchmarks) defined over the goal
and/or action variables of the problem for taking into
account plan quality, is fully reduced to a SAT formula,
and (i7) the solving method is based on imposing an
ordering on the heuristic of the underlying SAT solver,
to be followed while branching, which can cause some
problems [JINO5].
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Partial Max-SAT and PB problems: the first one is
from the categories of the recent Max-SAT Evalua-
tions, while for PB the resulting reduction falls into
the “OPT-SMALL-INT” category of the PB evalua-
tions, which restricts PB problems to havirfi) no
constraint with a sum of coefficients greater th&f 2
(20 bits), and(i%) linear objective functions. Witkys)

PB problems correspond to 0-1 IP problems. A model-
ing of IPC-5 planning problems with preferences, ex-
pressed through the PDDL3 [GHI09] (and [McDOOQ]

In this paper we address these issues by reducing for its original version) language, in 0-1 Integer Pro-

planning problems at fixed makespan to optimization
problems providing a more natural and concise repre-
sentation, e.g. by natively handling integer coefficients
of the metricé, i.e. to Max-SAP and Pseudo-Boolean
(PB) problems. Our idea is partially motivated by the
approach employed by PLAN [vdBKO05,vdBKV06b]

in the deterministic part of the IPC-5 (further improved
and shown effective in [vdBVKO08], but only in the op-
timal planning case). This approach reduces STRIPS
problems to 0-1 Integer Programming (IP) problems
and then call€pPLEX [ILO0Z2]. It is also motivated by
the recent availability of efficient Max-SAT and PB
systems, owing to Evaluations and Competitfoinsld
during the last few years. In particular, we consider all
domains in the “SimplePreferences” track of the IPC-
5 to have preferences defined on action preconditions
and/or goals, and the STRIPS domains with “simple”
action costs in the “net benefit” optimization track of
the IPC-6, i.e. with a single global cost, which is in-

gramming has been presented in [vdBKV06a]. How-
ever no implementation and experimental analysis are
provided® as well as no formal results.

First, we prove that our approach is correct and re-
turns plans with optimal plan metrics, at fixed makespan,
i.e. such that there is no plan with a “better” met-
ric at this makespan. Then, we implement our ideas
in SATPLAN and run a wide experimental analysis
on planning problems from IPC-5 and IPC-6, tak-
ing as references the state-of-the-art planners SG-
PLAN [HWHCO06,HWHCO07] and @MER [EKO09],

i.e. the winners of the “SimplePreferences” track
of the IPC-5 and of all optimizations tracks of the
IPC-6, and the previous SAT-based proposalr-
PLAN(P) [GM11]. Differently from our proposal and
[GM11], SGRAN and &AMER can find sequential
plans with unbounded horizon, but they were the clear
winners of the competition tracks of interest, and thus
are used as references. Our analysis shows that our ap-

creased by a positive integer when actions with costs proach is competitive and helps to widen the set of
are executed. Given that our idea is to rely on classical benchmarks that can be dealt with efficiently using
SAT-based encodings of STRIPS problems to generate SAT-based technology, at the same time relying on a
optimization problems, non-STRIPSC-5and IPC-6  more natural representation of the planning problem at
problems are compiled into STRIPS [FN71] problems hand. We also evaluate the anytime performance of our
with a compilation technique similar to that one used planner, by not stopping at the optimal makespan but
in [BKDOE] (based on a technique for dealing with  |etting the planner run for all the allotted time limit: the
conditional effects presented in [GK97]), and tech- quality of the plans returned significant increases, ap-
niques used in the FF pre-processor [HNO1]. Planning proaching the results of state-of-the-art planners SG-
benchmarks are then reduced to (a series of) Weighted p_ an and GAMER.

As a side effect of our analysis, we identify the
solvers performing best on these planning problems, as
well as challenging Max-SAT and PB benchmarks.

The paper is structured as follows. First, we present
some basic preliminaries about planning (as satisfiabil-
ity), Max-SAT and PB problems in Section 2. In Sec-
tion 3 we show how we model the problems of inter-
est as PB/Max-SAT problems. We go on showing the

4In IPC-5 and IPC-6 benchmarks not all weights applied to goals
violation and/or action costs are integers. Nonethelei&hpwt loss
of generality, we can consider all weights to be integers.

5A Max-SAT formulation has been already used in the context
of optimal STRIPS planning [XCZ06b], but with a different us-
age, i.e. to minimize “directly” the number of time stamps (i.eg t
makespan) instead of using the basic incremental scheme as in th
original SATPLAN algorithm.

6See http://maxsat.ia.udl.cat/ and http://www.
cril.univ-artois.fr/PB11/ for the last editions.

7Some constructs, e.g., the ADL construct “:preferencesP®-b
and “:actions-costs” requirements in IPC-6, are used.

8This fact has been confirmed by personal communications with
Menkes van den Briel.
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new solving algorithms in Section 4, along with some
formal results, whose implementation and experimen-
tal evaluation is presented in Section 5. The last part
of the paper discusses related work in Section 6 and
draws some conclusions in Section 7.

2. Preliminaries

A fluentis a propositional variable that encodes in-
formation about the state of the world. L&t be the
set of all fluents, i.e. the fluent signature.sfateis
an interpretation of the fluent signature. Actionis a
propositional variable that corresponds to an operator
that can change the state of the world. l4&ebe the set
of all actions, i.e., the action signature.cAmplex ac-
tion « is an interpretation of the action signature and
models the concurrent execution of the actions satis-
fied by, i.e. itis a set of actions that can be executed
in parallel.

A planning problenis a triple(I, tr, G) where

— I is a Boolean formula oveF (more precisely,
a conjunctions of fluents thus having exactly one
satisfying assignment) and represents ithigal
state

— tr is a Boolean formula oveF U A U F’ where
F' ={f": f € F}isacopy of the fluent signa-
ture and represents thmnsition relationof the
automaton describing how (complex) actions af-
fect states (we assunfen 7’ = 0);

— G is a Boolean formula oveF and represents the
set ofgoal states

Given that our focus is on classical planning, we thus
make the assumption that the description is determin-
istic: the execution of a (complex) actienin a state

s can lead to at most one state More formally for
each state and complex actiom there is at most one
interpretation extendingU « and satisfyingr.

