
[10:19 17/7/2010 exq023.tex] LogCom: Journal of Logic and Computation Page: 1 1–25

Constraints Corner

Introducing Preferences in Planning as
Satisfiability
ENRICO GIUNCHIGLIA and MARCO MARATEA, DIST - University of
Genova, Viale F. Causa 15, Genova, Italy.
E-mail: enrico@dist.unige.it; marco@dist.unige.it

Abstract
Planning as Satisfiability is one of the most well-known and effective techniques for classical planning: satplan has been the
winning system in the deterministic track for optimal planners in the 4th International Planning Competition (IPC) and a co-
winner in the 5th IPC. Given a planning problem Π and a makespan n, the approach based on satisfiability (a.k.a. SAT-based)
simply works by (i) constructing a SAT formula Πn and (ii) checking Πn for satisfiability: if there is a model for Πn then
we have found a plan, otherwise n is increased. The approach guarantees that the makespan is optimal, i.e. minimum. In this
article we extend the Planning as Satisfiability approach in order to handle preferences and satplan in order to solve problems
with simple preferences. This allows, e.g. to take into consideration ‘plan quality’ issues other than makespan, like number of
actions and ‘soft’ goals. The basic idea is to explore the search space of possible plans in accordance with the given partially
ordered preferences. We first prove that, at fixed makespan, our approach returns an ‘optimal’ plan, if any. Then, considering
both classical planning problems and problems coming from IPC-5, we show that satplan extended in order to deal with
preferences: (i) returns optimal plans that are often of considerable better quality, i.e. with fewer actions or with a better plan
metric on soft goals, than satplan; and (ii) is overall competitive, in terms of plan quality, with sgplan, the winning system
in the ‘SimplePreferences’ category of the IPC-5. Notably, such results are often obtained without sacrificing efficiency.
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1 Introduction

Planning as Satisfiability [42] is one of the most well-known and effective techniques for classical
planning: satplan [43, 44] is a planner based on propositional satisfiability (SAT) and, considering
the track for optimal propositional planner, it has been the winning system in the 4th International
Planning Competition (IPC)1 [38] and a co-winner in the IPC-52 [30] (together with another planner
based on SAT, MaxPlan [14, 16, 61]). Given a planning problem Π, the basic idea of Planning as
Satisfiability (a.k.a. SAT-based) is to convert the problem of determining the existence of a plan for Π

with a fixed makespan n into a SATformulaΠn such that there is a one-to-one correspondence between
the plans of Π with makespan n and the interpretations satisfying Πn. The SAT-based approach thus
works by: (i) constructing a SAT formula Πn; and (ii) checking Πn for satisfiability: if there is a
model for Πn then we have found a plan, otherwise n is increased. The approach guarantees that the
makespan is optimal, i.e. minimum. Of course, for satplan effectiveness, it is crucial the availability
of very effective SAT solvers, like minisat [24]. minisat is based on the Davis–Logemann–Loveland
procedure (dll) [17] like most of the state-of-the-art SAT checkers, and won the SAT competition in

1http://www.tzi.de/˜edelkamp/ipc-4/
2http://zeus.ing.unibs.it/ipc-5/
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2 Introducing Preferences in Planning as Satisfiability

20053 (together with the SAT/CNF minimizer SatElite), the SAT race 2006 and 2008,4 on industrial
benchmarks.

In this article we extend the Planning as Satisfiability approach in order to handle both qualitative (in
which the relative importance among preferences is described by, e.g. a partial order) and quantitative
(using a reward-based approach) preferences, and satplan in order to solve problems with simple
preferences. Qualitative and quantitative approaches both received attention in planning, each having
its pros and cons, as commented in, e.g. section 2.3 of [30]. By ‘simple’ we mean that the structure of
the partial order is restricted to particular, e.g. linear, cases: despite this limitation, which nonetheless
only holds at implementation level, we will see that simple preferences allow to express and solve
important optimization problems.

The basic idea of our algorithm, extending the results first presented in the CSP setting in [8]
(in the context of CP-net [7]) and then in [13, 33] in the SAT setting, is to explore the search space
of possible plans in accordance with the preferences expressed as a partial order, i.e. to force the
splitting of the SAT solver in order to follow the given partial order on preferences. Qualitative
preferences are naturally handled in this way, while quantitative preferences need an encoding of
the objective function to be minimized/maximized. This allows, e.g. to take into consideration ‘plan
quality’ issues other than makespan, like number of actions and plan metrics defined on ‘soft’ goals.
We implemented this approach by modifying satplan, and we call satplan(P) the resulting system.

We first prove that, at fixed makespan, our approach returns an ‘optimal’ plan, i.e. such that there
is no a ‘better’ plan under the expressed preferences, if any. Then, we show that satplan(P):

(1) returns optimal plans that are often of considerable better quality, i.e. with fewer actions or
with a better plan metric defined on soft goals, than satplan; and

(2) is overall competitive, in terms of plan quality, with sgplan when considering benchmarks
from IPC-5 related to optimization on goals violation: even if satplan(P) and sgplan solve a
different problem, i.e. bounded versus unbounded, they are still both targeted for optimization.
This is a remarkable result given that sgplan is the clear winner in the ‘SimplePreferences’
category, which includes ‘soft’ goals, at the IPC-5.

About the performance, we show that satplan(P) is often as effective as satplan, in terms of CPU
time, on the problems we consider where the number of preferences involved is not very high, i.e. that
on these problems introducing simple preferences in satplan does not affect its performances. Indeed,
if we consider planning problems where the number of preferences is very high compared to the total
number of variables in the problem, e.g. the issue of determining minimal length plans (corresponding
to problems with thousands of preferences), the performance of satplan(P) is comparable to those of
satplan in many cases, but can be significantly worse. Even if for the problems with ‘few’preferences
this is not surprising, by correlating the good behaviour of satplan(P) to the relative low number
(in the order of tens) of preferences, this is instead quite surprising when we consider problems with
‘many’ preferences, e.g. the problem of determining minimal length plans, where any action variable
corresponds to a preference: in such case it is common to have problems with several thousands of
preferences, and it is well known that limiting the splitting of the SAT solver can cause an exponential
degradation of its performances [41]. When the number of preferences is not high, only few (initial)
branches are imposed. However, satplan(P) can be much slower than satplan when considering

3http://www.satcompetition.org/2005/
4See http://fmv.jku.at/sat-race-2006/ and http://baldur.iti.uka.de/sat-race-2008/,

respectively.
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Introducing Preferences in Planning as Satisfiability 3

problems with a high ratio of number of preferences (e.g. action variables) to the total number of
variables.

Our analysis is conducted considering both qualitative and quantitative preferences, different
encodings of the objective function in the case of quantitative preferences, most of the propositional
planning domains from the first 5 IPCs and some domains from the ‘SimplePreferences’ category
of the IPC-5. About soft goals, we have considered different types of benchmarks. First, we have
adapted the original STRIPS [26] planning instances in order to consider all goals as being ‘soft’. But,
besides the fact that in the instances so far mentioned goals are precisely soft, i.e. they can be satisfied,
or not, without affecting plan validity, such instances are not fully satisfactory because goals are non-
conflicting, i.e. all soft goals can be (eventually) satisfied at the same time. Then, given that the case
in which not all goals can be satisfied (often called over-subscription planning [52, 57]) is practically
very important, we have considered some domains from the ‘SimplePreferences’ category of the
IPC-5: given that on such domains someADL [49] constructs are used in order to express quantitative
preferences on soft goals, we rely on a compilation into a STRIPS problem. The compilation is similar
to the ones used in [5, 27] and is detailed in the experimental part. For such benchmarks, we have
considered both the weighted and the unweighted (making all weights associated to goals violation
to be uniform) related versions.
Summing up, in this article

• We extend (i) the Planning as Satisfiability approach in order to deal with both qualitative and
quantitative preferences; and (ii) satplan in order to handle simple preferences.

