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Abstract. Propositional satisfiability (SAT) is a success story in Computer Sci-
ence and Artificial Intelligence: SAT solvers are currently used to solve problems
in many different application domains, including planning and formal verifica-
tion. The main reason for this success is that modern SAT solvers can success-
fully deal with problems having millions of variables. All these solvers are based
on the Davis-Logemann-Loveland procedure (DLL). In its original version, DLL

is a decision procedure, but it can be very easily modified in order to return one
or all assignments satisfying the input set of clauses, assuming at least one ex-
ists. However, in many cases it is not enough to compute assignments satisfying
all the input clauses: Indeed, the returned assignments have also to be “optimal”
in some sense, e.g., they have to satisfy as many other constraints –expressed as
preferences– as possible.
In this paper we start with qualitative preferences on literals, defined as a partially
ordered set (poset) of literals. Such a poset induces a poset on total assignments
and leads to the definition of optimal model for a formula ψ as a minimal element
of the poset on the models of ψ. We show (i) how DLL can be extended in order
to return one or all optimal models of ψ (once converted in clauses and assum-
ing ψ is satisfiable), and (ii) how the same procedures can be used to compute
optimal models wrt a qualitative preference on formulas and/or wrt a quantitative
preference on literals or formulas. We implemented our ideas and we tested the
resulting system on a variety of very challenging structured benchmarks. The re-
sults indicate that our implementation has comparable performances with other
state-of-the-art systems, tailored for the specific problems we consider.

1 Introduction

Propositional satisfiability (SAT) is a success story in Computer Science and Artifi-
cial Intelligence: SAT solvers are currently used to solve problems in many different
application domains, including planning [3], formal verification [4], and many others,
such as RNA folding, hand-writing recognition, graph isomorphism and sudoku prob-
lems. The main reason for this success is that modern SAT solvers can successfully deal
with problems having millions of variables [5, 6].1 All these solvers are based on the
Davis-Logemann-Loveland procedure (DLL) [7]. The original version of DLL is a deci-
sion procedure —given a finite set of clauses ϕ, DLL returns whether ϕ is satisfiable or
not)— but DLL can be easily modified in order to return one or all assignments satisfy-
ing ϕ, assuming at least one exists. However, in many cases, it is not enough to compute
? This work extends the results presented in [1, 2].
1 http://www.satcompetition.org/



one or more satisfying assignments: Indeed, the returned assignments have also to be
“optimal” in some sense, e.g., they have to satisfy as many other constraints –expressed
as preferences– as possible. For example, in standard MIN-ONE (resp. MIN-ONE⊆),
given a satisfiable instance, the goal is to find a satisfying assignment in which the
set of variables assigned to true is of minimal cardinality (resp. subset-minimal). In
standard MAX-SAT (resp. MAX-SAT⊆), the goal is to find an assignment satisfying as
many clauses as possible, i.e., such that the set of satisfied clauses is of maximal car-
dinality (resp. subset-maximal). In the partial version of MIN-ONE/MIN-ONE⊆ (resp.
MAX-SAT/MAX-SAT⊆) the optimization is performed on a subset of the variables (resp.
clauses) of the instance.

In this paper we start considering the simple model in which preferences are ex-
pressed as a partially ordered set (poset) of literals as in, e.g., [8, 9]. Such a poset in-
duces a poset on total assignments and leads to the definition of optimal model for a
formula ψ as a minimal element of the poset on the models of ψ. Given a qualitative
preference on literals and a finite set of clauses ϕ, we show how DLL can be easily
modified in order to return an optimal model of ϕ, assuming ϕ is satisfiable. The sim-
ple idea for computing one optimal model, is to force DLL branching heuristic in order
to follow the partial order on the literals. The idea of computing “optimal” (according
to some given definition) models by modifying the heuristic in order to follow the ex-
pressed preferences on literals has been already proposed in [10] for SAT and in [11]
for acyclic CP-nets [12]. There are however some important differences in the underly-
ing formalism used in [10, 11] for expressing preferences —and thus on the procedures
based on these formalisms— wrt ours:2

1. In the language: Both [10] and [11] allow for expressing preferences on literals, but
in these approaches it is not possible to rank the preferences according to a partial
order. For instance, these approaches allow for directly expressing a preference
in which literals l1 and l2 are assigned to true, but do not allow for expressing
that having l1 assigned to true is preferred to having l2 assigned to true. Further,
in [10, 11] the set of preferences has to be consistent, while we do not make this
assumption.

2. In the semantics: Even considering the case in which preferences are expressed as a
consistent set S of literals, the order on models induced by S in [10, 11] is different
from ours. For example, given a language with two variables x1 and x2, and as-
suming that our only preference is to have x1 assigned to true, given an assignment
µ1 (resp. µ2) assigning both x1 and x2 to true (resp. false), µ1 is preferred to µ2

according to our semantics (see Sec. 2), while this is not the case for the semantics
in [10, 11] (see Def. 7 in [10] and Sec. 2.3 in [11]).

We then extend our procedure in order to find more, and possibly all, optimal mod-
els. As in [10], the idea is to add to the input formula a constraint imposing that the
new models have not to follow µ in the partial order: Thus, assuming we have already
generated a non empty set of optimal models and we are interested in more, differently
from the procedures in [11, 13] for CP-nets, our algorithm for generating a new optimal

2 In the case of [12], we consider the simple case in which variables are Boolean and preferences
are not conditional.



model µ never requires a dominance test to see if there exists another model which is
preferred to µ. Finally, we show how the same procedures can be extended to compute
optimal models wrt a qualitative preference on formulas and a quantitative preference
on literals or formulas. Indeed, this is a trivial consequence of the fact that all these
concepts (qualitative/quantitative preference on literals/formulas and also their mixing)
can be reduced to the basic framework of qualitative preference on literals.

We implemented our ideas in MINISAT [14], and we called nOPTSAT the resulting
system.3 In order to comparatively test our system, we focused our experimental analy-
sis on MAX-SAT/MAX-SAT⊆ and MIN-ONE/MIN-ONE⊆ problems. Indeed, this is a very
challenging —if not the most challenging— test bench for our implementation:

1. for MIN-ONE/MAX-SAT, a wide variety of recently developed, customized systems
are available, e.g., those in the last Pseudo-Boolean (PB) and Max-SAT Evalua-
tions;4 and

2. in these problems, the number of preferences is very high (equal to the number of
clauses in standard MAX-SAT/MAX-SAT⊆ and to the number of variables in stan-
dard MIN-ONE/MIN-ONE⊆): As we have already shown in [15], in the context of
planning as satisfiability, the more preferences we have, the more the performances
of our system are negatively affected.

Despite the above, our analysis shows that nOPTSAT has comparable performances with
respect to other state-of-the-art systems on MIN-ONE/MAX-SAT problems. In the case
of MIN-ONE⊆/MAX-SAT⊆ problems, we consider the only other implementation avail-
able for standard MAX-SAT⊆, and here again we show that our system compares well.
However, we remark that our results goes far beyond the MIN-ONE/MIN-ONE⊆ and
MAX-SAT/MAX-SAT⊆ cases, which

1. are the simplest cases of preferences on literals and on formulas respectively, since
they have an empty partial order on preferences; and

2. are the most difficult problems for our system, given the very high number of pref-
erences they have.

Indeed, we allow for preferences to be partially ordered and in many applications the
number of preferences is relatively low, as, e.g., in planning with soft goals [16, 15].

Summing up, given a set of clauses ϕ, the main contributions of the paper are:

1. We show how it is possible to easily extend DLL in order to compute one optimal
model of ϕ wrt a qualitative preference on literals: We allow for inconsistent set of
preferences and for a partial order on the preferred literals.

2. We extend the procedure in order to compute and return more than one, and possi-
bly all, optimal models of ϕ wrt a given qualitative preference: Our procedure does
not require any dominance test.

3. We show how qualitative preferences on formulas and quantitative preferences on
literals or formulas can be reduced to the basic framework of qualitative preferences
on literals: This allows to use our procedures also in these extended settings, and
also for solving problems with mixed qualitative and quantitative preferences.

3 Available at http://www.star.dist.unige.it/˜emanuele/nOPTSAT/.
4 See http://www.cril.univ-artois.fr/PB09/ and http://www.maxsat.
udl.cat/09/, respectively.



4. We implemented these ideas on top of MINISAT and we comparatively tested our
system on a variety of structured MIN-ONE/MIN-ONE⊆ and MAX-SAT/MAX-SAT⊆
problems against various state-of-the-art systems, tailored for such problems: De-
spite the generality of our procedure, the results indicate that our system has com-
parable performances wrt the others.

The paper is structured as follows. In Section 2, we present the formalism we are
using for expressing qualitative preferences on literals, and we show how these prefer-
ences induce a preference on the set of total assignments and thus also on the models of
any given formula. In Section 3, we first present OPT-DLL, i.e., DLL modified in order to
compute an optimal model of a finite set of clauses wrt a qualitative preference on liter-
als, and then nOPT-DLL, i.e., OPT-DLL extended in order to compute all optimal models.
In Section 4, we show how it is possible to reduce quantitative/qualitative preference
on formulas to qualitative preference on literals. In the same section, we give examples
showing how it is possible to represent and solve problems in which qualitative and
quantitative preferences are mixed. Section 5 is devoted to the implementation details
and the comparative experimental analysis of the ideas presented. The paper ends in
Section 6 with the conclusions.