Consider a planning probled = (I,tr,G). In the
following, for any integet

— if F'is a formula in the fluent signaturé; is ob-
tained fromF by substituting eaclf € F with
fis

— tr; is the formula obtained fromr by substituting
each symbop € F U A with p;,_; and eachf €
F' with f;.

If n is an integer, theplanning problemII with
makespam is the Boolean formuldl,, defined as
IgA N\ tri AGpon >0 (1)

i=1
and aplanis an interpretation (or, equivalently, a set of
literals) satisfying (1)?

A Boolean formula is in Conjunctive Normal Form
(CNF) ifitis a set of clauses, a clause being a set of lit-
erals. Given a Boolean formula we can always pro-
duce an equisatisfiable CNF formula efficiently, i.e. in
linear time in the size of, by introducing additional
variables, see, e.g. [Tse70,PG86,JS05]. An assignment
m is a consistent set of literals. An assignmentor-
responds to the partial interpretation mapping to true
the literalsi € =. Given a formulap, we say that is
satisfiableif there exists aatisfyingassignmentr for

¢

Consider a CNF formulap ©n U @, Where

on and g define the set ohard and soft clauses re-
spectively. Hard clausesustbe satisfied, while soft
clauses do not need to be satisfied, but their satisfaction
is preferred. A Max-SAT problem is defined as hav-
ing ¢, = B, and the goal is to find an assignment sat-
isfying as many as possible of the clausesin In a
SAT problem,p, = (). The Partial Max-SAT problem

is an extension of the Max-SAT problem where there
are both hard and soft clauses: in this case the goal is to
find an assignment satisfying all the clausesjnand

as many as possible of the clausegjnThe Weighted
Partial Max-SAT problem is a further extension of the
Max-SAT problem: in order to characterize the prob-
lem, consider a functiow that assigns a positive inte-
ger to each clause ip,. Thus the goal of the Weighted
Partial Max-SAT problem is to find an assignment
satisfying all the clauses ip;, and maximizing

D

Ceps:m=C

w(C) @)

i.e. the sum of the weights of satisfied soft clauses.

In a (linear) PB optimization problem, a PB con-
straint extends a CNF clause to possibly contain inte-
ger coefficientsd;), variables ;) truth/falsity is inter-
preted ad9)/1 and there is a bound) on the value the
constraint can assume, i.e. linear PB constraints are of
the form

9n the following, we can switch between plans and satisfjing
terpretations, intuitively having the same meaning.
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A; and A, are mutually exclusive: the second takes
into account whether the original actiohis executed
with its soft preconditions not satisfied and the intro-
duced effect oal 4) takes into account this fact, and
w(As) = w(A). This technigue of splitting actions is
similar to the ideas employed in [KG09] for STRIPS
problems.

Then, for each gogy € SG we define a (dummy)
action whose precondition is the goal, and the effect is
a (dummy) literal, i.e.

Zci x; > b 3)

A PB formula is a conjunction of PB constraints.
Moreover, an objective function can be apphdo
the problem. If such an objective function is specified,
given a PB formulap?’?, the goal is to find an as-
signment to the variables of the problem that satisfies
the formula (i.e., satisfies all PB constraints) and min-
imizes the objective function. In the objective func-
tion, coefficients may be negative and thus minimiza-
tion/maximization are exchangeable and will be used
both later on. Ay = (g, T, goalag)

This is inspired by the approaches in [GK97,BKDO06].

All added actions can be non-STRIPS in general:
given that we want to rely on classical STRIPS sat-
isfiability planning encoding to generate Boolean op-
timization formulas we exploit classical methods (i.e.
the onesin FF’s pre-processor [HNO1]) to compile into
STRIPS actions. At this point we have a STRIPS for-
mulation of our problemG corresponds té{G.

Given a STRIPS planning problefhand a makespan
n, Boolean optimization formulas, in particular PB for-
mulas, are defined by

3. Modeling IPC problems as Boolean
optimization problems

Given thatsaTPLAN can only handle STRIPS prob-
lems while IPC-5 and IPC-6 benchmarks can contain
constructs to represent preferences and action costs,
the overall reduction is, in general, carried out in two
steps. The first step adapts the original problem to com-
pile preferences away.

Here we need a more formal definition of actions.
An action A is a triple (HPre, SPre, Ef f) where
HPre, SPre and Eff are Boolean formulas rep-
resenting hard preconditions, soft preconditions and
effects of A, denoted byH Pre(A), SPre(4) and
Ef f(A) respectively. The séf of goals is partitioned
into hard and soft goals represented by the Boolean
formulas HG and SG respectively.w is a function
mapping actions with soft preconditions and goals to
positive integer numbers. In the following denotes
the empty formula.

The semantic is defined as follows [GHD9]: A
can be executed evenStPre is not satisfied, but then
a cost is paid each time this happens. Hard gé&ds
need to be satisfied while soft goals are not mandatory,
but if a soft goaly is reached a reward(g) is gained.

Each actiond having soft preconditions (i.e. having
SPre(A) # T)Yis split into two actions:

e Ay:=(HPre(A) A SPre(A), T,Eff(A)); and
o Ay:=(HPre(A)A=SPre(A), T,Eff(A)Agoal 4)

1. the clauses of classical SAT-based encodings, ex-
pressed as PB constraints; and
2. an optimization function.

Regardingl .,

— for the set of literals{iy,...,l,} of the initial
statel the following PB constraints are added: for
eachj=1...m

sign(lj) var(lj)o > b

wherevar(l) returns the (fluent) variable the lit-
erall is built on,sign(l) is 1 if the literall is pos-
itive, and—1 otherwise, and is 1 if [ is positive,
and0 otherwise.