• We prove that, at fixed makespan, our approach returns an ‘optimal’ plan, if any.
• We then show that satplan(P) often returns plans of considerably better quality than satplan.

Moreover, satplan(P) is overall competitive with the state-of-the-art system sgplan when
considering plan quality issues related to non-conflicting and conflicting soft goals with uniform
weights.

• We show that the performance of satplan(P) are comparable to those of satplan (when given
the same problems without preferences) even when there is a high number of preferences, and
that high deviations can only appear when the ratio between the number of preferences to the
total number of variables is relatively high.

Moreover, as a side effect of our analysis, in the case of quantitative preferences we show that the
encoding based on [60] leads to better performances than the one based on [3], at least in our setting.
Remarkably, this fact does not agree with the good results of [3] presented in [3, 12].

The article is structured as follows. We first introduce some basic notation and terminology
(Section 2), then we introduce preferences and the concept of ‘optimal’ plan (Section 3) and show
how it is possible to incorporate them in planning as satisfiability (Section 4). The implementation
and experimental analysis is presented in Section 5. We end the article with the related work in
Section 6 and some final remarks in Section 7.

2 Basic preliminaries

Let F and A be the set of fluents and actions, respectively. A state is an interpretation of the fluent
signature. A complex action is an interpretation of the action signature. Intuitively, a complex action
α models the concurrent execution of the actions satisfied by α, i.e. it is a set of actions that can be
executed in parallel.
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A planning problem is a triple 〈I,tr,G〉 where:

• I is a Boolean formula over F and represents the initial state;
• tr is a Boolean formula over F ∪A∪F ′ where F ′ ={f ′ : f ∈F} is a copy of the fluent signature

and represents the transition relation of the automaton describing how (complex) actions affect
states (we assume F ∩F ′ =∅); and

• G is a Boolean formula over F and represents the set of goal states.

The above definition of planning problem differs from the traditional ones in which the description
of actions’ effects on a state is described in a high-level action language like STRIPS or PDDL. We
preferred this formulation because the techniques we are going to describe are independent of the
action language used, at least from a theoretical point of view.

Of course, in our setting, we assume that the description of actions’ effects is deterministic: the
execution of a (complex) action α in a state s can lead to at most one state s′. More formally, for each
state s and complex action α there is at most one interpretation extending s∪α and satisfying tr.
Consider a planning problem Π=〈I,tr,G〉. In the following, for any integer i:

• if F is a formula in the fluent signature, Fi is obtained from F by substituting each f ∈F with fi;
and

• tri is the formula obtained from tr by substituting each symbol p∈F ∪A with pi−1 and each
f ∈F ′ with fi.

If n is an integer, the planning problem Π with makespan n is the Boolean formula Πn defined as

I0 ∧∧n
i=1tri ∧Gn (n≥0) (1)

and a plan for Πn is an interpretation satisfying (1).
As an example, consider the planning problem of going to work from home. Assuming that we can

use the car or the bus or the bike, this scenario can be easily formalized using a single fluent variable
AtWork and three action variables Car, Bus and Bike, with the obvious meaning. The problem with
makespan 1 can be expressed by the conjunction of the formulas

¬AtWork0,

AtWork1 ≡¬AtWork0 ≡ (Car0 ∨Bus0 ∨Bike0),
AtWork1,

(2)

in which the first formula corresponds to the initial state, the second to the transition relation and the
third to the goal state. Equation (2) has 7 plans (i.e. satisfying interpretations), each corresponding
to a non-empty subset of {Car0,Bus0,Bike0}.

3 Preferences and optimal plans

Let Πn be a planning problem Π with makespan n.
In addition to being at work at time 1, we may want to avoid taking the bus (at time 0). Formally,

this preference is expressed by the formula ¬Bus0, and it amounts to prefer the plans satisfying
¬Bus0 to those satisfying Bus0. In general, there can be more than one preference, and it may not be
possible to satisfy all of them. For example, in (2) it is not possible to satisfy the three preferences
¬Bike0, ¬Bus0 and ¬Car0 simultaneously.
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A ‘qualitative’ solution to the problem of conflicting preferences is to define a partial order on
them. A qualitative preference (for Πn) is a pair 〈P,≺〉 where P is a set of formulas (the preferences)
whose atoms are in Πn and ≺ is a partial order on P. The partial order can be empty, meaning that all
the preferences are equally important. The partial order can be extended to plans for Πn. Consider
a qualitative preference 〈P,≺〉. Let π1 and π2 be two plans for Πn. π1 is preferred to π2 (w.r.t.
〈P,≺〉) iff:

(1) they satisfy different sets of preferences, i.e. {p :p∈P,π1 |=p} ={p :p∈P,π2 |=p}; and
(2) for each preference p2 satisfied by π2 and not by π1 there is another preference p1 satisfied by

π1 and not by π2 with p1 ≺p2.

The second condition says that if π1 does not satisfy a preference p2 which is satisfied by π2, then
π1 is preferred to π2 only if there is a good reason for π1 |=p2, and this good reason is that π1 |=p1,
p1 ≺p2 and π2 |=p1, i.e. π1 satisfies a preference (p1) which is preferred to p2 and not satisfied by
π2. We write π1 ≺π2 to mean that π1 is preferred to π2. It is easy to see that ≺ defines a partial order
on plans for Πn w.r.t. 〈P,≺〉. A plan π is optimal for Πn (w.r.t. 〈P,≺〉) if it is a minimal element of
the partial order on plans for Πn, i.e. if there is no plan π′ for Πn with π′ ≺π (w.r.t. 〈P,≺〉). Other
preference formalisms include [6, 8, 18, 54] and are discussed in Section 6.

A ‘quantitative’ approach to solve the problem of conflicting preferences is to assign weights to
each of them and then minimize/maximize a given objective function involving the preferences and
their weights. In most cases, the objective function is the weighted sum of the preferences: this has
been the case of each planning problem in the IPC-5. With this assumption, a quantitative preference
(for Πn) can be defined as a pair 〈P,c〉 where P is a set of formulas in Πn signature (as before) and c
is a function associating an integer to each preference in P. Without loss of generality, we can further
assume that c(p)≥0 for each p∈P and that we are dealing with a maximization problem. Thus, a
plan is optimal (w.r.t. 〈P,c〉) if it maximizes5

∑

p∈P:π|=p

c(p). (3)

For instance, considering the planning problem (2), if we have the qualitative (respectively
quantitative) preference:

• 〈{¬Bike0,¬Bus0,¬Car0},∅〉, (respectively 〈{¬Bike0,¬Bus0,¬Car0},c〉, where c is the constant
function 1) then there are three optimal plans, corresponding to {Bike0}, {Bus0},{Car0}.

• 〈{¬Bike0,¬Bus0,¬Car0},{¬Bike0 ≺¬Car0}〉, (respectively 〈{¬Bike0,¬Bus0,¬Car0},c〉,
where c(¬Bike0)=2 while c(¬Bus0)=c(¬Car0)=1) then there are two optimal plans,
corresponding to {Bus0}, {Car0}.