2 Satisfiability and Qualitative Preferences

Consider a finite set P of variables, called signature. A literal is a variable x or its
negation ¬x. A formula or constraint is either a variable or a combination of formulas
using the n-ary connectives ∧ and ∨ for conjunction and disjunction, respectively (n ≥
0); the n-ary connective ≡ for equivalence (n ≥ 2); and the unary connective ¬ for
negation.

For example, given the 5 variables AtWork0,AtWork1,Car0,Bus0,Bike0, in which
the subscript models the time step, the following formula

AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0), (1)

models the fact that if we perform the action of taking the car (Car0) or the bus (Bus0) or
the bike (Bike0) then we move from home (¬AtWork0) to work (AtWork1), or viceversa,
while the formula

¬AtWork0 ∧ AtWork1 (2)

models the fact that at time 0 we are at home (or not at work) and at time 1 we are
at work (variables have the obvious meaning). The two equations do not rule out the
possibility of executing two or even three actions at the same time (e.g., to have a model
in which both Car0 and Bus0 are true). Indeed, these models can be easily eliminated
by adding additional constraints.

In the following, given a literal l, l denotes ¬l if l is a variable, and the variable in l
otherwise. If S is a set of literals,

S = {l : l ∈ S}.

An assignment is a consistent set of literals.



Consider an assignment µ.
If l ∈ µ, we say that both l and l are assigned by µ, to true and false, respectively. µ

is total if each literal is assigned by µ. If µ is total, we say that µ satisfies

– a variable x if x ∈ µ;
– a formula ψ if µ satisfies ψ according to the truth tables of the propositional con-

nectives;
– a set of formulas if µ satisfies each formula in the set.

A model of a set of formulas is an assignment satisfying the set.
For instance, (1) has 16 models, while considering (1) and (2) the models become 7.

In the following, we represent a total assignment as the set of variables assigned to true,
and we write µ |= ψ to indicate that µ is a model of ψ. For instance, {Car0,AtWork1}
represents the total assignment in which the only variables assigned to true are Car0
and AtWork1.

As we already said in the introduction, in many applications not all the models of a
set of formulas are considered to be equally good. For example, in (1) we may prefer
the models in which as few actions as possible are performed, i.e., we may prefer the
models having a maximal intersection with {¬Car0,¬Bus0,¬Bike0}: This intuitively
corresponds to considering the 2 models in which we do not move from/to home as
optimal. Further, in case it is not possible to have a model with ¬Car0,¬Bus0,¬Bike0

(as with (1) and (2)), we may want to express the additional information that we have
better to give up on ¬Car0 than the other two, i.e., that of the three preferences, ¬Car0
is the least important: With such additional information, we expect {Car0,AtWork1} to
be the only optimal model for (1) and (2).

Such additional information about which model is preferred to the other ones can
be expressed via qualitative preferences on literals. A qualitative preference on literals
is a (strict) partially ordered set of literals.5 We recall that a (strict) partially ordered set
(or poset) is a pair 〈S,≺〉 whose first element is a set and ≺ is a (strict) partial order on
S, i.e., a binary relation satisfying the following two properties:

1. Irreflexivity: For each a ∈ S, a 6≺ a.
2. Transitivity: For each a, b, c ∈ S, a ≺ b and b ≺ c implies a ≺ c.6

Given a poset 〈S,≺〉,

– if for each two distinct a, b ∈ S, a ≺ b or b ≺ a then ≺ is said to be a total order;
– an element a ∈ S is said to be minimal (in 〈S,≺〉) if there is no b ∈ S with b ≺ a:

It is clear that if S is finite then the poset has at least one minimal element; and
– if S′ ⊆ S then 〈S′,≺′〉 is also a poset, where ≺′ is ≺ restricted to the literals in S′.

It is common to represent a poset 〈S,≺〉 as the direct acyclic graph (DAG) whose
vertexes are the elements in S, and with an arc from a to b if and only if a ≺ b and there
is no c with a ≺ c ≺ b.

In a qualitative preference on literals 〈S,≺〉, S is the set of preferences and intu-
itively represents the set of literals that we would like to have satisfied, while ≺ models

5 The given definition of qualitative preference on literals generalizes the ones given in [1].
6 If ≺ is irreflexive and transitive then it is also antisymmetric, i.e., if a ≺ b then b 6≺ a.
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Fig. 1. DAG representation of the partial order on the models of (1) and (2), wrt (3).

the relative importance of the preferences. Notice that the set S can be inconsistent:
If S contains both a variable x and its negation ¬x —assuming compatibility with the
constraints and that neither x ≺ ¬x nor ¬x ≺ x— we expect to have an optimal model
with x true and another optimal model with x false. For example,

1. the qualitative preference

〈{¬Car0,¬Bus0,¬Bike0,Bike0}, ∅〉



models our preference to get (assuming compatibility with the underlying con-
straints) two optimal models µ1 and µ2, satisfying {¬Car0,¬Bus0,¬Bike0} and
{¬Car0,¬Bus0,Bike0}, respectively;

2. while

〈{¬Car0,¬Bus0,¬Bike0}, {¬Bus0 ≺ ¬Car0,¬Bike0 ≺ ¬Car0}〉 (3)

models our preference for not moving from/to home, and in which, of the three
preferences, ¬Car0 is the least important.

Consider a qualitative preference on literals 〈S,≺〉. The partial order on S can be
extended to the set of total assignments as follows [9]: Given two total assignments µ
and µ′, µ is preferred to µ′ or µ dominates µ′ (µ ≺ µ′) if and only if

1. µ satisfies at least one preference which is not satisfied by µ′, i.e., there exists a
literal l ∈ S with l ∈ µ and l ∈ µ′; and

2. the preferences satisfied by µ′ and not by µ are less preferred to those satisfied
by µ and not by µ′, i.e., for each literal l ∈ S ∩ (µ′ \ µ), there exists a literal
l′ ∈ S ∩ (µ \ µ′) such that l′ ≺ l.

From the definition, it is clear that, for any two total assignments µ and µ′:

1. If S ∩ µ = S ∩ µ′ then µ 6≺ µ′: In particular, if the set S of preferences is empty,
every model is optimal.

2. If S ∩ µ′ ⊂ S ∩ µ then µ ≺ µ′: Every optimal model has a maximal intersection
with S. In the case ≺ is empty, every model with a maximal intersection with S is
optimal.

〈S,≺〉 induces a partial order on the set of total assignments, as stated by the fol-
lowing theorem, similar to Theorem 7 in [17].

Theorem 1. Let 〈S,≺〉 be a qualitative preference on literals. The relation≺ extended
to the set of total assignments is a partial order.

Proof. For a literal l and a total assignment µ, define

dom(l, µ) = {l′ : l′ ∈ S ∩ µ, l′ ≺ l}.

We have to show that the relation≺ on the set of total assignments is irreflexive and
transitive. Let µ, µ′ and µ′′ be three total assignments.

1. Irreflexivity: Clearly µ 6≺ µ, because of the first condition in the definition of ≺.
2. Transitivity: µ ≺ µ′ and µ′ ≺ µ′′ implies µ ≺ µ′′. We have to prove that for each

literal l′ ∈ S ∩ (µ′′ \ µ), there exists a literal l ∈ S ∩ (µ \ µ′′) such that l ≺ l′.
Considering the set

S′ = S ∩ (µ′′ \ µ),

it is enough to show that for each literal l′ which is minimal in 〈S′,≺〉, there exists
a literal l ∈ S ∩ (µ \ µ′′) such that l ≺ l′.
Let l′ be a minimal element in 〈S′,≺〉.
There are two cases:



(a) l′ ∈ µ′ and dom(l′, µ′′) ⊆ µ′: Since l′ ∈ µ′ and µ ≺ µ′, let l be a literal in
S ∩ µ such that l ≺ l′, and l 6∈ µ′. Because of the second initial assumption,
l 6∈ µ′′ and thus the thesis.

(b) l′ 6∈ µ′ or dom(l′, µ′′) 6⊆ µ′: The set ({l′}∪ dom(l′, µ′′)) \µ′ is not empty: Let
l′′ be a minimal element of this set according to ≺. Notice that either l′′ = l′

or l′′ ≺ l′. In both cases, l′′ ∈ µ′′, l′′ 6∈ µ′, and

dom(l′′, µ′′) ⊆ µ′. (4)

Since µ′ ≺ µ′′, there exists a literal l′′′ ∈ µ′\µ′′ with l′′′ ≺ l′′ and thus l′′′ ≺ l′.
If l′′′ ∈ µ, l′′′ is the literal l we are looking for and thesis follows. If l′′′ 6∈ µ,
since µ ≺ µ′ there exists a literal l ∈ S ∩ (µ \ µ′) such that l ≺ l′′′ and thus
l ≺ l′. This literal is not in µ′ and thus, because of (4), it is not in µ′′ as well. 2

Since the set M of models of an arbitrary set of constraints is a subset of the set of
total assignments, then also 〈M,≺〉 is a partially ordered set. For example, given the
constraints (1) and (2), and the qualitative preference (3), the partial order on models is
represented by the DAG in Figure 1.