— for eachi = 0...n — 1, action executability at
timei is encoded in SAT as follows

Ai — /\ Di A /\ li-i—l (4)

pEHPre(A) IEEff(A)

101 fact, in the PB evaluations the categories take into aatcibu
such function is specified (OPT) or not (DEC).
L1For simplicity, we restrict to action having at most one soét-pr

where p is an atom,! a literal, andH Pre(A)
(resp. Ef f(A)) are now (equivalently) consid-

condition formula: this is the case for all instances in tham'S
plePreferences” track of IPC-5. In general, we have to ctamgheir
power set.

ered as the set of preconditions (resp. effects) of
A. Thus, for each STRIPS actio# the PB for-
mula will contain
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« for eachp € HPre(A) a PB constraint of the  fined over the set of actions with action costs, called

form AC: the metric of the problem becomes
—Ai+pi >0
. max : Z w(g)— Z w(A)— Z w(As2)
x for eachl ¢ Eff(A) a PB constraint of the 9eSG =g Ajem A e AC A €AS AsEn
form

A Weighted Partial Max-SAT formulation is also
possible. Considdi,, as a set of clauses, the formula-

and nowb is 0 if [ is a positive literal and-1 tion is a pair

otherwise. (I, A pref(IL,), w') (6)

—A; + sign(l) var(l)i41 > b

The transition relation is composed of other PB .
constraints, i.e. the ones corresponding to the Wherepref(Il,) is the formula
clauses arising frorframeandexclusionaxioms.
Ngesa (Viegl) N Aa,eac—Ai N Na,esa—Az;
— for G (now equivalently considered as a set of
clauses), the following groups of PB constraints that encodes the metric, and wheré is a (partial)
are added: ley = {i,...,l;} be a set of literals, function mapping clauses to positive integer numbers.
for eachg € HG the PB constraint w is defined as follows: a soft clause corresponding to

& — a soft goaly has the related weights(g);
Z sign(l;) var(l)n > 1 — neg(q) — foreachi=0...n—1
=1

* the (non-) execution of an actiofh € AS with
its soft precondition not satisfied has a weight
w'(—Az;) = w(Az); and

* the (non-) execution of an actioh € AC has
Consider a planr and letSA be the set of all ac- aweightw’(—4;) = w(A).

tions having soft action preconditions. In the formula-

tion above, ifA € SA we consider all its instantiations

A;,i=0...n—1tobeinSA. 3.1. Example
The metric of the problem is defined as follows

whereneg(g) is the number of negated literals in
g, and

We consider instancel#of the Traveling and Pur-
mazx : Z w(g) — Z w(Az) chase Problem (TPP) domain containing preferences
9€S5G, Ty Ai€SA, Azem on both action preconditions and goals, “Grounded-
Preferences” variant (referred as “tppl” below). In the
following we show the part of interest and how they
have been modeled. In the tppl instance there is an ac-
tion “drive” represented as follows

IPC-6 benchmarks contain also action costs, i.e. a
cost associated with its execution. Considering action
costs in this work we restrict ourselves to what we
called “simple” action costs, i.e. we consider problems

with a single total cost increased by a positive integer (:action drive
number if an action is executed. In IPC-6 benchmarks :parameters (?t - truck ?from ?to - place)
this fact is expressed by using a construct of the form :precondition (and
(at ?t ?from) (connected ?from ?to)
(increase (total-cost) (stack-cost)) (5) (preference p-drive (and 7)

. . o (ready-to-load goods1 ?from level0)
as effect of an actiorl. The semantic of (5) is sim- (ready-to-load goods2 2from level0)

ple: if A is executedtbtal-cost is increased by Stack- (ready-to-load goods3 ?from level0))))
cost’. Both total-costand stack-costare initialized in ‘effect (and (not (at 2t 2from)) (at 2t 2ta)))
the initial state. A dummy literal is added in place

of (5) as effect ofd (goal-ac). w is extended to be de-  (Soft) Goals and the metric are represented with
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(:goal (and
(preference p4A (and
(ready-to-load goods3 marketl levelO)
(loaded goods3 truckl level0)))

(preference pOA (stored goods3 levell))
) (8)

(:metric minimize {
(* 1 (is-violated pOA))

.(.*. 16 (is-violated p4A))
(* 1 (is-violated p-drive))))

For the preferencg4 A we introduce the following
action

(raction dummy-p4A

:parameters ()

:precondition (and 9
(ready-to-load goods3 marketl IeveIO)( )
(loaded goods3 truckl level0))

-effect (and (goal-p4A))).

and similarly for the other soft goals.
Regarding the action precondition we split action
“drive” into two actions as we have explained before

(:action drive
:parameters (?t - truck ?from ?to - place)
:precondition (and
(at ?t ?from) (connected ?from ?to)
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from levelO)
(ready-to-load goods3 ?from levelQ))
.effect (and (not (at ?t ?from)) (at ?t ?to)))

(10)

(:action dummyy,.
:parameters (?t - truck ?from ?to - place)
:precondition (and

(at ?t ?from) (connected ?from ?to)

(not (and (11)
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))))

-effect (and (not (at ?t ?from)) (at ?t ?to)
(goal-p-drive)))

The new goal of the problem is the conjunction of

the dummy literals related to goal preferences and ac-

tion preconditions and costs introduced (all goals are
soft in this instance).

The resulting problem is then given in input to the
ADL 2sSTRIPStool to be compiled into a STRIPS prob-
lem. As a consequence the (dummy) actions intro-
duced are compiled into STRIPS actions. There could
be (multiple) STRIPS actions in place of those in the
original formulation.

Consider the simple case in which a single STRIPS
action is in place of each action and consider that the
related STRIPS action has the same name. With refer-
ence to our working example and with fixed makespan
n, for each0 < j < 4 the PB constraints resulting
from action executability are

Ape i Pre(dummy-pjA—dummy-pid_; +p,—1>0(12)
—dummy-pjA_, + goal-pjA, >0 (13)

Then for each, 1 < i < n, regarding action drive,
the following PB constraints are added because of its
precondition

(14)

while the following constraints are added for its effects

/\pEHPre(drive) — drive; + pi >0

NeE§ f(drive) — drive; + sign(l) var(l)i1 > b (15)

whereb is 0 if the literal is positive and-1 otherwise.
The last PB constraint added is

—drive; + goal-p-drivg,; > 0 (16)

Similarly for action dummyyg, from (11). Now the
question remains of how to express the optimization
function: in (8) the idea is to minimize the violation of
preferences (expressed witls-fiolated p) in PDDL3
having the following meaning: given a preferenge
(is-violated p takes valuel if the preference is not
satisfied and) otherwise [GHL09]). With our for-
mulation the new goal literals of introduced actions
are reached when a preference is satisfied and this
is “mimicked” by the related action’s execution: thus
the characterization of the metric function in (8) can
be expressed using both fluents and actions, i.e. with
the (linear) optimization functions (17) and (18), to be
maximized, wherer is a satisfying interpretation, and
m(p)is1if pistrue and) otherwise. If actions are used,
the weights are associated with action executions. The
characterization with fluents is instead more similar to
PDDL3 syntax, where the metric is mostly defined on
states (but for action costs).