5We have seen that the types of functions defined by (3), i.e. additive, were the only ones used in IPC-5. Nonetheless,
assuming that c(p)<0 for some p∈P, we can replace p with ¬p in P and define c(¬p)=−c(p): the set of optimal plans do not
change. Given 〈P,c〉 and assuming we are interested in minimizing the objective function (3), we can consider the quantitative
preference 〈P′,c′〉 where P′ ={¬p :p∈P} with c′(¬p)=c(p) and then look for a plan maximizing

∑
p∈P′ :π|=p c′(p).
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function ql-plan(Πn,P,≺)
1 return opt-dll(cnf(Πn ∧∧p∈P(v(p)≡p)),∅,v(P),v(≺))

function opt-dll(ϕ,S,P′,≺′)
2 if (∅∈ϕ) return false;
3 if (ϕ=∅) return S;
4 if ({l}∈ϕl) return opt-dll(ϕl,S∪{l},P′,≺′);
5 l := ChooseLiteral(ϕ,S,P′,≺′);
6 V := opt-dll(ϕl,S∪{l},P′,≺′);
7 if (V =false) return V ;
8 return opt-dll(ϕl,S∪{l},P′,≺′).

Figure 1. The algorithm of ql-plan.

• 〈{Bike0 ∨Bus0},∅〉, (respectively 〈{Bike0 ∨Bus0},c〉, where c is the constant function 1) then all
the plans except for the one corresponding to {Car0} are optimal.

4 Planning as satisfiability with preferences

Let Πn be a planning problem with makespan n. Consider a qualitative preference 〈P,≺〉. In planning
as satisfiability, plans for Πn are generated by invoking a SAT solver on Πn. Optimal plans for Πn
can be obtained by:

(1) encoding the set P of preferences as a formula to be conjoined with Πn; and
(2) modifying dll in order to search first for optimal plans, i.e. to branch according to the partial

order ≺.

The resulting procedure is reported in Figure 1, in which:

• for each p∈P, v(p) is a newly introduced variable;
• v(P) is the set of new variables, i.e. {v(p) :p∈P};
• v(≺)=≺′ is the partial order on v(P) defined by v(p)≺′ v(p′) iff p≺p′; and
• cnf(ϕ), where ϕ is a formula, is a set of clauses (i.e. set of sets of literals) such that:

◦ for any interpretation µ′ in the signature of cnf(ϕ) such that µ′ |=cnf(ϕ) it is true also that
µ |=ϕ, where µ is the interpretation µ′ but restricted to the signature of ϕ; and

◦ for any interpretation µ |=ϕ there exists an interpretation µ′, µ′ ⊇µ, such that µ′ |=cnf(ϕ).
There are well-known methods for computing cnf(ϕ) in linear time by introducing additional
variables, e.g. [40, 50, 55];

• S is an assignment, i.e. a consistent set of literals. An assignment S corresponds to the partial
interpretation mapping to true the literals l∈S;

• l is a literal and l is the complement of l;
• ϕl returns the set of clauses obtained from ϕ by (i) deleting the clauses C ∈ϕ with l∈C and

(ii) deleting l from the other clauses in ϕ; and
• ChooseLiteral(ϕ,S,P′,≺′) returns an unassigned literal l (i.e. such that {l,l}∩S =∅) in ϕ such

that either all the variables in P′ are assigned, and an arbitrary literal in ϕ is selected, or l∈P′
and all the other variables v(p)∈P′ with v(p)≺ l are assigned.
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As it can be seen from the figure, opt-dll [33] is the standard dll except for the modification
in the heuristic, i.e. ChooseLiteral, which initially selects literals according to the partial order ≺′.
Thus, opt-dll performs the following steps: at line

2: if there is a contradictory clause in ϕ, i.e. a clause C such that ∃l∈C : l∈S, then backtracking
occurs;

3: if ϕ is satisfiable, then S is returned as optimal solution;
4: if there is a unit clause in ϕl, i.e. a clause with just one literal, then the literal is assigned;
5: if the base cases at lines 2 and 3 do not hold, and there is no unit clause, then a new literal l is

chosen according to the behaviour of ChooseLiteral explained above;
6: l is assigned and, at line 7, the optimal solution is returned if such branch has not encountered

an inconsistency; and
8: the branch extending l is followed (if the branch extending l at line 6 returned false).

As an example. if we have two preferences p1 and p2 with p1 ≺p2, then the algorithm works as
follows: it

(1) looks for assignments extending {v(p1),v(p2)}: if the search fails (meaning that no plan is found
extending this assignment) then opt-dll backtracks;

(2) looks for assignments extending {v(p1),¬v(p2)}: if the search fails, then opt-dll backtracks;
(3) looks for assignments extending {¬v(p1),v(p2)}: if the search fails, then opt-dll backtracks;

and
(4) looks for assignments extending {¬v(p1),¬v(p2)}: if the search fails, then opt-dll returns

false. This corresponds to the case when Πn is unsatisfiable, and thus no plan exists for Π at
makespan n.

Of course, in the above, we have assumed that v(p2) has not been assigned as unit at line 4 of Figure 1.
Consider now the problem (2) with p1 = (¬Bike0 ∧¬Bus0 ∧¬Car0) and p2 = (¬Bike0 ∧¬Bus0)

with p1 ≺p2. ql-plan returns the plan corresponding to {Car0} determined while exploring the branch
extending {¬v(p1),v(p2)}. This plan is optimal, as stated by the following theorem.

Theorem 1

Let Πn be a planning problem Π with makespan n, and let 〈P,≺〉 be a qualitative preference for Πn.
ql-plan(Πn,P,≺) returns

(1) false if Πn has no plans, and
(2) an optimal plan for Πn w.r.t. 〈P,≺〉, otherwise.

Proof. From [19], we know that opt-dll(ϕ,S,P′,≺′) returns

(1) false if ϕ is unsatisfiable, and
(2) an ‘optimal solution’ for ϕ w.r.t. 〈P′,≺′〉, otherwise.

Given these, in order for the actual theorem to hold, we have to show that:

• for each formula p∈P there must be a corresponding variable v(p)∈P′, and vice versa;
• for each p1 and p2, {p1,p2}⊆P such that p1 ≺p2, it must hold that v(p1)≺′ v(p2), and vice versa;

and
• for each assignment S in the signature of ϕ such that S |=ϕ, it must also hold that S′ |=Πn,

where S′ corresponds to S but reduced to the signature of Πn, and for each assignment S′ in the
signature of Πn such that S′ |=Πn, there exists an assignment S, S ⊇S′, such that S |=ϕ.
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function qt-plan(Πn,P,c)
1 return opt-dll(cnf(Πn ∧Bool(P,c)),∅,b(c),p(c))

Figure 2. The algorithm of qt-plan.

The first two points hold by definition of v(P) and v(≺). The third point holds from the assumptions
on cnf. �

Consider now a quantitative preference 〈P,c〉. The problem of finding an optimal plan for Πn w.r.t.
〈P,c〉 can be solved again using opt-dll in Figure 1 as core engine. The basic idea is to encode the
value of the objective function (3) as a sequence of bits bk−1,...,b0 and then consider the qualitative
preference 〈{bk−1,...,b0},{bk−1 ≺bk−2,...,b1 ≺b0}〉.

The details of such encoding depend if we are using a binary or an unary encoding. For a binary
encoding, let Bool(P,c) be a Boolean formula such that

(1) if k =�log2((
∑

p∈P c(p))+1)�, Bool(P,c) contains k new variables bk−1,...,b0; and
(2) for any plan π satisfying Πn, there exists a unique interpretation µ to the variables in Πn ∧

Bool(P,c) such that:

(a) µ extends π and satisfies Πn ∧Bool(P,c); and

(b)
∑

p∈P:π|=pc(p)=∑k−1
i=0 µ(bi)×2k , where µ(bi) is 1 if µ assigns bi to true, and is 0 otherwise.