However, there can be partial orders on models (or on total assignments) which are
not extensions of partial order on literals. For example, assuming we have only two
variables x0, x1, the total order on the set of total assignments {x1, x0} ≺ {x1, x0} ≺
{x1, x0} ≺ {x1, x0} can not be obtained as the result of the extension of a partial order
on a subset of the literals in {x0, x0, x1, x1}. In Section 4 we extend the formalism
in order to express qualitative preferences on formulas. With preferences on formulas,
given that a total assignment µ can be represented as the conjunction Cµ of the literals
in µ, it is possible to capture any partial order on the set of total assignments: Trivially,
given any two total assignments µ1 and µ2 for which we want µ1 ≺ µ2, imposing the
preference on formulas Cµ1 ≺ Cµ2 leads to the desired order on µ1 and µ2.

Given that µ ≺ µ′ encodes the fact that µ is preferred to µ′, it is natural to define
a model as optimal if it is a minimal element of the partially ordered set of models.
A finite set of constraints and a qualitative preference defines an optimization prob-
lem, consisting in determining an optimal model of the set of constraints. As it is clear
from Figure 1, the assignment {Car0,AtWork1} is the only solution for the optimization
problem consisting of the constraints (1), (2), and the qualitative preference (3).

3 Solving optimization problems with DLL

Given a finite set of constraints and a qualitative preference on literals, we show how
it is possible to compute an optimal model by a simple modification of the Davis-
Logemann-Loveland procedure (DLL) [7], and then how to extend DLL in order to
compute all optimal models.

DLL is at the basis of current state-of-the-art procedures for checking the satisfi-
ability of a finite set of constraints, which extend it in many ways, including conflict
driven backjumping and clause learning, see, e.g., [18, 19]. However, DLL does not di-
rectly handle arbitrary formulas, but finite sets of clauses (the clauses to be interpreted



in conjunction among them), where a clause is a finite set of literals (the literals to be
interpreted in disjunction among them). This is not a limitation because of well known
and efficient clause form transformation procedures (see, e.g., [20–22]). Thus, from
here on —with the exception of the text in the formal statements— we assume we are
able to use DLL and our procedures also on formulas, implicitly assuming that formulas
are converted into a set of clauses beforehand.

3.1 Computing an optimal model with DLL

Our procedure, that we call OPT-DLL, is a simple modification of DLL in order to take
into account the given qualitative preference on literals 〈S,≺〉.

ϕ := 〈a finite set of clauses in the signature P 〉;
〈S,≺〉 := 〈a qualitative preference on literals〉;

function OPT-DLL() return OPT-DLL-REC(∅)

function OPT-DLL-REC(µ)
1 if (∅ ∈ ϕµ) return FALSE;
2 if (µ is total) return µ;
3 if ({l} ∈ ϕµ) return OPT-DLL-REC(µ ∪ {l});
4 l := ChooseLiteral(µ);
5 v := OPT-DLL-REC(µ ∪ {l});
6 if (v 6= FALSE) return v;
7 return OPT-DLL-REC(µ ∪ {l}).

Fig. 2. The algorithm of OPT-DLL for computing one optimal solution.

The pseudo-code of OPT-DLL is represented in Figure 2, where:

– ϕ and 〈S,≺〉 are global variables storing the input set of clauses and the qualitative
preference on literals, respectively;

– µ is the current assignment, initially empty;
– ϕµ is the result of simplifying the input set of clauses wrt the assignment µ, i.e., ϕµ

is the set of clauses obtained from ϕ by (i) deleting the clauses C ∈ ϕ such that
C ∩ µ 6= ∅, and (ii) substituting the other clauses C ∈ ϕ with C \ µ;

– ChooseLiteral(µ) returns a literal l unassigned by µ and such that
• either l ∈ S and each literal l′ with l′ ≺ l is assigned by µ;
• or, if each literal in S is assigned by µ, l is an arbitrary literal in ϕµ, selected

by any given heuristic.

It is easy to see that if there are no preferences (i.e., if the set S is empty) OPT-DLL is
the standard DLL. On the other hand, if the set of preferences is not empty, the search
tree is explored in a way to ensure that the returned model (assuming the input formula
is satisfiable) is optimal. For instance, assuming we have the qualitative preference

〈{¬Bus0,¬Bike0}, {¬Bus0 ≺ ¬Bike0}〉



(modeling the fact that we prefer (i) to not take the bus; (ii) to not take the bike; and
(iii) to not go by bus more than to not go by bike) OPT-DLL looks for a model extending

1. {¬Bus0,¬Bike0}; if no such model exists, OPT-DLL looks for a model extending
2. {¬Bus0,Bike0}; if no such model exists, OPT-DLL looks for a model extending
3. {Bus0,¬Bike0}; if no such model exists, OPT-DLL looks for a model extending
4. {Bus0,Bike0}; if no such model exists, OPT-DLL returns false.

In words, OPT-DLL first looks for a model where both actions of going by bus and bike
are false; then one in which we use the bike and not the bus; then one in which we
use the bus and not the bike; and only finally for models where we use both the bus
and the bike. If ψ is the conjunction of (1) and (2), the model of ψ returned with such
exploration is {Car0,AtWork1}, while it is {Bike0,AtWork1} if we also consider the
constraint ¬Car0.

OPT-DLL returns an optimal assignment if the input formula is satisfiable, and FALSE
otherwise, as stated by the following theorem, easy consequence of Theorem 4, which
is stated and proved in the next subsection.

Theorem 2. Let ϕ, 〈S,≺〉 and OPT-DLL as in Figure 2. OPT-DLL() returns an optimal
model of ϕ wrt 〈S,≺〉 if ϕ is satisfiable, and FALSE otherwise.

Consider a satisfiable and finite set of clauses ϕ.
Depending on the literal returned by ChooseLiteral(µ), different optimal models are

computed and returned by OPT-DLL. For instance, given the qualitative preference

〈{¬Car0,¬Bus0,¬Bike0}, ∅〉, (5)

each of the three optimal models of (1) and (2) wrt (5) can be returned by OPT-DLL,
which one depending on the specific implementation of ChooseLiteral: If the first two
literals assigned at line 4 in OPT-DLL are in

1. {¬Car0,¬Bus0}, then the returned optimal model is {Bike0,AtWork1};
2. {¬Car0,¬Bike0}, then the returned optimal model is {Bus0,AtWork1};
3. {¬Bus0,¬Bike0}, then the returned optimal model is {Car0,AtWork1}.

In this example, each optimal model is a possible output of OPT-DLL. There are however
optimization problems in which some of the optimal models cannot be returned by OPT-
DLL. Consider, for instance, an optimization problem with qualitative preference

〈{x0, x1, x2, x3}, {x0 ≺ x1, x2 ≺ x3}〉

and constraints imposing that if one variable in {x0, x2} is true then the other three
variables have to be false,7 e.g.,

(x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (x0 ∨ x3) ∧ (x2 ∨ x1) ∧ (x2 ∨ x3).

7 For instance {x0, x1, x2, x3} can model the fact that we like to have wine (x0), beer (x1), fish
(x2) and pizza (x3); we like wine more than beer, and fish more than pizza. Due to budget
limitations, if we buy fish or wine we cannot afford anything else.



The above formula has three models, i.e., {x0}, {x2} and {x1, x3}, and all of them are
optimal. However, OPT-DLL can return only two of them, namely either {x0} or {x2},
which one depending on the implementation of ChooseLiteral.

The fact that there can be some optimal model that cannot be returned by OPT-
DLL is not a limitation if the goal is to compute one optimal model. If the goal is to
compute more than one or all optimal models, we will see in the next subsection how
to generalize OPT-DLL.

3.2 Computing all optimal models with DLL

Consider a formula ψ and a qualitative preference 〈S,≺〉.
The problem of computing all optimal models of ψ wrt 〈S,≺〉 can be solved by

1. determining and printing an optimal model µ of ψ by imposing an ordering on the
splitting heuristic, as in the previous subsection;

2. adding to the input formula a new formula which prunes the assignments which are
dominated by µ; and

3. returning FALSE in order to continue the search for other optimal models.

The idea to compute all optimal models by adding constraints pruning the models dom-
inated by the already computed optimal models, has been already proposed in [10].
Other works which exploit further techniques to eliminate previously computed solu-
tions in SAT include, e.g., [23–25] in the context of symbolic model checking [26].
However, the framework used in [10] assumes a consistent set of preferences, does not
allow for ordering the preferences and ultimately has a different semantics.

For the above procedure, given an assignment µ, we have to define a formula whose
models are the assignments dominated by µ (wrt 〈S,≺〉). Such a formula is

(∨l∈S∩µl) ∧ (∧l∈S∩µ(l ∨ ∨l′∈S∩µ,l′≺ll′)). (6)

Theorem 3. Let 〈S,≺〉 be a qualitative preference on literals. A total assignment µ
dominates a total assignment µ′ wrt 〈S,≺〉 if and only if µ′ satisfies (6).

Proof. According to the definition, given two total assignments µ and µ′, µ ≺ µ′ iff

1. there exists a literal l ∈ S with l ∈ µ and l ∈ µ′; and
2. for each literal l ∈ S ∩ (µ′ \ µ), there exists a literal l′ ∈ S ∩ (µ \ µ′) such that
l′ ≺ l.

The first condition corresponds to the formula

∨l∈S∩µl.

The second condition corresponds to the formula

∧l∈S∩µ(l ∨ ∨l′∈S∩µ,l′≺ll′).

The conjunction of the above two formulas is (6). 2

As examples of the application of Theorem 3, consider a total assignment µ:



1. If S∩µ = ∅ then the formula (6) is equivalent to the empty disjunction, i.e., FALSE:
Indeed, if µ does not satisfy any preference, no assignment is dominated by µ;

2. If S ⊆ µ then the formula (6) is equivalent to ∨l∈Sl: Each assignment which does
not satisfy all the preferences is dominated by µ;

3. If≺= ∅ then, the formula (6) is equivalent to ∨l∈S∩µl∧∧l∈S∩µl: Each assignment
satisfying a strict subset of the set of preferences satisfied by µ, is dominated by µ.

