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Abstract. In this work we present an assessment of state-of-the-art Boolean op-
timization solvers from different AI communities on over-subscription planning
problems. The goal of the empirical analysis here presented is to assess the cur-
rent respective performance of a wide variety of Boolean optimization solvers for
solving such problems.

1 Introduction

Over-subscription planning problems [1,2] are planning problems containing quantita-
tive preferences expressed on goals in case not all the goals can be satisfied. In particular,
a cost is associated to the violation of goals, and the aim is to find a plan whose metric
maximizes the rewards of satisfied goals. Over-subscription planning problems are thus
suitable to model a wide set of practical applications, ranging from recommendation sys-
tems [3] to spatial applications [2]. The increasing interest of the Al planning community
on over-subscription problems is also witnessed by recent editions of the International
Planning Competition (IPC), where the “SimplePreferences” track of IPC’06, and all the
“optimization” tracks of IPC’08 consider these problems. Furthermore, in IPC’08 also
quantitative preferences expressed on action’s preconditions are taken into account for
plan metrics. Considering a fixed plan horizon, i.e. a makespan, a — recently adopted —
effective approach used to deal with such problems is to reduce them to Boolean propo-
sitional problems with linear optimization functions [4, 5], e.g., Max-SAT (see, e.g., [6])
and Pseudo-Boolean (PB, see, e.g. [7]) problems. Both Max-SAT and PB are extensions
of the well-known propositional satisfiability (SAT) problem. These formalisms allow an
end user to naturally reason with integer numbers, which is one of the main limitation of
SAT, instead of relying on complicated and/or space consuming encodings, see e.g., [8,
9]. In this paper we present an assessment of state-of-the-art systems coming from dif-
ferent scientific Al communities, in order to highlight strengths and weaknesses in the
solution of over-subscription planning problems via Boolean optimization. We show the
result of an experimental analysis involving all the best performing Max-SAT and PB
solvers and other systems that, even if designed to mainly deal with other formalisms,
can solve Boolean optimization problems. In particular, we also consider Answer Set
Programming (ASP) [10, 11], Integer Programming (IP), Constraint Integer Program-
ming (CIP) [12], and Interval Constraints Propagation (ICP) [13] systems. All the solvers
are tested on domains comprised in both IPC’06 and IPC’08. Our results reveal that the
ASP solver CLASP and the PB solver MINISAT+ are currently the overall best systems on
these instances.



2 Modeling

In this section we overview how we have modeled the problem of interest. Details on the
modeling can be found in [4]. We have evaluated the domains both from the “SimplePref-
erences” track of IPC’06 and the “netben-opt” track of IPC’08 where plan metrics, in
terms of quantitative preferences, are expressed on goals and/or on actions precondi-
tions. Considering a fixed makespan, such benchmarks are reduced to Boolean optimiza-
tion problems, with different formalisms. This is done by using a modified version of the
SATPLAN planner [14, 15] on the STRIPS [16] problems formulation, at fixed makespan.
Given that SATPLAN can only handle STRIPS domains, while IPC’06 domains are non-
STRIPS, and some ADL [17] constructs are used, we have first adapted the non-STRIPS
problems in the following way.

— The preferences® expressed on actions preconditions are treated as follows: Each
action containing such preference is expressed with two actions that do not contain
preferences. For both actions, the related preference formula is treated as hard, fur-
ther negated in the second. The second action also achieves a new dummy literal,

— the goal preferences are imposed as preconditions of dummy actions, which achieve
new dummy literals defining the new problem goals.

The treatment of actions preferences is inspired by the ones used in [18, 19]. is When no
more “preference” construct is in the problem, the new actions are compiled into (possi-
bly multiple) STRIPS actions by using an existing tool (we have used ADL2STRIPS [20]
based on the LPG planner, see e.g., [21]%, i.e., the one used in the IPC’06). The metrics
of the planning problems are expressed with (linear) optimization function.

3 Instances and Solvers

Concerning the instances generation, we have modified SATPLAN at each makespan of
the SATPLAN’s approach, until the optimal. Thus, our compilation allows to find plans
with optimal metrics at fixed makespan. Further, note that while literals related to goal
preferences can be implicitly considered to hold only “at the end” modality [22], i.e.,
at the final makespan, this is not the case for the ones related to preconditions that can,
in general, hold at any makespan, unless we know that, instead, STRIPS actions can be
only executed once (e.g., this is the case for well known real-world planning domain like
blocks-world and logistics). The changes in SATPLAN were mainly related to the cre-
ation of formulas in the formats accepted by the various solvers employed instead of the
DIMACS format for SAT formulas in CNF. To mention the more widely used input for-
mats, our approach generates Weighted Partial Max-SAT problem — a further extension
of Max-SAT. In particular, in the Weighted Partial Max-SAT problem a positive integer
weight is associated to each soft clause, and the goal is to satisfy all hard clauses and
maximize the sum of weights associated to satisfied soft clauses. In our experimental

3 We consider that at most one preference formula in expressed on the preconditions of an action:
This is the case for all domains we consider in this paper. If this would not be the case, we
should consider their power set.