Y- 2 m(goal-pjA)— Y, m(goal-p-drive) (17)

S 27 m(dummy-pjA)y- S0 w(dummy,.;) (18)



M. Maratea / Planning as Satisfiability with IPC Simple Preferes and Action Costs 7

Z?:o 27 m(goal-pjA) — w(goal-p-drive) (19) function QT-PLAN-PB(II,P,w)
’ 1 n=1
In general, action preconditions and costs can hold 2 while (true)
at any time stamp. If we know that instead actions 3 if (PBOEnf2pKIL,,, P, w), 7))

can be only executed once, we can add a single fluent 4 return w

goal-p-drivefor all instantiations and the optimization 5 else

function is expressed with (19) (similar changes apply 6 n:=n+1

to (18)). Even if on the one hand this hypothesis on

(ground) action executions underlying (19) can be seen Fig. 1. The algorithm obT-PLAN-PE.

as a further approximation (other than the makespan)
of the (unbounded) optimal metric, such a hypothesis
holds in various cases, e.g. on a classical, real-world
planning domain like blocks-world and logistics.

Assume now that PBO returmaLsE if a satisfy-
ing assignment does not exist, DRUE with an opti-
mal solutionr, i.e. we assume that the underlying al-
. o ] gorithm is sound and complete. Moreover, we assume
3.2. Algorithms for finding optimal plans that a plan always exists.

Now we are ready to state the following theorem.

Now we define approaches for finding “optimal”
plans, compiling the problem at fixed makespan into Theorem 1 LetII be a planning problen a makespan,
an optimization problem as shown before. Consider a and let(P, w) be a quantitative preferenc@T-PLAN-
STRIPS problenil, and a makespain. PB(II,P,w) returns an optimal plan foll wrt (P, w)

In the following figures at minimum makespaimfor which a plan exists.

1. cnf(y), whereyp is a formula, is a set of clauses

i PB_ )
such that Proof. Given ¢”P=cnf2pi{Tl,, P,w), from the as

sumptions on PBO we know that PBG{Z,P,w) re-
— for any interpretationt’ in the signature of turns
cnf(e) such thatt’ = cnf(y) itis true also that
T = ¢, wherer is the interpretationr’ but
restricted to the signature gf and
— for any interpretationr |= ¢ there exists an in-
terpretationt’, 7’ D , such thatr’ = cnf{p). Given these, in order for the actual theorem to hold, we
have first to show that for each assignmei the sig-
nature ofp”’? such thatr satisfiesp” 2, it must also
hold thatr’ = II,,, wheren’ corresponds tar but re-
duced to the signature &f,,, and for each assignment
7' in the signature ofl,, such thatr’ = II,,, there
exists an assignment, = O «’, such thatr satisfies
a. each claus€’ in cnf(¢) is expressed as the  »PB,
corresponding PB constraint, and

— FALSEIf TP is unsatisfiable, or
— an optimal solutionr which maximizes (17) oth-
erwise.

There are well-known methods for computing
cnf(p) in linear time by introducing additional
variables, e.g., [Tse70,PG86,JS05];

2. cnf2pl{y, P,w) is cnf(y) and then following
Section 3

b. the optimization function is built; The point holds from

3. cnf2wenfp, P, w, top) corresponds to Eq. (6); — the assumptions aenfin 1. above ; and

4. PBO and PWMXSAT are generic Weighted — the assumption ifa above about the one-to-one
Partial Max-SAT and PB solvers: differently mapping between the clausesdnf(IL,,) and the
from SAT, in these research fields there is no a PB constraints i*'Z, i.e. an assignment satis-
single underlying basic algorithm like DPLL for fying C € cnf(I,,) satisfies also the related con-
SAT*2, but a wide range of effective approaches straintscnf2pl{C, P, w), and vice-versa.
exist.

The minimality ofn holds simply from the iterative
deepening approach of the algorithm in Fig.1.

12In this case, instead of DPLL, we could refer to the CDCL
(Conflict Driven Clause Learning) algorithm [Mit05] givelmetSAT-
PLAN(P) relies orMINISAT as SAT solver.

O
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function QT-PLAN-MAXSAT (I1, P,w,top) 4. Comparison to SAT-based encoding
1 n=1
2 while (true)

3 if (PWMAXSAT(cnf2wenflL,, P, w, top), 7)) In this section we compare the actual solutions with

the framework of planning as satisfiability with prefer-

4 return w ) :
5 else ences first presented in [GMO7].
6 n:=n+1
instance PB [GM11]
Fig. 2. The algorithm ofyT-PLAN-MAXSAT. FVAR ‘ #CL ‘ #VAR ‘ #CL
storagel 227 933 291 1321
. ) storage2 541 3819 661 4554
Now we move to the Max-SAT formulation. Fig. 2_ storage3 728 | 8073 || 976 | 9642
presents the solving procedure based on Max-SAT: in storage4 002 | 22535 || 1212 | 24488
the algorithmtop is defined as storage5 8789 | 92748 | 14340 | 128129
storage6 13725 | 235711 || 22821 | 294077
top:=>_ w(p)+1 (20) storage7 || 20646 | 350862 || 35915 | 449197
peEP tppl 763 | 4510 967 | 5819
and it is used to define hard clauses in the Weighted tpp2 1031 | 6046 | 1331 | 7971
Partial Max-SAT problem (details on the format are :ppi 142122 ;Z; i:ig 195(;);9
presented in the next section). tpps sioo | somer || a151 | av070
We assume that, similarly to PBO, the PVMMSAT PP
is sound and complete tpp6 3736 | 47728 || 4548 | 53006
) i tpp7 4156 | 55852 || 5052 | 61676
_V\_/e are now ready to state the following theorem, tpp8 4590 | 64557 || 5508 | 71100
similar to Theorem 1. tppo 8535 | 197084 || 10103 | 207374
. tpp10 9022 | 215879 || 10670 | 226694
Theorem 2 LetII be a planning problen; a makespan, pegsoll 245 909 377 | 1602
and let(P,w) be a quantitative preferencer-PLAN- pegsol2 245 909 635 3407
MAXSAT (IT,P,w,top) returns an optimal plan fodl pegsol9 699 4120 831 4813
wrt (P, w) at minimum makespan for which a plan pegsol10 699 4120 1089 | 6618
exists. pathways1 415 | 3583 450 | 3797
pathwaysl17 || 15249 | 534526 || 16040 | 539775
The proof is similar to Theorem 1. trucksl 3113 | 47403 || 3182 | 47831
trucks2 8213 | 160654 | 8396 | 161800
Before ending the section, we would like to under- trucks3 13374 | 375755 || 13467 | 376343
line a few things. An alternative way to present our openl-ipc2008|| 1318 | 12664 || 1390 | 13084
approach would be to rely on a unique characteriza- | 0Pen2-ipc2008) 1936 | 24097 || 2029 | 24658
tion of the underlying solvers for Boolean optimization opent 3643 | 43983 || 3883 | 45453