Notice that if µ1 dominates µ2 and ψ1 (resp. ψ2) is the formula (6) computed for µ1

(resp. µ2), then ψ2 entails ψ1, i.e., the models of ψ2 are a subset of the models ψ1: This
is a simple consequence of the fact that if µ1 ≺ µ2 then µ1 dominates a superset of the
total assignments dominated by µ2.

Thanks to Theorem 3, it is possible to generalize OPT-DLL in Figure 2 in order to
return all the optimal models of a finite set of clauses ϕ. The resulting procedure is rep-
resented in Figure 3. In the figure, let P be the signature of ϕ, Reason(µ) corresponds
to the negation of (6), i.e., Reason(µ) is a finite set of clauses —possibly in a signature
P ′ extending P— such that

1. for each total assignment µ satisfying the negation of (6), there exists one assign-
ment µ′ in P ′ extending µ and satisfying Reason(µ);

2. for each total assignment µ′ in P ′ satisfying Reason(µ), the restriction of µ′ to P
satisfies the negation of (6).

Such a set of clauses can be computed starting from the negation of (6) using the already
mentioned clause form transformations [20–22].

ϕ := 〈a finite set of clauses in the signature P 〉;
〈S,≺〉 := 〈a qualitative preference on literals〉;

function nOPT-DLL() return nOPT-DLL(∅)

function nOPT-DLL(µ)
1 if (∅ ∈ ϕµ) return FALSE;
2 if (µ is total)
3 Print(µ ∩ (P ∪ P ));
4 ϕ := ϕ ∪ Reason(µ);
5 return FALSE;
6 if ({l} ∈ ϕµ) return nOPT-DLL(µ ∪ {l});
7 l := ChooseLiteral(µ);
8 v := nOPT-DLL(µ ∪ {l});
9 if (v 6= FALSE) return v;

10 return nOPT-DLL(µ ∪ {l}).

Fig. 3. The algorithm of nOPT-DLL for computing all optimal solutions.

As an example, consider the optimization problem discussed at the end of previous
subsection, having

〈{x0, x1, x2, x3}, {x0 ≺ x1, x2 ≺ x3}〉



as qualitative preference, while the constraint

(x0 ∨ x1) ∧ (x0 ∨ x2) ∧ (x0 ∨ x3) ∧ (x2 ∨ x1) ∧ (x2 ∨ x3),

imposes that the only models are {x0}, {x2} and {x1, x3}. nOPT-DLL

1. starts determining and printing the optimal model {x0} or {x2}, which one depend-
ing on whether ChooseLiteral(∅) returns x0 or x2. Assuming ChooseLiteral(∅) =
x0, nOPT-DLL

(a) computes and prints the first optimal model µ0 = {x0},
(b) computes (6) for µ0, i.e.,

x0 ∧ (x1 ∨ x0) ∧ x2 ∧ x3,

(c) adds to the input set of clauses a set of clauses corresponding to the negation
of the previous formula, e.g.,

x0 ∨ x2 ∨ x3;

2. backtracks setting x0, and continues the search looking for models extending the
partial assignment {x0}. Assuming ChooseLiteral({x0}) = x2, nOPT-DLL

(a) determines and prints the second optimal model µ1 = {x2},
(b) computes (6) for µ1, i.e.,

x2 ∧ (x3 ∨ x2) ∧ x0 ∧ x1,

(c) adds to the input set of clauses a set of clauses corresponding to the negation
of the previous formula, e.g.,

x2 ∨ x0 ∨ x1;

3. backtracks setting x2, and continues the search looking for models extending the
partial assignment {x0, x2}. nOPT-DLL

(a) determines and prints the third (and last) optimal model µ2 = {x1, x3},
(b) computes (6) for µ2, i.e.,

(x1 ∨ x3) ∧ x0 ∧ x2,

(c) adds to the input set of clauses a set of clauses corresponding to the negation
of the previous formula, e.g.,

(x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x2); (7)

4. backtracks setting
(a) either x1 and thus the current assignment is {x0, x2, x1}
(b) or x3 and thus the current assignment is {x0, x2, x3}.
In both cases the formula (7) is contradicted, and given that the search tree has been
entirely explored, nOPT-DLL terminates returning FALSE.



nOPT-DLL prints all and only the optimal models of ϕ wrt 〈S,≺〉 as stated by the
following theorem.

Theorem 4. Consider Figure 3, and let ϕ, 〈S,≺〉 and nOPT-DLL as in the figure.
nOPT-DLL() prints all and only the optimal models of ϕ wrt 〈S,≺〉.

Proof. Assume ϕ is satisfiable, otherwise nOPT-DLL prints nothing and the thesis triv-
ially holds.

Let µ1, . . . , µn (n ≥ 1) be the models printed by nOPT-DLL, listed according to
the order in which they are printed (thus µ1 is the first model printed by nOPT-DLL).
The first observation is that if a model µ of the input set of clauses is not printed by
nOPT-DLL then µ is not optimal. Indeed, if µ is not printed, then µ falsifies one of the
clauses added to ϕ when a model µ′ is determined and printed, and this implies that
µ′ ≺ µ. Thus, the set T = {µ1, . . . , µn} is a superset of the set of optimal models.

It remains to be showed that each model µ in T is optimal, i.e., that for each other
model µ′ ∈ T , µ′ 6≺ µ.

For any i, j with 1 ≤ i < j ≤ n, µj 6≺ µi. To show this,

1. let l1; . . . ; lk; lk+1; lk+2; . . . ; l|P | be the sequence of literals in µi listed according
to the order in which they are assigned by nOPT-DLL, and

2. let l1; . . . ; lk; lk+1; l′k+2; . . . ; l
′
|P | be the sequence of literals in µj listed according

to the order in which they are assigned by nOPT-DLL,

(k ≥ 0). Thus, lk+1 is the first literal which is assigned differently by µi and µj , i.e.,
lk+1 has been assigned at line 8 and lk+1 has been assigned at line 10 after l1; . . . ; lk
by nOPT-DLL. There are two cases:

1. lk+1 ∈ S and thus by definition of ChooseLiteral all the literals l ≺ lk+1 are
assigned by {l1, . . . , lk} and thus in the same way by µi and µj . Hence µj 6≺ µi.

2. lk+1 6∈ S and thus by definition of ChooseLiteral all the literals in S are assigned
by {l1, . . . , lk} and thus in the same way by µi and µj . Hence µj 6≺ µi.

Thus, each model µi is optimal:

1. For each model µk with k < i (i.e., printed before µi), µk 6≺ µi because µi satisfies
the formula (6) added to ϕ when µk has been computed.

2. For each model µk with k > i (i.e., printed after µi), we have shown that µk 6≺ µi.
2

4 Quantitative and Qualitative Preferences on Formulas and their
mixing

In this section, we first introduce quantitative preferences on literals and then we gen-
eralize the concept of preferences on literals to preferences on formulas, showing how
all these notions (both separately or mixed) can be reduced to the basic framework of
qualitative preference on literals.



4.1 Quantitative Preferences on literals

Given a set of preferences S and a formula ψ, if it is not possible to satisfy both S and
ψ, a standard approach to model the relative importance of the preferences in S, is to
define a function c : S 7→ N+: Intuitively, c(l) is the reward for satisfying l ∈ S. A
pair 〈S, c〉 is a quantitative preference and a model µ of ψ is optimal if it maximizes the
objective function defined as8 ∑

l∈S∩µ

c(l). (8)

In the literature, such kind of problem is also known as Binate Covering Prob-
lem [27], recently generalized in [28].

Considering (1) and (2), if we have the preferences

1. {¬Bike0,¬Bus0,¬Car0}, assuming the reward function c is constant, then the op-
timal models are {Bike0,AtWork1}, {Bus0,AtWork1}, {Car0,AtWork1}.

2. {¬Bike0,¬Bus0,¬Car0}, if we assume c(¬Bike0) = 2 while c(¬Bus0) = 1 and
c(¬Car0) = 1, then the optimal models are {Bus0,AtWork1} and {Car0,AtWork1}.

Consider a quantitative preference 〈S′, c〉 and a satisfiable set of clauses ϕ′.
The problem of finding an (resp. all) optimal model (resp. models) of ϕ′ wrt 〈S′, c〉

can be solved again using OPT-DLL (resp. nOPT-DLL) as core engine. The basic idea is
to encode the value of the objective function (8) as a sequence of bits bn−1, . . . , b0 and
then consider the qualitative preference 〈{bn−1, . . . , b0}, {bi ≺ bj : 0 ≤ j < i < n}〉.
In more details, let adder(S′, c) be a set of clauses such that:

1. If n = dlog2(
∑
l∈S′ c(l)+1)e, adder(S′, c) contains n new variables bn−1, . . . , b0;

and
2. A total assignment µ satisfies ϕ′ iff there exists a unique total assignment µ′ to the

variables in ϕ′ and in adder(S′, c) such that
(a) µ′ extends µ and satisfies both ϕ′ and adder(S′, c), and
(b)

∑
l∈S′∩µ c(l) =

∑n−1
i=0 µ

′(bi) × 2i, where µ′(bi) is 1 if bi ∈ µ′, and is 0
otherwise.