‘nttp://zeus.ing.unibs.it/1pg/.



Domain # \ SC HC

Min | Med Max Min Med Max Min | Med | Max
OPENSTACKS 1 3643 | 3643 3643 | 43953 43953 43953 29 29 29
OPENSTACKS-IPC08 2 1318 | 1627 1936 | 12652 18368 24084 11 12 12
PATHWAY'S 20 415 | 5076 | 15249 3579 | 116368 | 534485 3 28 49
PEGSOL 28 245 407 699 876 2782 4087 32 32 32
STORAGE 7 227 902 | 20646 924 22504 | 349640 8 30 | 1221
TPP 10 763 | 3572 9022 4493 44932 | 215776 16 55 102
TRUCKS 3 || 3113 | 8213 | 13374 | 47395 | 160635 | 375746 7 8 18

Table 1. Domains synopsis. The table is organized as follows: The first column denotes the domain
name, and “#” is the total amount of instances for each domain. It is followed by columns reporting
statistical data related to the Max-SAT encoding (columns “Min”, “Med”, and “Max”). Each data
is reported for the total amount of variables (column “V”), soft and hard constraints (columns “SC”
and “HC”, respectively).

Solver Version | Formalism Solver Version Formalism
AKMAXSAT 2010 Max-SAT MINIMAXSAT | 1.0 Max-SAT, PB
BSOLO 3.0.17 PB MINISAT+ 1.14 PB
CLASP 1.3.6 ASP MSUNCORE 1.2 Max-SAT
CPLEX 12.0 P SAT4) 2.1.0 Max-SAT, PB
GLPPB 0.2 PB SCIP 1.2.0 CIP
HYSAT 0.8.6 ICP WBO 1.4 Max-SAT, PB
INCWMAXSATZ | 1.2 Max-SAT WMAXSATZ 2.5 Max-SAT

Table 2. Solvers involved in the evaluation. The table is structured as follows. Column “Solver”
reports the name of the solver, while column “Version” indicates the version used in the experi-
ments. For AKMAXSAT indicates the version submitted to the 2010 Max-SAT Competition. Finally,
column “Formalism” reports the input formalisms accepted by the solver.

evaluation, we focus on the results obtained by the various solvers on the first satisfiable
formula following the SATPLAN approach, augmented with optimization issues defined
by the metric of the problem. Further, we consider the case where actions can be executed
at most once. Table 1 shows a synopsis related to the 71 instances that we could com-
pile with the ADL2STRIPS tool, and then can be solved by at least one of the considered
solvers. Some PATHWAYS, TPP from #11 to #16, TRUCKS from #3 to #7, and OPEN-
STACKS #1 (as numbered in IPC’06) instances could be compiled but not solved by any
system (for the instances of the last two domains, checking even satisfiability is hard for
MINISAT). They thus provide challenging benchmarks for state-of-the-art solvers.

Table 2 summarizes the solvers involved in the evaluation. Looking at the table, we
can see that the selected systems come from different scientific Al communities, namely
ASP, CIP, ICP, IP, Max-SAT, and PB. Moreover, we can see that, in some cases, a solver
is able to deal with problems expressed with different formalisms, e.g. MINIMAXSAT.
Concerning PB and Max-SAT solvers, we selected the best solvers that have partici-
pated to Max-SAT and PB evaluations along the years [23,24],° with emphasis on the
“Weighted Partial” and “OPT-SMALL-INT” categories, the last being part of PB eval-
uations, and where () there is no constraint with a sum of coefficients greater than 22°
(20 bits), and (4i) the objective function is linear. CLASP [25] is the overall winner of
the 2009 ASP Competition [26], CPLEX is a well-known linear arithmetic solver that can
solve IP problems, while HYS AT [13] is the best solver based on ICP.

5See http://www.maxsat.udl.cat/10/ and http://www.cril.univ-artois.
fr/PB10/ for the last.



Solver Solved
# Time
CLASP 64 896.82
MINISAT+ 63 643.90
MINIMAXSAT 59 242.49
BSOLO 59 735.57
SAT4) 59 2028.22
CPLEX 57 3009.54
WMAXSATZ 54 2068.90
INCWMAXSATZ 52 559.62
SCIP 47 421.99
WBO 47 1032.60
AKMAXSAT 45 458.08
HYSAT 44 1865.66
MSUNCORE 39 728.30
GLPPB 23 2208.39

Table 3. Evaluation results at a glance. We report the number of instances solved within the time
limit (“#”) and the total CPU time (“Time”) spent on solved instances. Solvers are sorted according
to the number of solved instances, and, in case of a tie, according to CPU time.