instead of using PWMxSAT and PBO separately. Table 1

There are encodings mapping Max-SAT to PB prob-  sjzes of the evaluated formulas. The pegsol and pathways demai
lems and vice-versa. In addition since the PB compe- contain more thago instances: for such domains we only show the
tition 2010 there has been even a track on “soft PB data for the smallest and biggest instances in the pool.
constraints’ called “Weighted Boolean Optimization”

making an attempt to combine the two problems (see  The approach described in [GM07,GM11] is com-
also [MSP09]). However we preferred to keep the pre- pletely based on a compilation into a SAT problem:
sentations separated: this is because the Max-SAT andnon-uniform weights, described by a non-constant
PB formalisms are well-known and established in the function w, are dealt by reducingy to a SAT for-
literature with their own formats, and often the related mula by using the encoding in [War98], to be conjoined
systems use different techniques for solving the two with the SAT-based encoding of classical planning ex-
problems. plained before.
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Given that, this approach can further increase the
sizes of the formulas to be evaluated. Moreover, from
a knowledge representation viewpoint, integers are not
naturally represented with SAT.

The last two columns of Table 1 report the number
of variables and clauses of the first satisfiable resulting
CNF formula. This is done for most of the instances
evaluated in this work (whose details will be given in
the next section).

In this work we are interested in optimization prob-
lems that can more naturally and in a concise way
represent the problems of interest, from a knowledge
representation point of view: PB and Max-SAT for-
malisms. The second and third columns of Table 1 re-
port the number of variables and clauses of the re-
sulting PB formula as defined in the previous sec-
tion. We can note that, in general, the new encodings
are not that much smaller than those in [GM11]: the
size of the added formula depends on how many vari-
ables are involved imv, and on the coefficients. Sev-
eral benchmarks are described by a functiothav-
ing relatively few actions and goals involved, and with
relatively low coefficients. On the other hand, there

the encoding: we modifieslATPLAN at each makespan
of the SATPLAN’s approach, in order to implemeatr-
PLAN-PB/QT-PLAN-MAXSAT. Thus the main changes
in SATPLAN were related to the adaptation of the plain
CNF creation to the new formats.

Regarding the back-end solvers, we used the best
solvers which participated in Max-SAT and PB evalu-
ations and competitions, in particular to the Weighted
Partial and OPT-SMALL-INT categories, of interest
in our work. Specifically the solvers we used are:
MINIMAX SAT ver. 1.0 [HLOO8], based oRINISAT +
ver. 1.13, WMAX SATz [LMMPOQ9] ver. 2.5 submit-
ted to the 2010 Max-SAT evaluation (a first ver-
sion of the solver has been presented in [ALMO7]),
INCWMAX SATZ [LS07,LSL08]}® MSUNCORE ver.
1.2 and ver. 4 [MSMO08,MSPO8MINISAT + ver. 1.14
[ES06], cLPPB ver. 0.2 (by the same authors of
PUEBLO [SS05]), as submitted to the 2007 evalua-
tion,** BsoLover. 3.0.17 [MMS06], SAT4J ver. 2.1
and SCIRPxver. 1.2.0 [ABKWO0S8]*®> MINIMAX SAT
was the winner of the 2007 Max-SAT evaluation in
the Partial Max-SAT category. WAMK SATZ and IN-
CWMAX SATZ extend the M\XSATZ solver [LS07],

are cases, e.g. some pegsol instances, in which the apwinner of the Max-SAT category at the 2007 Max-

proach in [GM11] produces formulas up to a factor
of 3 (resp.4) bigger in the number of variables (resp.

SAT evaluation and themselves have achieved very
good results in the 2009 Max-SAT evaluation. In

clauses) than the approach in this paper. Moreover, as fact, INCWMAX SATz was the winner on random and

we said before, the approach in [GM11] relies on an or-
dering of the heuristic that can hit performance, while
the optimization solvers employed do not rely on such
heuristics.

5. Implementation and experimental evaluation

As we already mentioned in the introduction, we
have evaluated the instances of all domains of the
“SimplePreferences” track of the IPC-5 i.e. the TPP,
Pathways, Storage, Trucks and Openstacks, with pref-

crafted benchmarks of the Weighted Partial category
and WMax SATz was the second and third best on the
benchmarks of the same categories. MElbRE was

the winner on industrial Max-SAT benchmarks at the
2010 Max-SAT evaluationMINISAT + was the solver
able to prove unsatisfiability and optimality on a larger
number of instances than all the other solvers which
entered into the PB evaluation 2005 [MR06] and the
best performing solver (together wis0oLO) also in

the 2006 PB evaluation, category OPT-SMALLINT-

13Both WMAX SATZ and INCWMAX SATZ versions we used are
slightly different from the one used in the evaluation, hessathe

erences grounded (when available), and the STRIPS gyajuation versions caused some memory problems (due to the fact

domains of the “net benefit” optimization track of the
deterministic part of the IPC-6 having “simple” (as de-

fined in this paper) action costs. When preferences are
expressed on action preconditions and/or costs we have

used the optimization function (19).