If the above conditions are satisfied, we say that Bool(P,c) is a Boolean encoding of 〈P,c〉 with output
bk−1,...,b0.

An example of the binary encoding is Warners [60], denoted with ‘W-encoding’ in the following.
The encoding by Bailleux and Boufkhad [3], denoted with ‘BB-encoding’ in the following is,
instead, an example for the unary case. The BB-encoding can only handle cardinality constraints, i.e.
Bool(P,1), with:

(1) k =|P|; and
(2) |{p∈P :π |=p}|=∑k−1

i=0 µ(bi).

Both encodings can be realized in polynomial time, but the size of the W-encoding is linear in |P|
while the BB-encoding is quadratic. However, the latter has better computational properties and it
has been reported in the literature to lead to positive results (see e.g. [3, 12]).

In the quantitative case, the resulting procedure, qt-plan, is represented in Figure 2 in which
Bool(P,c) is a Boolean encoding of 〈P,c〉 with output bk−1,...,b0, b(c)={bk−1,...,b0} and p(c) is
the partial order bk−1 ≺bk−2,...,b1 ≺b0.

Assuming we have the quantitative preference 〈P,c〉 with P={p1,p2}, c(p1)=2 and c(p2)=1,
Bool(P,c) for the binary case is simply (b1 ≡p1)∧(b0 ≡p0) and the assignments generated by our
approach are in the following order: qt-plan

(1) looks for assignments extending {b1,b0}: this corresponds to search for plans with cost 3; if no
such plan is found, then opt-dll backtracks;

(2) looks for assignments extending {b1,¬b0}: this corresponds to search for plans with cost 2; if
no such plan is found, then opt-dll backtracks;

(3) looks for assignments extending {¬b1,b0}: this corresponds to search for plans with cost 1; if
no such plan is found, then opt-dll backtracks; and
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Introducing Preferences in Planning as Satisfiability 9

(4) looks for assignments extending {¬b1,¬b0}: if no plan is found, then opt-dll returns false.
Again, this corresponds to the case when Πn is unsatisfiable, and thus no plan exists for Π at
makespan n.

Consider again problem (2), and the two preferences:

(1) p1 = (¬Bike0 ∧¬Bus0 ∧¬Car0); and
(2) p2 = (¬Bike0 ∧¬Bus0)

with c(p1)=2 and c(p2)=1: we have seen that two bits b1 and b0 are sufficient as output of
Bool({p1,p2},c). On this example, qt-plan returns the plan corresponding to {Car0} determined
while exploring the branch extending ¬b1,b0. This plan is optimal, as stated by the following theorem.

Theorem 2

Let Πn be a planning problem Π with makespan n, and let 〈P,c〉 be a quantitative preference for Πn.
qt-plan(Πn,P,c) returns

(1) false if Πn has no plans, and
(2) an optimal plan for Πn w.r.t. 〈P,c〉, otherwise.

Proof. The proof is similar to the one of Theorem 1. Consider ϕ′ =cnf(Πn ∧Bool(P,c)).
Again from [19], we know that opt-dll(ϕ′,∅,b(c),p(c)) returns

(1) false if ϕ′ is unsatisfiable, and
(2) an ‘optimal solution’ for ϕ′ w.r.t. 〈b(c),p(c)〉, otherwise.

Given these, in order for the actual theorem to hold, we have to show that:

• for each pair 〈P,c〉 of quantitative preferences, there must be a corresponding qualitative pair
〈b(c),p(c)〉, and vice versa; and

• for each assignment S in the signature of ϕ′ such that S |=ϕ′, it must also hold that S′ |=Πn,
where S′ corresponds to S but reduced to the signature of Πn, and for each assignment S′ in the
signature of Πn such that S′ |=Πn, there exists an assignment S, S ⊇S′, such that S |=ϕ′.

The first point holds by definitions from items 1 and 2b in the definition of Bool. The second point
holds from the assumptions on cnf. �

5 Implementation and experimental analysis

We implemented opt-dll in minisat,6 which is also one of the solvers satplan can use, and that
we set as default for satplan: thus, ql-plan is implemented at each makespan of the satplan’s
approach, until the optimal makespan. Our approach thus stops at the first satisfiable formula, and
guarantees that no ‘better’ plan exists in this optimal makespan under the expressed preferences. Of
course, better plans can instead exist at higher makespan. At implementation level, we performed
some optimizations of the algorithm presented in Figure 1: (i) we do not introduce an auxiliary
variable when the preference is already an atom (e.g. in the case of preferences defined on actions),
in this case (sometimes significantly) reducing the number of variables opt-dll has to deal with; and
(ii) we substitute ≡ with ∨ again in the opt-dll call at line 1, given it guarantees correctness and

6
satplan’s default solver is siege: we run satplan with siege and minisat, and we have seen no significant differences

in satplan’s performances.
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10 Introducing Preferences in Planning as Satisfiability

completeness as well. In the case of soft goals, the variables in v(P) play the roles of ‘goal selectors’:
they indicate if a certain soft goal is satisfied or not.

In the case of quantitative preferences, we considered the W- and BB-encoding. In the
following, we use satplan(s), satplan(w) and satplan(b) to denote satplan modified in order
to handle qualitative, quantitative with W-encoding and quantitative with BB-encoding preferences,
respectively. Given they are based on satplan, we remind that these planners can find an optimal
plan, at fixed makespan, under the expressed preferences.

In our experiments, we consider satplan(w)/(b)/(s), sgplan [39] and plain satplan. sgplan has
been the clear winner in the ‘SimplePreferences’ category, which includes metrics defined on soft
goals, in the IPC-5 and is thus the reference system for the problems that we consider, even if we
have to take into account that it solves a different problem, i.e. unbounded and sequential. satplan(s)
is a variation which can only deal with the qualitative case and cannot guarantee optimality in the
quantitative case: its results are presented, or most of the time commented in the text, to show
that often are of the same quality of satplan(w)/(b), or close, and often obtained in shorter time
(at least in the domains we consider). Thus, it could be often used for computing approximated
results efficiently. satplan has been included in order to evaluate the differences in the performance
between our systems and satplan itself: we expect satplan to satisfy fewer soft goals but to have
performance no worse than satplan(w)/(b)/(s). A final crucial observation: in the cases where there
are no ‘hard’ goals, the various versions of satplan would always find a valid plan, even when the
makespan n is 0 (and the returned plan would be the empty one). In order to avoid this situation,
which is inherited from the satplan approach, for satplan/(w)/(b)/(s) we added a constraint saying
that at time n at least one of the soft goals has to be satisfied. In practice, we added a clause with the
disjunction of all goal selectors in v(P). Because of this, we discarded the problems whose original
version has only one goal because they would have no soft goal. Also note that sgplan rejects these
instances. Moreover, we also discarded instances where satplan exits with a syntax error, i.e. some
tpp and trucks instances and one promela optical instance.

All the tests have been run on a Linux box equipped with a Pentium IV 3.2 GHz processor and
1 GB RAM. Timeout has been set to 900 s.

We will first consider the problems with soft goals, which have received a lot of attention since
the IPC-5 in 2006: in the next three sections we present analysis for three ‘types’ of benchmarks
of increasing difficulty, ranging from a modification of classical STRIPS planning problems, to
benchmarks with conflicting goals with uniform weights to the ones used in the ‘SimplePreferences’
category of the IPC-5. The last section is then devoted to the analysis on planning problems where
the goal is the minimization of the plan length.