If the above conditions are satisfied, we say that adder(S′, c) is a Boolean encoding
of 〈S′, c〉 with output bn−1, . . . , b0. adder(S′, c) can be realized in polynomial time in
many ways, see, e.g., [29].

In the above hypotheses, if

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c), and
2. 〈S,≺〉 is the qualitative preference 〈{bn−1, . . . , b0},{bi ≺ bj : 0 ≤ j < i < n}〉

8 Assuming we want c(l) < 0 for some l ∈ S, we can replace l with l in S and define c(l) =
−c(l): The set of optimal models does not change. Given 〈S, c〉 and assuming we are interested
in minimizing the objective function (8), we can consider the quantitative preference 〈S, c′〉
with c′(l) = c(l), and then look for a model maximizing

P
l∈S∩µ c

′(l).



then OPT-DLL (resp. nOPT-DLL) returns one optimal model (resp. prints all the optimal
models) of ϕ′ wrt 〈S′, c〉. The following theorem formally states this result for nOPT-
DLL.

Theorem 5. Let ϕ′ be a set of clauses and let 〈S′, c〉 be a quantitative preference on
literals. Let adder(S′, c) be a Boolean encoding of 〈S′, c〉 with output bn−1, . . . , b0. If

1. ϕ is the set of clauses in ϕ′ or in adder(S′, c), and
2. 〈S,≺〉 is the qualitative preference 〈{bn−1, . . . , b0},{bi ≺ bj : 0 ≤ j < i < n}〉
3. M is the set of models of ϕ printed by nOPT-DLL in Figure 3,

then the assignments in M , restricted to the signature of ϕ′, are all the optimal models
of ϕ′ wrt 〈S′, c〉.

Proof. The qualitative preference 〈{bn−1, . . . , b0},{bi ≺ bj : 0 ≤ j < i < n}〉 induces
a partial order on the models of ϕ′∪adder(S′, c) according to which µ ≺ µ′ if and only
if

n−1∑
i=0

µ(bi)× 2i >
n−1∑
i=0

µ′(bi)× 2i,

i.e., if and only if ∑
l∈S′∩µ

c(l) >
∑

l∈S′∩µ′

c(l).

2

As an application of the above theorem, given a quantitative preference with pref-
erences S′ = {¬Bike0,¬Bus0,¬Car0} and reward function c always returning 1, then
adder(S′, c) has two bits b1, b0 as output; and the models of adder(S′, c) satisfy

b0 ≡ (¬Bike0 ≡ ¬Bus0 ≡ ¬Car0),
b1 ≡ ((¬Bike0 ∧ ¬Bus0) ∨ (¬Bike0 ∧ ¬Car0) ∨ (¬Bus0 ∧ ¬Car0)).

(9)

The optimal models of (1), (2) and (9), given the qualitative preference 〈{b1, b0}, b1 ≺
b0〉 are {Bike0,AtWork1, b1}, {Bus0,AtWork1, b1}, {Car0,AtWork1, b1}, i.e., the mod-
els of (1), (2) whose objective value is 2.

4.2 Qualitative and Quantitative Preferences on Formulas

So far, a preference is a literal, and we have seen how it is possible to use DLL to find
optimal models wrt both qualitative and quantitative preferences on literals. We now
show that the hypothesis that preferences are literals can be waved, i.e., that it is possible
to generalize the previous concepts and results from literals to arbitrary formulas. The
basic idea is to introduce definitions [20] or “names” [21] for the formulas at hand (see
also [30, 31]).

First, we define a qualitative preference on formulas to be a pair 〈S,≺〉 where S
is a finite set of formulas and ≺ a (strict) partial order on S. The set S of preferences
does not need to be consistent. Then, as in Section 2, the partial order on S induces a
partial order on the sets of total assignments according to which, if µ and µ′ are two
total assignments µ ≺ µ′ if and only if



1. there exists a formula ψ ∈ S satisfied by µ and not by µ′; and
2. for each formula ψ′ ∈ S satisfied by µ′ and not by µ, there exists a formula ψ ∈ S

satisfied by µ and not by µ′ such that ψ ≺ ψ′.

It is easy to see that if the formulas in S are literals, then the above definition coincides
with the one given in Section 2. It is also straightforward to generalize the result of
Theorem 1 saying that the if 〈S,≺〉 is a qualitative preference on formulas, the relation
≺ extended to the set of total assignments is a partial order.

For example,

〈{AtWork0 ∨ ¬AtWork1 ∨ ¬Bus0,AtWork0 ∨ ¬AtWork1 ∨ ¬Car0,
¬AtWork0 ∨ AtWork1 ∨ ¬Bus0,¬AtWork0 ∨ AtWork1 ∨ ¬Car0},

{AtWork0 ∨ ¬AtWork1 ∨ ¬Bus0 ≺ AtWork0 ∨ ¬AtWork1 ∨ ¬Car0,
¬AtWork0 ∨ AtWork1 ∨ ¬Car0 ≺ ¬AtWork0 ∨ AtWork1 ∨ ¬Bus0}〉

models the preference in which

1. we prefer to use neither the car nor the bus for moving from/to home, but
2. we prefer to use the car more than the bus for moving to work, and
3. we prefer to use the bus more than the car for moving to home.

A model µ of a formula ψ is optimal wrt a qualitative preference on formulas 〈S,≺〉 if
µ is a minimal element of the partial order on the models of ψ.

Consider a formula ψ and a qualitative preference on formulas 〈S,≺〉.
Instead of ψ and 〈S,≺〉 we can consider

1. the qualitative preference on literals 〈Ls,≺S〉, where
– LS has a newly introduced variable xα for each formula α ∈ S, and
– xα ≺S xβ if and only if α ≺ β: and

2. the formula
ψ ∧ ∧α∈S(xα ≡ α). (10)

Then, if
µS = µ ∪ {xα : α ∈ S, µ |= α} ∪ {¬xα : α ∈ S, µ 6|= α}

it is straightforward to see that a model µ of ψ is optimal wrt the qualitative preference
on formulas 〈S,≺〉 iff µS is an optimal model of (10) wrt the qualitative preference on
literals 〈LS ,≺S〉. It is also easy to see that (10) can be simplified to

ψ ∧ ∧α∈S(¬xα ∨ α) (11)

and we obtain again the desired correspondence between the models of ψ and (11).
Introducing definitions [20] or “names” [21] for the formulas in the preferences al-

lows us also to reduce quantitative preferences on formulas (defined in the obvious way)
to quantitative preferences on literals. Further, it allows us to use OPT-DLL and nOPT-
DLL as engines for computing optimal models of ψ given a qualitative/quantitative pref-
erence on formulas. Similar modeling approaches have been presented in, e.g., [32, 33].

Notice that in our approach, quantitative preferences are reduced to qualitative ones.
An advantage of this reduction is that it makes also possible to mix the two, e.g., we
can ask (we assume bn−1, . . . , b0 to be the output bits of adder(S′, c)):



1. Which among the optimal models according to a qualitative preference 〈S,≺〉,
are optimal according to a quantitative preference 〈S′, c〉: Such assignments cor-
respond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S∪{bn−1, . . . , b0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n}∪{α ≺ bi : α ∈ S, 0 ≤ i < n}〉.

The above preference forces OPT-DLL to consider first 〈S,≺〉 and then 〈S′, c〉.
2. or which among the optimal models according to a quantitative preference 〈S′, c〉,

are optimal according to a qualitative preference 〈S,≺〉: Such assignments corre-
spond to the optimal models of ψ ∧ adder(S′, c) wrt the qualitative preference

〈S∪{bn−1, . . . , b0},≺ ∪{bi ≺ bj : 0 ≤ j < i < n}∪{bi ≺ α : α ∈ S, 0 ≤ i < n}〉.

The above preference forces OPT-DLL to consider first 〈S′, c〉 and then 〈S,≺〉.

For example, when buying a computer, assuming that we have a qualitative preference
〈S,≺〉 on components, we may want to know

1. which are the least expensive computers among the ones which are optimal accord-
ing to 〈S,≺〉,

2. or, alternatively, what is the optimal computer according to 〈S,≺〉 among the least
expensive ones.

5 Implementation and experimental results

In order to test the viability of our approach we implemented our ideas in MINISAT [14],
the 2005 version, winner of the SAT 2005 competition on the industrial benchmarks
category (together with the SAT/CNF minimizer SATELITE [34]). Such choice is mo-
tivated by our interest in solving, in particular, large structured problems coming from
applications in general, planning and formal verification in particular. It has to be noted
that MINISAT is one of the most famous and efficient implementation of what is nowa-
days called a Conflict-Driven Clause Learning (CDCL) SAT solver [35]. However, this
choice is driven by the interest on solving structured instances; other SAT solvers, e.g.,
SATZ, does not have learning incorporated, and may perform (much) better on different
(e.g., random or crafted) benchmarks. Indeed, the algorithm in Figure 2 is focused on
DLL, which is the basic part of almost all available SAT solvers. Issues related to the use
of SAT solvers with non-chronological backtracking and learning to solve optimization
problems have been first studied in [36], and then in more recent publications by the
same authors.