At implementation level, we used) ADL2STRIPS
for compiling non-STRIPS actions into STRIPS ac-
tions: ADL2STRIPSWas introduced in IPC-4 and is
based on FF's pre-processor [HNO1], while in our
analysis we employed the version used in IPC-5 based
on LPG [GS02,GSS03,GSS08], afid) SATPLAN for

that clause number is set statically in the code) if the tested
stance is large, i.e. storage6 and storage7. Personal coeatians
by Josep Argelich and Han Lin.
Lhttp://www.eecs.umich.edu/ ~ hsheini/pueblo/
15Solvers  have been downloaded fromitp:/Avww.
Isi.upc.edu/ ~ fheras/docs/m.tar.gz, http:
[lIwww.minisat.se/MiniSat+.html, http://
www.eecs.umich.edu/  ~ hsheini/pueblo, http:
/[forge.ow2.org/projects/sat4j/, http://www.
csi.ucd.ie/staff/jpms/soft/soft.php, http:
/Iscip.zib.de/ , Or obtained on request to the authors. For
the ones downloaded, we have used the version submitted to the
evaluations or the last available.



10 M. Maratea / Planning as Satisfiability with IPC Simple Brefices and Action Costs
First SAT and last UNSAT formulas from IPC-5 benchmarks - SimplePreferences category
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Fig. 3. Results for Weighted Partial Max-SAT and PB solverdRC-5 instances.

LIN. BsoLo andGLPPB have been the best perform-
ing PB solvers in the OPT-SMALLINT-LIN category
of the 2007 PB evaluation. SC$Pxand SAT4J were
the winners of the OPT-SMALL-INT and Industrial
Weighted Partial category of the respective evaluations
in 2009.

As input format, MNIMAX SAT and SAT4J accept
instances in the format of both Max-SAT and PB eval-
uations, and the best results are presemer|SAT +
reads instances in the format of the PB evaluations with
a minor exception, i.e. the symbol “*” has to be added
between coefficients and variables like in the first eval-
uation. About MSUW CORE, we will not show results
for both versions given that they perform very similarly
on our benchmarks.

The timeout has been set to 900s on a Linux box
equipped with a Pentium IV 3.2GHz processor and
1GB of RAM and memory limit to 900MB.

The next two subsections show detailed results
about the IPC-5 and IPC-6 benchmarks respectively,

and are organized as follows: at first it is presented
an experimental analysis among all Max-SAT and PB
solvers mentioned above on the first satisfiable and
last unsatisfiable formulas of all instances created fol-
lowing the SATPLAN approach, in order to choose the
“best” overall back-end system. Note that satisfiable
instances are the vast majority in both cases. We will
see that overalMINISAT+ (resp. MNIMAXSAT on
problems expressed in PB format) is the best solver on
IPC-5 (resp. IPC-6) benchmarks. The resulting planner
is called PBLAN.

For each planning domain both plan metrics of and
CPU times to find plans are shown. In the analysis,
we considered PBLAN, SATPLAN(P) [GM11] and,
as a reference, SGRN on IPC-5 benchmarks and
GAMER on IPC-6 benchmarks.

5.1. IPC-5

Figure 3 reports the analysis mentioned above, on
Max-SAT and PB instances, where results are pre-
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Storage domain - SimplePreferences category
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sented according tmINISAT + performance, which is  Figure 5, PBPLAN andSATPLAN solve two instances,
the best solver on these benchmarks, i.e. instances are#23 and #9, in a few seconds and with plan met-
put on x-axis according to increasing CPU times of rics of 25.5 and 26.7 respectively. On the same in-
MINISAT +, which is used as back-end of PBaN on stances, SGIRAN has metrics ofi8 and 22, while it
IPC-5 problems. Other ways of presenting the results solves the remaining instances with a mean time of
are possible, e.g. the one used in Max-SAT evaluations. around 100s. Results for the TPP domain are pre-
We rely on the current form, which allows the results sented in Figure 6. On thE) instances shown the be-
of all solvers on each single instance along the x-axis havior is similar in terms of CPU times to the Path-
to be compared. ways domain, with PBLAN having slightly better per-
Results for the planning domains Pathways, Storage formance tharsATPLAN(P) up to a factor of; the
and TPP are instead presented as in the IPC-5 in Fig- plan quality of SGPAN is better than the one of PB-
ures 4-6 in terms of both plan metrics and CPU time pLAN (andSATPLAN(P)) in particular on instance®#
for PBPLAN, SATPLAN(P) and SGPAN. About plan and #0. Instances from # to #15 can be compiled
metrics, the results of PB.AN also refer to the re- by ADL2STRIPSbut not solved by both PB.AN and
sults of SATPLAN(P), and the goal here is to minimize  sATPLAN(P): these instances contain more tBan00
the metric. The ones for the Trucks and Openstacks variables an&00000 constraints, up t8000000 con-
domains are only mentioned given that few instances straints, and the solving time for SG/N is more than
could be compiled bynbL 2sTRIPS Most of the path- 100s. Instances from # to #20 can not be compiled.
ways instances contain weights, related to goals vi- About the last two domains Trucks and Openstacks,
olation, corresponding to real numbers: we made it on the first7 instances of the Trucks domain that can
integer numbers by multiplying each weight bg™, be compiled byaDL2sTRIPS only the first two in-
wheren is the maximum number of (significant) dec-  stances can be solved by PBAN in 10 and800 sec-
imal digits of the instance. In the evaluation of the onds, approximately, with plan metricsband2. SAT-
results we have to underline that PBAN and SG- PLAN(P) solves only the first instance. The same two
PLAN solve two different problems: SGRN is tar- instances are solved very fast by SGR, but with
geted for sequential, unbounded planning, thus we ex- plan metrics ofl3 and 52, thus much higher. On the
pect to be faster. Nonetheless it is added as reference,same domain, finally note that for instancesté #7
in particular for plan metrics, given it has been the even checking satisfiability of the first satisfiable in-
clear winner at the IPC-5 on the track considered. Fig- stance is difficult fomINISAT. The same holds for the
ure 4 contains results for the Storage domain on the Openstacks domain, where orilynstance is compiled
first 7 instances (as numbered in the IPC-5), i.e. the py ADL2STRIPS
onesADL 2sTRIPScould compile. On these instances
we can see that SGRN is, indeed, much fasterthan 52 |pc-6
PBPLAN of more thanl order of magnitude (Right),
while PBPLAN is faster tharsATPLAN(P) of almostl
order of magnitude; PBLAN solves the instances in
less than (around)0s while notably both PBLAN and
SATPLAN(P) have better plan metrics than SGR