4 Experimental Analysis

The experiments reported in this section ran on 10 identical PCs equipped with a proces-
sor Intel Pentium I'V running at 3.2GHz processor with 1GB of RAM and running GNU
Linux Debian 2 . 4 . 27-2. For each run, the CPU time limit was set to 900 CPU seconds,
and, in order to prevent memory swapping, we also set a memory limit at 900MB.

Table 3 reports a global picture of the evaluation results considering all 71 instances.
We can see that CLASP is the best solver, able to solve more than 90% of the dataset,
and that MINISAT+ performance are very close. On the other hand, one solver only —
namely GLPPB— was not able to solve 50% of the whole dataset, and 7 solvers were able
to deal with at least 75% (53 instances) of the whole dataset. Notice that these 7 solvers
were designed to solve 4 (out of 6 taken into account) different problem formalisms,
namely ASP (CLASP), PB (MINISAT+ and BSOLO), Max-SAT (MINIMAXSAT, SAT4J,
and WMAXSATZ), and IP (CPLEX). We also notice that SCIP, a CIP solver, tops to about
66% of the dataset, while the CIP solver (HYS AT) tops to 62% of the dataset.

Table 4 shows the results for each single domain. Notice that we drop from our anal-
ysis the domain OPENSTACKS, for which we report that no solver solved the single in-
stance contained. We conjecture that one of the main problems is the high amount of
both variables and constraints, as reported in Table 1. Looking at Table 4 (top-left), do-
main OPENSTACKS-IPCO08, we can see that only CLASP was able to deal with all domain
instances, while MINIMAXSAT, MINISAT+, and WBO top to 1. The bad performance
related to the remaining 10 solvers is mainly to ascribe to the instances size, as we said
for the OPENSTACKS domain. Considering now domain PATHWAYS (Table 4, top-right),
we report that no solver was able to solve all instances. The best solver is MINISAT+
that tops to 15 out of 20 instances, followed by CLASP. Also BSOLO and SAT4J solved
the same amount of instances, but they spent one order of magnitude more of CPU time.
Overall, 8 solvers were able to solve at least 50% of the instances, and we also report
that all solvers solved at least 30% of the domain dataset. As we can see from Table 1,
such domain contains some instances with a smaller number of variables w.r.t. the ones
in OPENSTACKS-IPCO08. More, if we look at Table 1, we also can see that PATHWAYS
is characterized by a smaller proportion between soft and hard constraints, always w.r.t.



Domain Solver Solved Domain Solver Solved
# Time # Time

CLASP 2 623.81 MINISAT+ 15 21.00
MINIMAXSAT 1 54.20 CLASP 15 24.79

MINISAT+ 1 62.58 BSOLO 15 127.24

WBO I 645.73 SAT4J 15 721.99

AKMAXSAT — - MINIMAXSAT 14 69.20

BSOLO — — CPLEX 14 943.86

GLPPB — — INCWMAXSATZ | 13 499.80
OPENSTACKS-1PC08 | HYSAT - - PATHWAYS | WMAXSATZ 12 | 1343.86
2) INCWMAXSATZ - - (20) MSUNCORE 8 14.54
MSUNCORE — - SCIP 8 138.48

SAT4J — — AKMAXSAT 8 387.17

SCIP - - HYSAT 8 | 1537.65

WMAXSATZ - - WBO 7 1.59

CPLEX - - GLPPB 6 389.46
INCWMAXSATZ | 28 0.35 CPLEX 7 20.18

MINISAT+ 28 1.19 WMAXSATZ 7 36.62

WMAXSATZ 28 1.23 MINISAT+ 7 43.86

MINIMAXSAT 28 1.35 INCWMAXSATZ 7 58.18

BSOLO 28 1.53 CLASP 7 91.96

CLASP 28 1.55 SCIP 7 197.90

PEGSOL CPLEX 28 34 STORAGE SAT4] 7 457.71
(28) AKMAXSAT 28 15.04 (@) MINIMAXSAT 6 10.84
SAT4J 28 68.64 AKMAXSAT 5 5.39

SCIP 28 70.40 BSOLO 5 64.54

HYSAT 28 207.70 WBO 5 101.66

WBO 24 92.43 MSUNCORE 4 0.32

MSUNCORE 21 694.43 HYSAT 4 56.86

GLPPB 15 | 1817.76 GLPPB 2 1.17

CLASP 10 106.2 MSUNCORE 2 18.67

MINISAT+ 10 124.97 WBO 2 23.04

BSOLO 10 422.92 CLASP 2 48.46

MINIMAXSAT 8 48.95 MINIMAXSAT 2 57.95

WBO 8 168.15 MINISAT+ 2 390.36

SAT4J 8 42454 BSOLO I 119.69

TPP CPLEX 8 2042.1 TRUCKS SAT4J 1 359.17
(10) WMAXSATZ 7 687.19 3) AKMAXSAT — -
MSUNCORE 4 0.34 CPLEX - -
INCWMAXSATZ 4 1.32 GLPPB - -