5.1 Non-conflicting soft goals

For this analysis, given that satplan can only directly handle STRIPS domains, we considered the
pipesworld-tankage and notankage, satellite, airport, promela-philosophers and optical, psr small,
depots, driverLog, zenoTravel, freeCell, logistics, blocks-world, mprime and mistery domains from
the first 4 IPCs, and openstacks, pathway, storage, tpp and trucks from IPC-5, in their STRIPS
formulation.7 In these problems, the goal corresponds to a set G of literals and without soft goals. We
modified these problems in order to interpret all the literals in G as ‘soft goals’. More precisely, we
considered both the qualitative preference 〈G,∅〉 and the quantitative preference 〈G,c〉 in which c is

7Note that the IPC-6 does not contain basic STRIPS problems.
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Table 1. Number of soft goals satisfied on STRIPS domains coming from IPCs

DOMAIN sgplan satplan satplan(w) satplan(b) satplan(s)

pipesworld-notankage 10 43 102 99 96
pipesworld-tankage 45 29 108 92 100
satellite 67 27 75 74 75
airport 0 31 66 63 51
promela-philosophers 55 29 464 464 464
promela-optical 52 13 104 104 104
psr-small 152 48 232 232 232
depots 23 21 59 59 56
driverLog 229 20 97 97 82
zenoTravel 216 19 67 60 66
freeCell 53 7 14 14 13
logistics 243 28 123 123 122
blocks-world 269 35 78 78 73
mprime 4 10 12 11 11
mystery 4 11 12 12 12
openstacks 0 5 5 5 5
pathways 0 29 64 64 83
storage 84 26 30 30 30
tpp 14 19 82 82 82
trucks 0 16 16 16 16

the constant function 1. These preferences encode the fact that the goals in G are now ‘soft’, in the
sense that it is desirable but not necessary to achieve them. For sgplan, we also straightforwardly
translated the planning problems in the language of PDDL3 [31].

In Tables 1 and 2 we present results for solving problems with non-conflicting soft goals. In both
tables, each row and column corresponds to a domain of instances and a system, respectively; the
content is the sum of satisfied soft goals in all solved instances (Table 1) and the total number of
timeouts, memory out or segmentation faults and the mean CPU time of solved instances in the
domain (Table 2). Note that the first two numbers are the ones used to evaluate planning systems in
the ‘SimplePreferences’ category of the IPC-5, and the way of presenting results used in Table 2 is
customary in, e.g. Max-SAT evaluations. Regarding sgplan, it has been run on instances adapted
from the propositional STRIPS instances and, when available, we have used the ADL version of the
problems that, according to the authors,8 may lead to less segmentation faults. For each domain, the
best result is specified in bold, but for satplan.

Looking at the tables, we see that satplan(w)/(b)(s) behave comparatively well with sgplan: in
Table 1 there are 12 domains in which satplan(w) manages to satisfy more soft goals than sgplan,
while for sgplan this happens in 6 domains. In Table 2, instead, satplan(w) is the ‘best’ solver on 5
domains, satplan(s) in others 4, while for sgplan this happens in 11 domains. It has to be noted that
the results for sgplan would be much better in few domains by considering the STRIPS formulation,
i.e. the numbers for the airport and openstacks domains would be 174 and 6/46.39, and 84 and 3/0.04,
respectively, Nonetheless, at the same time, a STRIPS formulation leads to much worse results in
other domains, i.e. sgplan does not solve any of the promela-philosophers, promela-optical and
pathways instances.

8Personal communication with Chic-Wei Hsu.
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12 Introducing Preferences in Planning as Satisfiability

Table 2. Results on STRIPS domains coming from IPCs. x/y stands for x timeouts or
segmentation faults, and y seconds of solved instances (at mean)

DOMAIN sgplan satplan satplan(w) satplan(b) satplan(s)

pipesworld-notankage 0/0.14 7/6.74 7/10.51 8/8.26 7/10
pipesworld-tankage 4/0.81 21/25.24 21/61.28 24/54.48 22/38.2
satellite 5/1.01 9/3.29 9/10.03 10/8.55 9/7.07
airport 50/− 13/21.8 19/42.73 20/39.8 21/21.47
promela-philosophers 0/88.27 0/3.28 0/3.61 0/3.64 0/3.65
promela-optical 0/15.25 0/14.77 0/17.22 0/17.09 0/15.95
psr-small 11/0.48 0/0.61 0/0.48 0/0.7 0/0.69
depots 7/98.04 1/2.33 1/19.7 1/19.79 1/17.93
driverLog 0/88.55 0/0.61 1/25.6 1/25.69 2/0.49
zenoTravel 0/1.55 1/10.44 1/15.23 2/10.26 1/14.62
freeCell 6/25.24 13/27.58 13/42.32 15/41.84 14/0.49
logistics 0/0.02 0/0.03 0/0.7 0/0.7 0/0.25
blocks-world 0/78.5 0/0.2 0/1.01 0/1.01 0/0.35
mprime 0/3.6 2/12.16 2/17.54 3/9.56 3/9.43
mystery 0/3.14 2/10.52 2/13.35 2/11.59 2/11.87
openstacks 30/− 5/13.45 5/11.66 5/57.92 5/67.29
pathways 0/0.02 0/1.44 11/33.89 11/34.08 5/15.89
storage 0/0.58 0/0.23 0/0.29 0/0.31 0/0.28
tpp 15/0.01 0/2.59 0/9.05 0/9.07 0/8.15
trucks 16/− 0/1.61 0/1.88 0/1.92 0/1.9

About the mean CPU time for solving instances in the domains, we can note that it is the case that
the relative good results of satplan(w)/(b)/(s) w.r.t. sgplan can come with a price: this is a well-
known fact given that there can be a big difference in performance between optimal and non-optimal
planning; with respect to satplan, we can note that this is often not the case, thus adding simple
preferences seems not to hit performances in most cases.

Table 1 gives an overview and helps to understand that our solution is in overall competitive with the
state-of-the-art (even considering that sgplan and satplan are targeted for solving different problems
as we saw before), but it loses a punctual analysis on each benchmark and gives only an indication
about the CPU times. In the remaining part of this section, we focus on satplan and satplan-based
systems: the goal is to evaluated the impact that our ideas have on satplan performances (in terms of
both CPU time and quality of the plan returned). The performance of sgplan is included as a reference.
Figure 3 shows the performances of satplan/(w)/(b)/(s) and sgplan on the problems considered,
ordered according to satplan’s performances. Figure 3a shows the number of soft goals each planner
does not satisfy, while Figure 3b presents CPU times, again ordered according to satplan’s results.
This way of presenting the data has the feature that is possible to compare the results about the same
instance, i.e. the results for all the systems at a given x-coordinate refer to the same instance. It is to
be noted that Figure 3 contains only the instances solved by satplan within the time limit: there are
around 50 instances not showed that are solved by sgplan and not by satplan/(w)/(b) (the majority
of such instances are from the freeCell, pipesworld-tankage and airport domains, cf. Table 1).

As expected, from Figure 3a, we can see that satplan does not satisfy many of the soft goals, while
satplan(w)/(b)/(s) manage to satisfy all or almost all of them in many cases, and thus, a significantly
higher number than satplan. Interestingly, the number of soft goals not satisfied by satplan(w)/(b)
and satplan(s) are in most cases equal, while in theory this is not necessary the case. From Figure 3b
we can see that the performance of satplan is in overall not affected when adding preferences, i.e.
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Figure 3. Non-conflicting soft goals. (a) Number of unsatisfied soft goals for satplan/(w)/(b)/(s)
and sgplan. (b) CPU time for satplan/(s)/(w)/(b) and sgplan.

when imposing an ordering to the variables to be used for splitting in the SAT solver. There are just
very few exceptions to this behaviour, in order of less than 10 (respectively 5) for satplan(w)/(b)
(respectively satplan(s)), where adding preferences leads to a significant performance degradation.