For comparative benchmarking, we focused on MIN-ONE/MIN-ONE⊆ and MAX-SAT/MAX-SAT⊆
problems, precisely defined as below:

1. Given a set S of variables, in MIN-ONES⊆(ϕ) (resp. MIN-ONES(ϕ)) the goal is to
find one or all the optimal models of ϕ wrt the qualitative (resp. quantitative) pref-
erence on literals 〈S, ∅〉 (resp. 〈S, c〉, where c is a constant function). When all vari-
ables are considered, i.e., when S = P , we say that we are considering a standard
MIN-ONE/MIN-ONE⊆ problem, and a partial version of the problem otherwise.



2. Given a set S of clauses, in MAX-SATS⊆(ϕ) (resp. MAX-SATS(ϕ)) the goal is to find
one or all the optimal models of ϕ wrt the qualitative (resp. quantitative) preference
on formulas 〈S, ∅〉 (resp. 〈S, c〉, where c is a constant function). When there are
no hard constraints, i.e., when ϕ = ∅, we say that we are considering a standard
MAX-SAT/MAX-SAT⊆ problem, and a partial version of the problem otherwise.

It is thus clear that these two categories of problems are the simplest cases of preferences
on literals (MIN-ONE/MIN-ONE⊆) and on formulas (MAX-SAT/MAX-SAT⊆), having an
empty partial order. Further,

1. for MIN-ONE and MAX-SAT problems, highly tuned tools are available, designed
for international competitions; and

2. the number of preferences is very high, equal to the number of clauses in MAX-
SAT/MAX-SAT⊆ and to the number of variables in MIN-ONE/MIN-ONE⊆.

Given the above, the goal of the experimental analysis,

1. on MIN-ONE⊆/MAX-SAT⊆ problems, is to show that our approach for computing
optimal models wrt qualitative preferences is viable also when the number of pref-
erences is very high; and

2. on MIN-ONE/MAX-SAT problems, is to show that our reduction from quantitative to
qualitative preferences is viable also when the number of preferences is very high.

Problems with a high number of preferences are particularly interesting because the
more preferences we have, the more the performances of the underlying SAT solver
are negatively affected, see, e.g., [15]. Further, the availability of very efficient tools
for MIN-ONE/MAX-SAT gives a good reference point to evaluate the results, also for
MIN-ONE⊆/MAX-SAT⊆: Indeed, an optimal solution for MIN-ONE (resp. MAX-SAT)
is also optimal for MIN-ONE⊆ (resp. MAX-SAT⊆). However, we want to remark that
the applicability of our ideas go far beyond, allowing for solving problems with any
partial order on preferences, for which problems no implemented system is available
for comparative analysis.

Starting from MINISAT, the modifications needed in order to solve MIN-ONE⊆ prob-
lems have been minor: In practice, we have modified the VSIDS-like heuristic of MIN-
ISAT in order to first branch on the literals in the set of preferences. Analogously
for MAX-SAT⊆, once preferences on formulas are reduced to preferences on literals.
MIN-ONE/MAX-SAT problems also required the implementation of a function adder as
specified in Section 4.1. As we already said, there are various ways to implement such
a function. We used the method described in [29], which takes linear time in the size
of the input. We also experimented with the method described in [37] for encoding the
objective function. This last encoding has some interesting computational properties,
(e.g., it is efficiently coupled with the unit-propagation technique implemented in all
DLL-based SAT solvers), but the resulting encoding is quadratic in the size of the input,
and for this reason —in our experience— it is usually very effective on small instances,
but not practical for instances of medium and big size, like the majority of the ones we
used.



Beside the modification in the heuristic, we had also to modify MINISAT internal
pre-processor in order to disable the assignment of pure literals.9

Concerning the other solvers for MAX-SAT/MIN-ONE, we initially considered both
dedicated solvers for MAX-SAT problems —like BF [38], MAXSOLVER [39], TOOL-
BAR [30, 40] ver. 3.0, MAXSATZ version submitted to the 2007 Evaluation [41], MIN-
IMAXSAT (abbreviated with MMSAT in the Tables) ver. 1.0 [42], MSU1.2 [43]—
and generic PB solvers —like OPBDP ver. 1.1.1 [44], PBS ver. 2.1 and ver. 4 [45],
MINISAT+ (abbreviated with MSAT+ in the Tables) based on MINISAT ver. 1.13 [46],
GLPPB ver. 0.2 (by the same authors of PUEBLO [47])10, BSOLO ver. 3.0.17 [48]. All
these systems are among the state-of-the-art solvers for MAX-SAT or PB problems (see
the results of the last evaluations). For the standard MAX-SAT⊆ problems, we also con-
sidered CAMUS [49]. CAMUS is a system for computing all Minimal Unsatisfiable
Subsets (MUSes) of a given formula which, as first step, computes all the MAX-SAT⊆
optimal solutions: Of course, in the tables, we consider only the time CAMUS takes
for generating the MAX-SAT⊆ solutions.

Each solver has been run using its default settings. All the experiments have been
run on a Linux box equipped with a Pentium IV 3.2GHz processor and 1GB of RAM.
In the Tables, “TIME” indicates that the solver does not solve the instance within 1800
seconds; “MEM” indicates that the solver requires more than the allocated 800MB;
“SF” indicates that the solver exits abnormally; “–” indicates that the solver returns
an incorrect result. Moreover, best performing system(s) on each benchmark/domain
are emphasized, in bold: For a domain, we count number of instances solved, with ties
broken by mean CPU time (as customary in Max-SAT evaluations).

Considering the dedicated solvers for MAX-SAT, we discarded BF, MAXSOLVER
and TOOLBAR after an initial analysis because they seem to be tailored for relatively
small typically randomly generated problems, and are thus not suited to deal with most
of the problems we consider. Concerning the PB solvers, we do not show the results for
OPBDP, PBS ver 2.1 and ver. 4, and also GLPPB because they are almost always slower
than the other systems on the instances that we consider.

The next two subsections show the results for MIN-ONE/MIN-ONE⊆ and for MAX-
SAT/MAX-SAT⊆ problems, respectively.

5.1 MIN-ONE and MIN-ONE⊆

The results for MIN-ONE/MIN-ONE⊆ problems are reported in Table 1, on a variety of
well-known, publicly available satisfiable benchmarks. In particular, (1-5) are Formal
Verification instances ((1-2) from the Bejing’96 competition, (3-5) by Ofer Shtrich-
man); (6-14) are planning problems from SATPLAN; (15-20) are Data Encryption Stan-
dard instances; (21-26) are quasi group instances. The domains contain, in general,
more benchmarks that the one we show: The instances showed representative of the

9 A literal l is pure in a set of clauses ϕ if l does not belong to any clause in ϕ. If l is pure in
ϕ, ϕ is satisfiable if and only if ϕ{l} is. However, in an optimization problem, it may be the
case that there exist optimal models with l assigned to true, and thus the necessity to disable
the assignment of pure literals in MINISAT internal pre-processor.

10 http://www.eecs.umich.edu/˜hsheini/pueblo/.



instance #C MSAT+ BSOLO MMSAT nOPTSAT nOPTSAT

T1 #Sols #C⊆ T1 #Sols
1 bcomp5 39 0.4 4.98 0.22 1.74 3360 A 40 0 21600 A
2 bmax6 61 8.42 1401.72 1.41 430.33 24 T 62 0 183072 T
3 ibm2 940 19.73 19.96 2.04 TIME 0 T 966 0.02 33132 M
4 ibm3 6356 TIME TIME TIME 25.37 16 A 6371 0.39 5679 M
5 gal8 SF MEM TIME TIME 0 T 9372 0.96 1540 M
6 3blocks 56 0.29 0.5 3.85 0.56 1 A 60 0.02 174 A
7 4blocksb 66 0.24 0.65 4.87 1.3 4 A 66 0.05 4 A
8 4blocks 108 50.94 353.32 1086.05 TIME 1 A 110 0.16 55097 A
9 large.c 265 0.96 2.84 35.24 1.18 1 A 265 0.16 6 A

10 large.d 431 7.71 51.05 506.6 42.73 4 A 432 0.81 106 A
11 log.a 135 1.39 TIME 3.07 1.88 11305 M 135 0.02 108151 M
12 log.b 138 8.99 TIME 3.03 6.1 16728 M 138 0.02 108675 M
13 rock.a 65 0.2 1.18 0.4 1.58 13100 A 65 0.01 13100 A
14 rock.b 69 0.27 0.55 0.41 1.92 902 A 69 0.01 902 A
15 r2b3.1 141 0.2 0.07 3.36 0.12 2 A 141 0.02 2 A
16 r2b3.2 138 0.08 0.08 2 0.11 1 A 138 0.02 1 A
17 r3b1.1 119 1.3 5.93 22.96 28.77 1 A 119 0.14 1 A
18 r3b1.2 126 0.82 5.62 25.04 0.93 1 A 126 0.13 1 A
19 r3b2.1 217 0.46 1.32 47.03 0.72 1 A 217 0.08 1 A
20 r3b2.2 206 0.53 1.39 42.48 0.58 1 A 206 0.06 1 A
21 qg1-8 64 31.06 414.21 131.28 78.73 16 A 64 0.84 16 A
22 qg2-7 49 0.27 1.19 2.29 0.28 14 A 49 0.13 14 A
23 qg2-8 64 21.83 200.82 111.11 43.9 2 A 64 1.03 2 A
24 qg3-8 64 0.1 0.41 1.29 0.32 18 A 64 0.02 18 A
25 qg4-9 81 19.36 77.19 98.31 50.58 194 A 81 0.02 194 A
26 qg5-11 121 0.43 1.12 4 0.34 5 A 121 0.1 5 A

Table 1. Results on MIN-ONE (columns 3-7) and MIN-ONE⊆ (column 8) problems.

behavior of the systems, and, in general, smaller (resp. bigger) instances are easy (resp.
hard) to solve for most of the systems.