We focus on the STRIPS domains of “net benefit”
optimization track of the deterministic track at the IPC-
6 that contain “simple” action costs, i.e. the pegsol and
) Openstack¥ domains. We remind the reader that here
on most instances. The results for the fi@instances the goal is to maximize the plan metric. Al in-

of the Pathways domain are presented in Figure 5. giances of the pegsol domain can be compiled and eval-
On these instances the CPU times in Figure 5 (Right) uated, except for instanceg &nd #8. About the Open-

for PBPLAN, SATPLAN(P) and SGEAN are compa-  giacks domain, only instance can be solved by PB-
rable, except for5 instances, which are only solved  , ,\: note that this domain is overall the hardest for
by SGRAN (even if in tens of seconds). Results of |pc_g planners (according to the results of the com-

PBPLAN and SATPLAN(P) are comparable, FRAN petition considering the number of solved instances).
being slightly better on the biggest instances solved. Figure 7 reports the analysis on Max-SAT and PB
Regarding plan metrics, in Figure 5 (Left), on the in- jqiances: results are presented according toiIM
stances solved by all systems the results are compara-; o sat performance, which is the overall best solver
ble, except for few instances where SIGR (#1, #3,

#9, #15 and #0) gives back plans of better quality. 16precisely, the instances of this domain contains negatéshact
Among the instances from2# to #30, not shown in preconditions, thus thepL 2sTRIPstool has still to be used.
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First SAT and last UNSAT formulas from IPC-6 benchmarks
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Fig. 7. Results for Weighted Partial Max-SAT and PB solverdRC-6 instances.
on these benchmarksslightly better tharMmINISAT + For the Openstacks domain onty instances are

and it is used as back-end of PBAN on IPC-6 prob- solved by QMER and only1l by PBPLAN and SAT-

lems.

PLAN(P), with plan metrics ofi6 and9 respectively.

Results for the planning domain pegsol are pre- GAMER is also much faster on this instance (arosnd
sented in Figure 8. Here the results ®ATPLAN(P) and60 seconds respectively).
are not added for sake of readability: all instances are

solved very easily bysaTPLAN(P) and with results 5.3. Anytime results
similar to PBPLAN. Itis easy to see that on this domain

PBPLAN is much faster than @MER, while GAMER
returns plans of much better qualityA®ER runs out

of memory on the last instances (from #27 to #30),
solved instead quite easily by PBAN.

We then performed a further analysis with the focus
on plan metrics. This is because the fixed makespan
approach followed can significantly limit the quality
of the plans returned by PR AN: considering an in-
stance where there is a high gap between the plan

1"These results are reached with the PB formulation. Note that quality of PBPLAN/SATPLAN(P) and G\MER, e.g. in-
for most of the “simple” instances in the figuredWMAX SATZ is stance #24 of pegsol domain. This instance is solved
the fastest, except for the (only) two “hard” instances iriclHN- at (optimal) makespaBI with plan metricd4. Running

CWMAXSATZ runs out of memory. On these two instances\M
IMAX SAT is the best and further solves the other instances in less
than 0.5s. For these reasonsNVM AX SAT has been employed in

this analysis.

the instance at makespdnleads to a plan metric of
105 thus much better than the previous and very close
to the global optimal plan metric of @1ER.
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Given this precise result, we decided to test in this
direction all the planning problems analyzed: instead
of stopping our procedure at the first makespan for
which a plan exists, we continue to run PB\N for
the full allowed CPU time and return the best solution
found within the time limit. We call the resulting pro-
cedure A-PBLAN.

15

thanks to the availability of new/improved solvers in
the next Max-SAT/PB evaluations.

As far as Max-SAT and PB solvers performance is
concerned, from Figures 3 and 7 we can note that gen-
erally MINISAT + performs well. By analyzing the re-
sults, we noticed that the vast majority of the shown
instances do not excedd0K constraints, which is a

The results are presented in Figures 9 and 10 that arereasonable size to be efficiently handledMoyISAT +.

organized as Fig. 4- 8 (Left). We can immediately see
that the plan quality improves substantially on most of
the instances: the plan metric returned by AfRBN

is now consistently better than SGAN in the Storage
domain, in the first instance of the TPP domain, and

Thus this fact seems to be a major factor for its good
results. About the two “exceptions”, they refer to in-
stances #36 and #37 of Figure 3 ( coming from the
Storage and Openstacks domains respectively) where
the dimensions of the formulas are ab&utK and

on many instances of the Pathways, and the gap with 300K constraints respectively. About instances from

SGR.AN is often diminished in the other instances. In

particular the Pegsol instances were the more “prob-

lematic” on this side: now the plan metric returned by
A-PBPLAN is almost always the same ofAGIER (see
Fig. 10 (Right)), being slightly worse on few instances.
On the remaining domains, A-FRAN returns the
same plan metric as of FBAN on the three instances
solved by PR LAN, given that no problems with higher
makespan than the optimal are solved within the time
limit.

5.4. Summary of the results.

A first contribution of our analysis is a wide com-
parison of Max-SAT and PB solvers on benchmarks
coming from compilation of IPC-5/IPC-6 benchmarks
(with a fixed makespan). Later we analyze why par-
ticular solvers perform well on particular instances.
About PBPLAN, there are some very positive results
that have to be underlined, further considering that
SGR.AN and GAMER are, often by far, the best plan-
ning systems in the categories of interest in this work.

IPC-6 benchmarks in Figure 7, we have to remember
that MINIMAX SAT is based on (a version ofyiiN-
ISAT+: on these instances its additional simplification
techniques help to improve slightly the overall per-
formance. Interestingly, the best solvers rely on a PB
formulation: PB systems can solve problems with a
more general representation of constraints, while the
instances in our analysis involve clauses, thus in prin-
ciple “best suited” for a Max-SAT formulation.