The last result is somehow surprising given that limiting the splitting of the SAT solver can
cause an exponential degradation of its performance [41]. We correlate the good performances of
satplan(w)/(b) to the fact that in all the problems considered there are at most 70 soft goals, and that
the vast majority of the instances analysed contain at most 30 soft goals. This means that opt-dll

branching heuristic is forced for at most the initial few of tens branches: while it is known in SAT
that the first branches are very important, they are just a few. Further, for the quantitative case, the
burden introduced by the Boolean encoding of the objective function is negligible.

5.2 Conflicting soft goals

Besides the fact that in the instances considered in Section 5.1 goals are precisely soft, i.e. they can
be satisfied, or not, without affecting plan validity, such instances are not fully satisfactory because
goals are non-conflicting, i.e. all soft goals can be (eventually) satisfied at the same time.

For this reason, given that the case in which not all goals can be satisfied (often called
oversubscription planning [52, 57]) is practically very important, we also evaluated some domains
from the ‘SimplePreferences’ category of the IPC-5, which include the possibility to express
conflicting soft goals. Given that such domains are non-STRIPS, with someADL[49] constructs used,
and that the impact of preferences violation on the plan metric is restricted to be linear (i.e. metric is
the sum of weighted preference expressions) (as noted in [5, 30]), we have relied on the following
compilation technique, similar to the one used in [4, 5] to deal with PDDL3 benchmarks inYochan

PS

and in [27] for dealing with conditional effects: the preferences (goals) in the IPC-5 problems are
translated into preconditions of dummy actions, which achieve new dummy literals defining the new
problem goals. Then, these new actions can be compiled into STRIPS actions by using an existing
tool (we have used both Hoffmann’s tool for compiling ADL actions into STRIPS actions, namely
adl2strips, and a modification of the same tool used in IPC-5, based on LPG

9). In our analysis,

9Kindly provided by Jörg Hoffmann and Alessandro Saetti, respectively.
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Figure 4. Pathways domain, ‘SimplePreferences’ category of IPC-5 with uniform weights. (a) Plan
metric, i.e. number of unsatisfied soft goals, for satplan(w), satplan(b) and sgplan. (b) CPU time
for satplan(w), satplan(b) and sgplan (in log scale).

we have included the pathway, storage, openstacks and trucks domains from IPC-5, i.e. the domains
where plan metric is defined only on goals and there exist instances with integer weights associated
to goals violation, and that thus we can deal with our quantitative approach. These domains contain,
in general, both hard and soft goals.

Further, we have considered two cases: in the first we have changed all weights associated to goals
violation to be the same, while the second fully exploits the weights in the original problems. We
have decided to present both analysis because we wanted to evaluate (separately) what is the impact
of considering conflicting goals instead of non-conflicting, and then the impact of adding weights to
goals violation. sgplan has been run on the original IPC-5 problems (modified with uniform weights
in the first case).

Results are here presented as in the reports of the IPC-5, considering, for each instance, both plan
metric and CPU time to find the plan. We remind that, on such benchmarks, the goal is to minimize
the plan metric. In the analysis, we considered satplan(w), satplan(b) (given the metric is defined
quantitatively) and, as a reference, sgplan, winner of the ‘SimplePreferences’category at IPC-5. The
next two paragraphs analyse separately the two cases.

5.2.1 Conflicting soft goals with uniform weights
For the Pathways domain in Figure 4b we can note that satplan(w) and satplan(b) perform often
similarly and better than sgplan for non-easy (i.e. from problem #6, as numbered in the IPC-5)
problems, but for two problems (#13 and #15), which are solved by sgplan in few tens of seconds,
by satplan(b) even if close to the time limit, while satplan(w) runs in timeout on both. This
behaviour is consistent with the fact that the BB-encoding is effective, and can be more effective that
the W-encoding, when the number of preferences is not high. About the plan metrics in Figure 4a,
we can see that sgplan, overall, returns plans of slightly better quality, i.e. it can satisfy more soft
goals, than satplan(w)/(b).

For the Storage domain, instead, in Figure 5b we can note that all systems solve all the instances
considered,10 with sgplan being around one order of magnitude faster than the other systems, which

10We have considered all instances that the tools could compile, also after some interactions with the related tool’s authors.
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Figure 5. Storage domain, ‘SimplePreferences’ category of IPC-5 with uniform weights. (a) Plan
metric, i.e. number of unsatisfied soft goals, for satplan(w) (the same holds for satplan(b)) and
sgplan. (b) CPU time for satplan(w), satplan(b) and sgplan (in log scale).

nonetheless solve each problem in <20 s. The reason for the performance gap of satplan(w)/(b)
w.r.t. sgplan can be immediately explained by looking at Figure 5a: satplan(w)/(b) return plans
of much better quality than sgplan. The trade-off between CPU performances and plan quality
of satplan(w)/(b) seems to be very effective, at least on this domain, further considering that
satplan(P): (i) (unlike sgplan) is not tailored for finding general optimal solutions (but only bounded
to the optimal makespan); and (ii) sgplan was by far the best system on these benchmarks in the
‘SimplePreferences’ category at IPC-5.

For the trucks domain, the compilation technique used could compile 7 instances. Out of these 7
instances, our method could find an optimal solution on just one, in 6.93 s and 4.91 s by satplan(w)
and satplan(b), respectively, with a very good plan metric of 1: on the same instance, sgplan returns
very quickly a solution with the same plan metric. The other instances were already very hard to
solve even for satplan: problem #2 took 396 s, and from problem #3 it could not solve the instances
within the time limit. Concerning the openstacks domain, we could compile only 1 instance, on which
satplan/(w)/(b) run in timeout. Given that, we remind, the implementation of opt-dll is based on
minisat, the performance of satplan has been a major limitation in solving the instances of these
two domains.

5.2.2 Conflicting soft goals with non-uniform weights
Here, we comment on the analysis on problems with conflicting soft goals, where the weights
associated to goal violation are fully taken into account as in the original IPC-5 benchmarks. As
we said before, we restrict to integer weights for goals violation: only the W-encoding is used, given
that BB-encoding can only deal with cardinality constraints.

For the Pathways domain, only problems #1 and #2 (as numbered in the competition) have only
integer weights: these instances are solved very fast (<0.2 s) by satplan(w) and sgplan; the plan
metrics are 5 and 1 on problem #1 for satplan(w) and sgplan, respectively, while is 2 on problem
#2 for both systems.

For the Storage domain, until problem #4 the plan metrics of satplan(w) and sgplan are
comparable, and both systems solve the instances in <1 s. Then, starting from problem #5, the size
of the Bool formula starts to be of very big size and difficult to manage.
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Regarding the Trucks domain, as we noted before, only problem #1 is solved by satplan and
satplan(w). This instance is solved by sgplan very fast with a plan quality of 13, while it is solved
by satplan(w) in ∼10 s with a plan quality of 5.

5.3 Plans length

In order to evaluate the effectiveness of satplan(w)/(b)/(s) compared to satplan when the number
of preferences is high (i.e. when the heuristic is highly constrained), we considered the problem of
finding a ‘minimal’ plan. More precisely, if Πn is the given planning problem with makespan n, and
G is now the set of action variables in Πn, we consider:

(1) the qualitative preference 〈{¬p :p∈G},≺〉 where ¬p≺¬p′ if p precedes p′ according to the
lexicographic ordering; and

(2) the quantitative preference 〈{¬p :p∈G},c〉 in which c is the constant function 1.