The first column of the table contains the number of the instance, followed by its
name in the second column. The third column is the optimal value of the instance. Then,
columns 4-7 show the results of each system on the MIN-ONE version of the problem,
while the last column shows nOPTSAT results on the MIN-ONE⊆ version of the problem.

The columns for all the systems but nOPTSAT, show the CPU time (in seconds)
that the system takes to compute an optimal solution. For nOPTSAT, we show both the
time that nOPTSAT takes to compute the first solution (subcolumns T1), and (in subcol-
umn #Sols) the number of optimal solutions computed by nOPTSAT in 3600 seconds,
together with the indication about whether nOPTSAT computed all the solutions before
the time out (indicated with “A”), or whether nOPTSAT exceeded the time out (indicated



with “T”), or whether nOPTSAT exceeded the available memory (indicated with “M”).11

Looking at the results, we see that nOPTSAT compares well wrt the other solvers when
computing one solution: MINISAT+/BSOLO/MMSAT/nOPTSAT are not able to find an
optimal solution in 2/4/2/3 cases respectively, and nOPTSAT is the only system able to
solve the “ibm3” instance. From column #Sols it also emerges that our solver is able
to compute all the optimal solutions for many problems (21 out of 26), exceeding the
available memory in 2 cases and timing out in 3 cases. Considering the 5 cases in which
nOPTSAT is not able to compute all the optimal solutions with the given resources, we
have to stress that in general a user is interested to a relatively small number of solutions
(say 20), possibly generated one after the other upon request. Thus, a more reasonable
reading of the results in column “#Sols” is that our system is able to compute all or at
least 20 optimal solutions in all cases but two.

Concerning the results for MIN-ONE⊆ problems, these are reported in the last col-
umn only for nOPTSAT being the only system able to directly deal with these prob-
lems. The first two subcolumns show the optimal value returned and the time taken by
nOPTSAT when computing the first optimal solution; the last subcolumn #Sols has the
same meaning as before. Looking at the results, the first observation is that almost all
the problems are solved in less than 1s, and that also the gal8 problem is solved. How-
ever, comparing nOPTSAT results on MIN-ONE and MIN-ONE⊆ problems, two other
observations are in order:

1. Considering the performances in solving MIN-ONE and MIN-ONE⊆ problems, we
see that the latter are solved in much less time. This could have been expected
given that handling MIN-ONE problems requires the encoding of adders counting
the number of variables set to true, and many of the examples have more than a
thousand variables (the “gal8” instance has > 58000 variables: The resulting adder
has > 270000 variables and > 1300000 clauses).

2. Considering the optimal value of the first solution found (columns #C and #C⊆)
we see that for most instances #C = #C⊆, and, even when not equal, the two val-
ues are very close but for rows 3, 4, 6. This points out that nOPTSAT for MIN-ONE⊆
can be used as a good approximation algorithm for MIN-ONE problems.

3. Considering the number of optimal solutions (columns #Sols), nOPTSAT is able to
determine many more optimal solutions in the case of MIN-ONE⊆ problems. Inter-
estingly, in 6 cases nOPTSAT is not able to find all solutions in MIN-ONE⊆ problems
(compared to the 5 problems for MIN-ONE), and in 5 out of the 6 cases, nOPTSAT
exceeds the available memory: This can be easily explained by the fact that when-
ever a solution is found, a set of clauses is added to the input formula in order to
rule out the solutions which are dominated by the solutions found. However, as we
already said, we do not expect that users want to generate, e.g., 183072 optimal
models of problem “bmax6”, but rather a much smaller number.

11 Notice that we have two different time outs: 1800 seconds for computing one solution, for all
the systems. For nOPTSAT, we raised the time out to 3600 seconds when trying to compute
all solutions. This explains why for the problem “4blocks” (#8 in the table) for nOPTSAT

subcolumn T1 we have the value “TIME” indicating that the system did not compute any
solution in 1800 seconds, and “1 A” in column “#Sols” indicating that the system computed
the only optimal solution in less than 3600 seconds.



instance #C MSAT+ BSOLO MMSAT nOPTSAT nOPTSAT

T1 #Sols #C⊆ T1 #Sols
27 air15 58 16.37 5.35 22.75 9.53 1474 M 58 0.3 764 M
28 block5-2 16 1.58 31.79 36.96 30.55 27 A 16 0.14 27 A
29 dep7 23 78.92 TIME TIME 187.84 1458 M 23 120.6 1743 M
30 driv10 20 8.39 415.89 902.16 17.19 512 A 20 42.77 512 A
31 free3 21 14.69 169.24 803.63 7.68 2 A 21 2.71 2 A
32 log6-9 24 2.72 65.05 8.87 23.22 14171 M 28 0.01 7863 M
33 mprime2 9 TIME 327.73 TIME 49.45 786 M MEM 0 M
34 mprime5 11 TIME TIME TIME 129.08 663 M 11 75.97 917 M
35 myst2 9 160.63 236.32 TIME 28.71 1130 M 9 1340.94 571 M
36 opt11 216 TIME MEM TIME 159.93 533 M 216 972.95 85 M
37 path5 30 25.48 1194.79 50.46 112.57 5046 M 30 0.06 3196 M
38 phil29 330 4.38 10.63 339.26 1.48 38196 T 330 0.84 20961 M
39 pipe6 8 16.15 838.54 940.27 238.65 9715 M 8 1.76 6320 M
40 pipet6 8 232.83 TIME TIME 121.09 5152 M 8 29.7 3274 M
41 psr29 21 18.03 234.09 TIME 35.12 1999 M TIME 0 T
42 psr31 19 20.11 172.78 TIME 24.68 632 M 19 5.86 750 M
43 psr47 27 25.23 187.86 922.92 83.59 2197 M 27 2.56 3286 M
44 sat3 13 16.92 559.94 195.75 22.29 192 A 13 3.3 192 A
45 stor7 14 64.41 1305.37 436.97 59.06 7900 M 14 0.19 6994 M
46 truck2 17 39.31 TIME 703.9 35.55 6510 M 17 1.2 2063 M
47 zeno8 15 123.3 1175.87 TIME 156.13 1523 M 15 6.88 2459 M

Table 2. Results on partial MIN-ONE (columns 3-7) and partial MIN-ONE⊆ (column 8) problems.

We also considered partial MIN-ONE/MIN-ONE⊆ planning problems generated with
SATPLAN 2004, release of 10 Feb. 2006.12 SATPLAN works as follows: Given a plan-
ning problem Π and a makespan n (initially set to 0), it

1. generates a corresponding SAT formula Πn, and checks Πn for satisfiability;
2. if Πn is satisfiable then SATPLAN stops and a plan with optimal makespan is

returned;
3. otherwise, n is increased and the process is repeated.

In our experiments, we selected various planning problems from previous International
Planning Competitions (IPCs); we considered the first satisfiable instance generated by
SATPLAN, and we fixed the set S of preferences to be the set of action variables: With
such preferences, we are looking for a plan with as few action variables as possible set
to true. In Table 2 we show the results, where columns have the same meaning as in
Table 1.

On these partial MIN-ONE planning problems, nOPTSAT performs very well: MIN-
ISAT+/BSOLO/MMSAT/nOPTSAT are not able to find an optimal solution in 3/5/9/0
cases respectively, and nOPTSAT is the only system able to solve the “mprime5” and
“opt11” instances. From column #Sols it emerges that nOPTSAT is able to compute all
12 http://www.cs.rochester.edu/u/kautz/satplan/index.htm .



the optimal solutions only in a few cases (4 out of 21), exceeding the available memory
in 16 cases and timing out in 1 case.

Considering also nOPTSAT results on partial MIN-ONE⊆ (last column), it is no
longer true that nOPTSAT is faster when solving a partial MIN-ONE⊆ problem than
the corresponding partial MIN-ONE problem. It is also interesting to notice that, given
the available resources in time and memory, for many problems nOPTSAT is able to
find more optimal solutions in the MIN-ONE case than in the MIN-ONE⊆ one (e.g., for
“air15”). We believe that this is mostly due to the specific structure of the problems in
which

1. in the MIN-ONE case, nOPTSAT is able to quickly determine the optimal value V
for the solution, i.e., nOPTSAT is able to quickly determine the non existence of a
plan with less than V actions, and then nOPTSAT is free to select the V actions,

2. in the MIN-ONE⊆ case, nOPTSAT has to pay the price of always setting the variables
in the preferences to FALSE, i.e., nOPTSAT has always to decide to not execute an
action, even though there’s a strong evidence (given by the score of the heuristic)
that the action has to belong to the plan being built.

5.2 MAX-SAT and MAX-SAT⊆

domain #I MSAT+ BSOLO MAXSATZ MMSAT MSU1.2 nOPTSAT CAMUS nOPTSAT
T1 A/T/M T1 A/T/M T1 A/T/M

industrial 94 40.96(1) 219.27(1) 95.18(3) 7.505(2) 60.38(85)262.72(7)(7/87/0) 98.93 (54)(5/89/0)492.39 (58)(2/90/2)
spinglass 5 0.86(1) 76.57(1) 33.19(3) 1.09(3) 0.0(0) 7.52(1) (1/4/0) 109 (1) (0/5/0) 0.00 (5) (0/5/0)

dimacs mod62 247.54(7) 0.01(2) 59.27(52) 194.52(52) 0.03(3) 67.44(4) (2/60/0) 0.006 (2) (2/60/0) 0.01 (62) (1/61/0)

Table 3. Results on standard MAX-SAT (columns 3-8) and standard MAX-SAT⊆ (columns 9-10)
problems from the MAX-SAT Evaluation 2008.