SCIP 4 15.21 HYSAT — -

AKMAXSAT 4 51.56 INCWMAXSATZ — —

HYSAT 4 63.45 SCIP - -

GLPPB — — WMAXSATZ — —

Table 4. Evaluation results by domain. The table is organized similarly to Table 3. A dash means
that a solver did not solve any instance in the related domain.

OPENSTACKS-IPCO08. Looking yet at Table 4 (middle-left), domain PEGSOL, the reported
results highlight how these instances seem to be easier for the solvers. All considered
systems but 3 were able to solve all instances, and, making a relationship between such
performances and statistics in Table 1, we can conjecture that these results are mainly
due to the fact that such instances are composed by a small number of variables and con-
straints. Considering now domain STORAGE (Table 4, middle-right), we can see that 50%
of solvers are able to solve all instances in the domain. Looking at the results, CPLEX is
the solver having best performance, and it is faster than both MINISAT+ and CLASP, by
a 2x and a 4x factor, respectively. Looking now at the results related to the domains at
the bottom of Table 4, we can see that, concerning TPP domain (bottom-left), CLASP and
MINISAT+ confirm their good performance. We also notice the performance of BSOLO in
this domain, that is the only other solver that solves all comprised instances. Six solvers
are not able to solve 50% of the total amount of instances. Concluding the analysis of



Domain Overall Time Hardness Domain | Overall | Time | Hardness |
N # EA [ ME | MH [N #| [EA [ ME [ MH |

OPENSTACKS-I1PCO8 2 2 | 623.81 - 1 1 PATHWAYS | 20 | 15 | 17.77 6 9 -
PEGSOL 28 | 28 0.32 11 17 - STORAGE 7 7 | 1425 2 5 -
TPP 10 | 10 | 105.68 - 10 — || TRUCKS 3 2 | 18.67 - 2 -

Table 5. Classification of instances by domain. For each domain we report the name (column
“Domain”), the total amount of instances in the domain, and the number of solved instances
(group “Overall”, columns “N” and “#”, respectively). It follows column “Time”, which report
the CPU time taken to solve the instances. Finally, group “Hardness” reports the total amount of
easy, medium, and medium-hard instances (columns “EA”, “ME”, and “MH”, respectively).

Table 4, about TRUCKS domain (bottom-right) we can first report that no solver solved
all instances. We also can see that the best two solvers, MSUNCORE and WBO did not
perform very well in the other domains. If we consider statistics related to the 2 solved
instances, we report that their structure in terms of relationship between variables, soft,
and hard constraints is quite different from instances in the other domains — see Table 1.
We can conjecture that heuristics in MSUNCORE and WBO are effective in such cases.

In Table 5 we report a “domain-centered” classification. In the table, the number of
instances solved and the cumulative time taken for each domain is computed considering
the “State Of The Art” (SOTA) solver, i.e., the ideal solver that always fares the best time
among all the solvers. Thus, an instance is solved if at least one of the solvers solves
it, and the considered time is the best among the times of the solvers that solved the in-
stances. The instances are also classified according to their empirical hardness as follows:
an instance is called “easy” if it has been solved by all the considered solvers; “medium”
are those non-easy that can be solved by at least two solvers; “medium-hard” are those
solved by only one solver; “hard” are the ones remained unsolved. Looking at Table 5,
we can see that the SOTA solver is able to solve 64 instances, resulting in 19 easy, 44
medium, 1 medium-hard, and 7 hard instances. Considering OPENSTACKS-IPC08, per-
formances of SOTA solver are to ascribe to CLASP, that also solves uniquely 1 instance.
Looking now at PATHWAYS, we notice that 5 (out of 20) instances are very challenging
for the whole pool of solvers. We also notice that the SOTA solver major contributors are
MINIMAXSAT and INCWMAXSATZ, with 6 and 4 instances, respectively. Finally, con-
sidering the whole dataset, we report that the major contributors to the SOTA solver are
INCWMAXSATZ and MINIMAXSAT (33%), followed by MINISAT+ and CLASP (11%).
We also report that the remaining 7 solvers (out of 14) do not contribute to the SOTA
solver.
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