In the quantitative case, these preferences encode the fact that we prefer plans with as few actions
as possible; in the qualitative case that we prefer subset-minimal plans, i.e. no subset of the plan’s
actions achieve the goals. The qualitative preference has also been set in order to further constraint
the heuristic up to the point to make it static on the action variables. In this setting, we are expecting
both (i) a reduction in the plan length for satplan(w)/(b)/(s) versus satplan and (ii) a degradation
in the CPU performances of satplan(w)/(b)/(s) w.r.t. satplan. We anticipate that, while for point
(i) results meet expectations, this is only partially the case for point (ii).

Considering the ‘quality’ of the plan returned in terms of number of actions, the results are in
Figure 6, ordered according to satplan’s performances.

In the figure, for sake of readability, we do not show the results for the airport, promela-philosopher
and optical, psr and trucks domains: for each instance in these domains satplan/(w)/(b) (and also
satplan(s)) return plans with the same length: this is likely due to the structure of the problems, which
do not allow optimizations in plan length. satplan(w) in many cases returns plans of considerable
better quality than satplan. We can further note that even if there are points missing in the figure,
which indicate instances that do not terminate within the time limit, they are just a few for satplan(w),
but this is not the case for satplan(b), that in several cases runs out of time or memory when instances
are big. Thus, its representative line is exactly the same of satplan(w), but with a significant fraction
of the points in the figure missing.

About satplan(s) we first note that, similar to the case of soft goals, the quality of the plan returned
is in most cases equal to that of satplan(w) and it then could be used to effectively compute good
approximation. Moreover, there are also instances, in the final part of the plot, solved uniquely by
satplan(s): if compared to satplan, this reminds the observation in [36] that preferential splitting
on action variables can lead to significant speed-ups.

Figure 7 takes into account the results for the problems of minimizing plan length by considering
CPU time. In this figure,

• on the x-axis there are the instances, sorted according to the ratio between the number of
preferences (i.e. action variables) and the total number of variables in the instance for which a
plan is found, and

• on the y-axis there is the ratio between the performances of satplan(s)/(w)/(b) and satplan, in
log scale.
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Figure 7. Performances degradation for satplan(s)/(w)/(b).

Differently from what we expected, we see that satplan(w) is as efficient as satplan for a significant
initial portion of the plot, though on a few instances it does not terminate within the time limit. Thus,
satplan(w) can be very effective (or, at least, as effective as satplan) even when the number of
preferences is very high (e.g. several thousands). For ratio ≥0.45 satplan(w) performances degrade,
and several instances are not solved or solved with a considerably higher CPU time in comparison
to satplan. The bad performances of satplan(b) can be easily explained given that the quadratic
BB-encoding leads to very big SAT instances: considering the relatively small ‘optical1’problem, the
first satisfiable SAT instance has 2228 variables, of which 1050 correspond to preferences and 34462
clauses, respectively; the same numbers when considering the W-encoding and the BB-encoding are
9348 and 56091, 13768 and 1157016, respectively: ‘optical1’ is solved in 1.28 s/2.17 s/57.14 s by
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Table 3. Summing up of results for minimizing plan length

Percent
ratio

Problem r =satplan(b)/satplan r =satplan(w)/satplan r =satplan(s)/satplan

r ≤4 4<r ≤10 r >10 r ≤4 4<r ≤10 r >10 r ≤4 4<r ≤10 r >10

0.4−0.5 52 40 9 3 3 2 47 43 4 5
0.51−0.6 41 24 7 10 1 12 28 41 0 0
0.61−0.7 51 5 15 31 1 4 46 41 2 8
0.71−0.8 42 7 9 26 1 0 41 20 2 20
0.81−0.9 43 7 4 32 0 1 42 25 5 13
0.91−0.99 37 16 9 12 0 0 37 17 4 16

satplan/(w)/(b). Note also how satplan(s) instead maintains its good behaviour for almost all the
spectra of instances; it is also in several cases more efficient than satplan.

Finally, in Table 3 we summarize the results presented in this paragraph, partly presented in
Figure 7. In the table we also include instances that, for easy of presentation, we have not included
in the figure, but that contain at least a certain percentage of action variables, i.e. at least 40 of
the total variables of the instance. The table is structured as follows: the first column contains the
percentage of action variables over variables considered (as in the x-axis of Figure 7); the second
column contains the number of instances in the percentage range specified in the first column, while
the last three columns contain the results for satplan(w)/(b)(s) over satplan, further divided into
three subcolumns, where each number is the instances that are solved in the respective percentage
range of preferences and with a certain range of performance (as in the y-axis of Figure 7). We also
consider the ‘special’ case ‘r ≤1’: first notice that satplan(w)/(b) add an, even small, overhead due
to the function Bool. It is thus very difficult that their CPU times do not exceed satplan CPU time: in
fact, only 5 (respectively 2) instances are such that ‘r ≤1’ for satplan(w) (respectively satplan(b)).

6 Related work

We have seen that in the deterministic part of the IPC-5, satplan was the winner together with
another SAT-based planner, i.e. MaxPlan [14, 16, 61]. The question is whether the new features we
have proposed can be simply integrated into MaxPlan. MaxPlan works by first estimating an upper
bound n for the optimal makespan, and then (i) generating a SAT formula Πn for the fixed makespan
n, and (ii) checking Πn for satisfiability, by using a modified version of minisat. The algorithm stops
if Πn is unsatisfiable (and in this case n+1 is the optimal makespan), otherwise n is decreased. Given
this, it should be relatively easy to integrate the proposed features of satplan into MaxPlan.

Considering the SAT literature, the problem of finding an optimal solution for Πn in the presence of
a quantitative constraint can be formulated as a Pseudo-Boolean optimization problem. minisat+ [25]
has been the most effective solver in the 2005 Pseudo-Boolean evaluation11 [46], and among the best
in the 2006 and 2007 evaluations.12 It is based on a reduction to SAT. In [33], the authors consider
the problem of optimally solving SAT problems with preferences on literals, show how this can be
done by modifying dll along the same lines used in this article and show that the resulting system is
competitive with minisat+ on MAXSAT and MINONE problems. Our work extends [33], and differs

11See http://www.cril.univ-artois.fr/PB05/.
12See http://www.cril.univ-artois.fr/PB06/ and http://www.cril.univ-artois.fr/PB07/,

respectively.
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from it both theoretically and experimentally. From a theoretical point of view, we provide a simpler
and more general treatment of preferences: for us, a preference is a formula and not just a literal.
Formulas allow, e.g. to model conditional preferences like ‘If my jacket and pants have different
color then I prefer to wear a white shirt’ [7]. From an experimental point of view, here we focus
on planning problems generated by satplan, and also analyse the impact on the performance of the
planner depending on the number of preferences. We show that when there are a few preferences,
the performances of satplan are not affected, which in turn implies that the same holds for the
performance of the underlying SAT solver.