Finally, as far as anytime performance are con-
cerned, we have seen that PB\N, when allotted
all available time and not stopped at the optimal
makespan, often improves significantly the quality of
the returned plans.

6. Related work

The literature about planning based on constraint
satisfaction techniques is vast and subject to a num-
ber of research papers and a series of workshop (e.g.
Workshop on Constraint Satisfaction Techniques for

On the Storage and Pathways domains, the plan met- Planning and Scheduling Problems). In this section

rics returned by PBLAN are comparable, and some-
times better than, the ones of SGf. The same
holds for the smallest instances of the Trucks do-
main. On the pegsol domain, PBAN is faster than

GAMER, and can even solve some instances in the do-

main not solved by GMER. This holds at the price of
a lower plan quality, but we have seen thatFREBN
can get close to the results ofA@ER by increasing
the makespan. Finally, note that when BN does
not solve an instance within the time limit, it is often

the case that the instance is hard to solve even by SG-

PLAN, or GAMER, and/or bySATPLAN (e.g., Trucks
and IPC-5 Openstacks). As far as efficiency is con-
cerned, we expect FRAN to become (much) faster

we refer just to the papers related to our approach
more closely and with other approaches implemented
in planners having distinguished performance in the
“SimplePreferences” track of the IPC-5 and on the op-
timization tracks of the IPC-6.

Two of the most related approaches in planning
based on constraint satisfaction techniques are the ones
in [BCO5,BRO5]. In [BCO5] the authors show how to
extend Gp-csp [DKO1] in order to plan with pref-
erences expressed as a TCP-net [BBB]. In the
Boolean case, TCP-net can be expressed as Boolean
formulas. Though this work is not based on satisfia-
bility, the problem they consider is the same as that
we deal with but with qualitative preferences: find
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an optimal plan wrt the given preferences among the
plans with makespam. An iterative deepening ap-
proach, similar to what we did in Subsection 5.3, is
the approach followed in [BR0O5], where the consid-
ered problem is to extend the planning as satisfiability
approach in order to find plans with optimal sequential
length. Even if they solve a different problem to us, the
overall goal is the same as in our paper, i.e. to allow
the planning as satisfiability approach to take into ac-
count plan quality issues other than the makespan. Itis
interesting to note that the authors use a Boolean for-
mula to encode the function representing the sequen-
tial length of the plan. In their approach, for a given
n, the search for an optimal solution is done by itera-
tively calling the SAT solver, each time adding a con-
straint imposing a smaller value for the objective func-
tion (using [BBO3]): when the SAT formula becomes
unsatisfiablep is set ton+1 and the process is iterated
looking for a better plan than the one so far discov-
ered. For a fixedh the problem considered in [BRO5]
is related to finding a plan with the minimum number
of actions for a planning probledl with makespan
n. Our approach can also deal with “soft” goals and
non-uniform weights. Non-uniform weights associated
with the action’s executions are taken into account in
PLAN-A [CLHO08], which relies on ideas and results
obtained by the author of this paper in [GM06,GMO07].
IPPLAN participated in the deterministic part of the
IPC-5 on classical domains. It reduces STRIPS bench-
marks to 0-1 IP problems and then catlsLEX [ILO02].
In [vdBKV06a] the same authors afPLAN presented
a compilation of PDDL3 benchmarks into 0-1 IP, on a
wider set of domains and features wrt the ones we have
dealt with in this paper. On the other hand no imple-
mentation and experimental analysis are provided, as
well as any formal result. Moreover, even if it should
be easy, in [vdBKV064a] there is no indication on how
weights are treated and we are not aware of compila-
tions of IPC-6 benchmarks in their framework.
SGR.AN ver. 5 [HWHC06,HWHCO07] extends ver.
4 for PDDL2.2 [HEOQ5] in order to deal with the new
constructs of PDDL3. Its basic idea is to partition a
problem into sub-problems, one for each (soft) goal
(considered as hard), to solve the sub-problems indi-
vidually by a modified version of an existing plan-
ner i.e. METRIC-FF [Hof03] and then to resolve in-
consistencies across sub-problemaMER has been
the winner of the optimization tracks of the IPC-6;
it uses BDDs and relies on “multi-actions” for tackle
conditional effects and soft goals. The advantages of
BDDs wrt to SAT formulas is that their sizes do
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not increase with plan horizon, but the representation
through BDDs “easily” runs out of memory.

In [KGO9] it is shown and formally proved that
adding soft goals with linear impact on plan metrics
does not increase the expressive power of STRIPS
planning problems with action costs and the same
problems can be (equivalently) tackled considering
only action costs. We follow a similar approach also
in the treatments of action preconditions and costs,
which extends and adapts the approaches in [GK97,
BKDO06]. [KG09] also shows that “classical” planners
with action costs can perform better than IPC-6 plan-
ners on IPC-6 benchmarks with action costs and soft
goals, when run on compiled (similarly as presented in
the paper) IPC-6 benchmarks,

7. Conclusions and future works

In this paper we presented a new approach for find-
ing plans with “optimal” metrics in satisfiability-based
planning, at a fixed makespan, based on compilation
into Max-SAT and PB problems. We also proved that
our approaches return an “optimal” plan, at a fixed
makespan. We have shown, on planning problems of
the IPC-5 and IPC-6, that the approach is viable and in-
deed can help to widen the set of benchmarks that can
be effectively solved with a SAT-based approach, often
computing good quality plans. Moreover, our analysis
(i) reveals what are the Max-SAT/PB solvers perform-
ing best on these planning domains, giving hints on
why this is the case, and:) individuates some weak-
ness of the approach, in particular where the difference
in plan metric wrt SGPAN/GAMER is high due to the
fixed makespan. In this respect we have conducted a
further analysis in which our planner is not stopped at
the fixed makespan, but all the allotted time is used
for searching for high quality plans: results show that
plan quality increased significantly. Moreover, differ-
ently from the other planners, our approach can easily
rely on future improvements of Max-SAT/PB solvers
in order to reduce the overall CPU times.

In the near future we plan to evaluate whether our
approach can also effectively deal with other IPC-6
benchmarks having more “complex” action costs and
to consider methods to trade-off among plan quality
measures such as makespan and plan metric.
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