Considering the literature on preferences in planning, some recent papers on planning with
preferences particularly related to our work are [6, 8, 12, 51, 53]. In the first paper, the authors
define a simple language for expressing temporally extended preferences and implement a forward
search planner, called PPlan. For each plan length n≥0, PPlan is guaranteed to be n-optimal, where
this intuitively means that there is no better plan of sequential length ≤n. The basic language for
expressing preferences (called ‘basic desire formulas (BDFs)’) is based on Linear Temporal Logic
(LTL). BDFs are then ranked according to a total order to form ‘atomic preference formulas’ that
can then be combined to form ‘general and aggregated preference formulas’. It is well known how
to compile LTL with a bounded makespan into propositional logic and thus in the language of Πn.
It seems thus plausible that BDFs can be expressed as preferences in our setting, and we believe
that the same holds for the preference formulas. In [8], the authors show how to extend gp-csp [20]
in order to find plans in planning problems with preferences expressed as a TCP-net [9, 10]. In the
Boolean case, TCP-net can be expressed as Boolean formulas. Though these two works are not based
on satisfiability, the problem they consider is the same we deal with: find an optimal plan w.r.t. the
given preferences among the plans with makespan n. However, these approaches and ours can be
easily extended in order to work without a bounded horizon, by simply using an iterative deepening
approach, i.e. by successively incrementing n, each time using the previously found solutions to bound
the search space, up to a point in which we are guaranteed to have an optimal solution, independently
from the bound n. This is the approach followed in [12], where the problem considered is to extend the
planning as satisfiability approach in order to find plans with optimal sequential length. Interestingly,
the authors use a Boolean formula to encode the function representing the sequential length of the
plan. In their approach, for a given n, the search for an optimal solution is done by iteratively calling
the SAT solver, each time posing a constraint imposing a smaller value for the objective function
(using [3]): when the SAT formula becomes unsatisfiable, n is set to n+1 and the process is iterated
looking for a better plan than the one so far discovered. For a fixed n, the problem considered in [12]
is exactly the same we deal with in Section 5: finding a ‘minimum’ plan for Πn using a quantitative
approach. The fundamental difference between our approach and [12] is that we look for an optimal
solution by imposing an ordering on the heuristic of the dll solver, while they iteratively call the
SAT solver as a black box. The disadvantage of their approach is that, e.g. the clauses learned
during a call are not reused by the following calls for the same n. Our approach can also deal with
qualitative preferences. In [51], the authors present an algorithm very similar to the one we have
presented in this article, and that thus first appeared in [34]. The algorithm is used to solve ‘optimal
planning’ problems, which can be easily captured by our framework. In addition, the authors provide
theoretical results related to the framework presented, in particular to the complexity of ‘optimal
planning’. Finally, very recently, in [53] the authors have extended PDDL3 with Hierarchical Task
Network (HTN) [32] preference constructs. The related system, HTNPlan-P, which is based on the
HTN planner SHOP2 [48], shows good results on IPC-5 benchmarks.

In the IPC-5, there were different planners able to compete in the ‘SimplePreferences’ category,
which include metrics on goals violation, that use different approaches. We already presented
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sgplan [39]. In more details, sgplan ver. 5 extends ver. 4 for PDDL2.2 in order to deal with the new
constructs of PDDL3. Its basic idea is to partition a problem into subproblems, one for each (soft)
goal (considered as hard), solve the subproblems individually by a modified version of an existing
planner i.e. Metric-FF [37] and then resolve inconsistencies across subproblems. Other planners
include Yochan

PS [4, 5] and mips-xxl [22]. Yochan
PS is a heuristic planner based on relaxed graph

to obtain a heuristic estimation. Given that in PDDL3 benchmarks the impact of preferences violation
on the plan metrics is linear (i.e. a metric is the sum of weighted preference expressions), preferences
can be reduced to additive action costs: thus, Yochan

PS reduces a PDDL3 problem into a PSP
(Partial Satisfaction Planning) problem, by compiling the conditional effects into multiple action
instances [27] and then uses the Sapa

PS PSP planner [21] to solve it. It explicitly selects a subset of
preferences to achieve, which can be costly in the presence of many preferences. In our work, we have
used a compilation technique from non-STRIPS to STRIPS problems inspired by the Yochan

PS’s
approach. mips-xxl, on the other hand, uses a very different approach based on buchi automata and
it is able to plan with (quantitative) Temporally Extended Preferences (TEP) expressed with LTL
formulas. It iteratively invokes (a modified version of) the Metric-FF planner [37], forcing plans to
have decreasing metric. In our analysis, we have used sgplan because the results of the IPC-5 clearly
demonstrate its superior performance.

We have seen that the last planner is able to deal with TEP. Another important approach is the one
presented in [1, 2], where the authors propose a method for compiling planning problems with TEP
into problems containing only final-state preferences and a metric function, and exploit a variety of
heuristic functions for the last. They also identify conditions under which a plan is optimal: thus,
differently to our approach, they are not guaranteed to return always an optimal plan. Moreover, they
look for such a plan using an incremental algorithm similar in spirit to the one used in Yochan

PS .
Their resulting system, HPlan-P, is shown to have good performances, even if not as good as sgplan.
In the specific case of planning as satisfiability, in [47] the authors generalize classical planning to
deal with planning with Temporal Extended Goals (TEG), expressed as formulas in LTL, by means
of a reduction for planning with LTL goals (without the next-time operator) into SAT.

Considering the approaches based on logic programming, two of the main works are those in [6, 54],
which can deal with qualitative TEP. They are based on the PP preference language, which can express
different types of preferences, e.g. over states, actions and trajectories. The concept of preferred plans
is defined similarly to our article. In [54], the authors use a compilation into a logic program to be
solved under the answer set semantics (ASP) [28, 29] by using an ASP solver. The work in [6] further
extends the PP language with quantification, conditional constructs and aggregators. The related
systems are known to be less efficient than other planners mainly because they do not use suited
methods, e.g. heuristics, to guide search towards the achievement of preferences. In the same area,
the work in [18] presents a framework where preferences can be compiled into logic programs (to be
again solved by an ASP solver). Different preference strategies are presented, which include other
approaches captured by the framework, e.g. the one presented in [11].

7 Conclusions, final remarks and future works

We have shown how it is possible to easily extend the Planning as Satisfiability approach in order
to handle both qualitative and quantitative preferences, and satplan to handle simple (i.e. where
the structure of the partial order is restricted to particular, e.g. linear, cases) preferences. This work
is an extension of the first attempt based on SAT, which can effectively deal with this important
problem [34]: it is actually considered the reference SAT-based approach to deal with preferences,
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see e.g. [30], the AAAI 2007 tutorial on ‘Planning and Scheduling with Over-Subscribed Resources,
Preferences, and Soft Constraints’13 by Do, Zimmermann and Kambhampati, and the joint KR/ICAPS
2008 tutorial on ‘Preferences, Planning and Control’14 by Brafman. Our experimental analysis points
out that with a few preferences (as it is the case for problems with soft goals), the performances in
term of CPU time of satplan(w)/(b) are roughly the same as satplan’s ones, and that the same
happens for satplan(w) even in the presence of thousands of preferences, at least on some domains:
significant degradations only show up in a reduced portion of the analysed instances (results are even
better for satplan(s): it solves a different problem but often its results are the same of satplan(w),
and thus it can be used to compute good approximated results). Remarkably, such results are reached
while satplan(P) returns plan of considerably better quality than satplan, and competitive with
state-of-the-art results showed by sgplan on most problems with non-conflicting and conflicting soft
goals with uniform weights. Instead, the same do not hold on most problems with conflicting soft
goals and non-uniform weights. This fact can suggest to evaluate an approach based on compilation
into a Pseudo-Boolean formula, which naturally handles linear metric functions defined over Boolean
variables with integer coefficients (similar to [56, 58, 59]), and to relax the computation of makespan-
optimal plans, which has been shown to be another possible source of inefficiency for plan quality.
We also plan to directly deal with ‘action costs’ (e.g. [15, 45]), also introduced as a requirement in
IPC-6 (see e.g. [23] for one of the best approaches).
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