For MAX-SAT/MAX-SAT⊆ problems we considered non random benchmarks from
the Max-SAT Evaluations 2007 and 2008. The results are shown in Table 3 and in
Table 4 for the standard and partial case respectively, organized as in the report of such
evaluations: Each row corresponds to a domain of benchmarks indicated in the first
column,13 the second column contains the number of instances,14 and the remaining

13 The majority of domains are (partial) Max-SAT problems originally designed in PB format
and submitted to PB evaluations, and then expressed as Max-SAT problems. The instances we
have given to PB solvers are the ones that come from a translation first in the input format of
nOPTSAT, and then in the PB format: This is because we did want to evaluate the systems on
the very same formulation. Results for PB solvers on the original PB instances may thus be
different.

14 The industrial domain contains 112 instances: The 94 mentioned in Table 3 do not contain the
biggest instances. Nonetheless, the considered instances are very hard for the solvers consid-
ered and already big, i.e., in the order of tens of MB: Thus, the remaining instances are likely
to reach the memory limit.



domain #I MSAT+ BSOLO MMSAT MSU1.2 nOPTSAT nOPTSAT
T1 A/T/M T1 A/T/M

bcp-fir 59 48.82(22) 44.89(10) 142.05(14) 166.47(48) 217.43(44) (15/12/32) 2.44(59) (3/7/49)
bcp-mtg 215 0.2(215) 48.33(190) 28.3(208) 19.15(174) 0.2(215) (81/6/128) 8.91(215) (57/100/58)
bcp-syn 74 34.27(32) 169.22(21) 61.63(29) 60.84(32) 16.46(26) (16/50/8) 0.04(74) (4/26/44)

pbo-mqc/nenc 128 124.68(120) 248.03(95) 307.38(67) 54.72(47) 156.24(80) (69/52/7) 564.64(48) (9/92/27)
pbo-mqc/nlogenc 128 39.19(119) 268.95(111) 279.79(104) 109.29(70) 218.03(96) (77/43/8) 52.33(110) (14/25/89)
PSEUDO/primes 148 11.52(104) 22.23(94) 62.08(107) 128.7(24) 33.11(104) (90/47/11) 4.60(130) (86/17/45)
PSEUDO/routing 15 43.74(15) 373.73(8) 109.49(14) 0.85(15) 58.65(15) (0/0/15) 11.22(15) (0/0/15)
MAXONE/struct 60 2.02(58) 40.96(60) 22.5(60) 0.30(1) 546.23(50) (56/4/0) 1.45(60) (56/0/4)
MAXCLIQ/struct 62 154.39(22) 248.26(14) 61.97(36) 1.56(4) 57.05(19) (17/45/0) 0.11(62) (10/4/48)

Table 4. Results on partial MAX-SAT (columns 3-7) and partial MAX-SAT⊆ (column 8) problems
from the MAX-SAT Evaluation 2008 (first 5 domains) and from the MAX-SAT Evaluation 2007
(last 4 domains).

columns report, for each system, the number of solved instances in parenthesis, and
the average time taken to solve them: So, for example, in the “spinglass” domain there
are 5 instances, and MAXSATZ solves 3 of them, taking 33.19 seconds on average. For
nOPTSAT, we show the data as for the other systems in subcolumn T1, and the number
of times nOPTSAT

1. is able to compute all solutions (first number in subcolumn (A/T/M)),
2. exceed the available time (second number in subcolumn (A/T/M)),
3. exceed the available memory (third number in subcolumn (A/T/M)).

For example, in the MAX-SAT case of the “spinglass” domain, nOPTSAT

1. is able to compute one optimal solution in 1 case taking (on average) 7.52s, and
2. when computing all the optimal solutions, in 1 case terminates normally (meaning

that nOPTSAT is able to compute all the optimal solutions); in 4 cases times out, in
0 cases exceeds the available memory.

MAXSATZ (resp. CAMUS) can only handle standard MAX-SAT (resp. MAX-SAT⊆)
problems and thus it does not appear in Table 4. Extended versions of MAXSATZ,
namely W-MAXSATZ and INCWMAXSATZ, can handle partial Max-SAT problems:
However they have not been added to Table 4 because, while being very effective on
random benchmarks, other solvers we evaluated perform better on non random bench-
marks, as witnessed by the results of Max-SAT Evaluations 2007 and 2008.

Looking at the result for MAX-SAT, the first observation is that there is not a system
clearly outperforming the others: Different systems perform better than the others in
different domains, and this is in line with the results of the last evaluations. Indeed, there
is a great variety in the techniques used by the solvers and thus we can expect such a
variety in the performances, depending on the specific features of the domain at hand.
Considering nOPTSAT on the MAX-SAT problems, its performances are comparable to
those of the other systems: If we rank systems on each domain according first to the
number of problems solved and then to the average CPU time reported, we see that
nOPTSAT is among the top three systems in 8 out of 12 domains, being a top system in
the bcp-mtg domain.



On the other hand, considering the MAX-SAT⊆ problems, nOPTSAT is able to solve
almost always all the problems with the notable exception of the pbo-mqc/nenc domain,
in which nOPTSAT is able to solve more problems in the quantitative than in the qualita-
tive setting. The positive results in the qualitative setting wrt the ones in the quantitative
setting echo the ones presented in the previous subsection for MIN-ONE⊆/MIN-ONE.
However, differently from the MIN-ONE⊆/MIN-ONE case, the optimal result (called
#C⊆ in the previous tables) of the first solution computed by nOPTSAT in the MAX-SAT⊆
case differs, sometimes significantly, from the optimal result in the MAX-SAT⊆ case
(i.e., #C and #C⊆ in the previous tables): In many cases #C⊆ is about 0.5 × #C,
and only for a few problems #C⊆ = #C. Compared to CAMUS, nOPTSAT has better
performances when the goal is to find one optimal solution: CAMUS on the indus-
trial/spinglass/dimacs mod domains, is able to find an optimal solution in 54/1/2 cases
respectively, compared to the 58/5/62 of nOPTSAT. However, for the same domains,
CAMUS is able to find all optimal solutions in 5/0/2 cases, while nOPTSAT corre-
sponding results are 2/0/1.

Summing up the results on MAX-SAT in this subsection, we have seen that nOPTSAT
performances are comparable to those of the other systems, which have been specif-
ically designed for solving MAX-SAT problems. On standard MAX-SAT⊆ problems,
nOPTSAT performs better than CAMUS when computing one solution, but worse when
computing all solutions. By further analyzing the results of nOPTSAT on MAX-SAT, we
have noticed a relation between the number of unsatisfied clauses in the optimal solu-
tion, and the performance of nOPTSAT: Performance seems to be better when there are
“few” unsatisfied clauses in the solution.

However, we have to remind that the benchmarks we have considered in this but
also in previous subsection are characterized by a very high number of preferences.
Indeed, in many applications, including planning with soft goals [16], we can expect
problems with a few (in the order of tens) preferences, and with such a low number of
preferences there is hardly any difference between the performances of nOPTSAT and
those of MINISAT when run on the original SAT instance (see [15]).

Finally, our system is not tuned in any way: For example, there is no pre-computation
of an upper or lower bound for cutting initial portions of the search tree. Herewith we
mention how we could use a (pre)computed lower bound for a MIN-ONE problem in
our algorithm.Consider a formula ψ; assume the output of the adder formula are the
variables bn−1, . . . , b0; and let lb > 0 the pre-computed lower bound. It is relatively
easy to add to ψ a set of clauses which inhibit the configurations of bits corresponding
to a value o s.t. o ≤ lb. For example, if lb = 5 and n = 4, the added clauses are those
corresponding to the formula:

b3 ∨ (b2 ∧ b1)

e.g.,

(b3 ∨ b2) (b3 ∨ b1).

With such clauses, the initial branches of nOPTSAT search tree corresponding to values
o ≤ lb = 5 are not explored.



6 Conclusions

In this paper we showed that DLL can be used to solve satisfiability problems in the pres-
ence of qualitative preferences on literals/formulas by simply imposing an ordering on
the literals to be used while branching. The computation of all optimal models requires
adding a formula pruning the generation of dominated models. We also showed how it
is possible to reduce quantitative preferences to qualitative ones by a Boolean encoding
of the objective function. We implemented our ideas in MINISAT and we showed that
the resulting system compares well with other state-of-the-art systems even on MIN-
ONE/MIN-ONE⊆/MAX-SAT/MAX-SAT⊆ problems.

There is a huge literature on qualitative and quantitative preferences, see, e.g., the
proceedings of the last “Multi-disciplinary Workshop on Advances in Preference Han-
dling” [50], or the 2007 AAAI tutorial on “Representing, Eliciting, and Reasoning with
Preferences” by Ronen Brafman and Carmel Domshlak.15 In this paper, we have deeply
analyzed the relation between our proposal and other works that deal with computing
“optimal” models in SAT and CSP [10, 11], and relate to papers that use our same con-
cept of optimality [9, 17].

Considering our approach for reducing quantitative to qualitative preferences in
general, and for solving MIN-ONE/MAX-SAT problems in particular, the idea of trans-
lating the objective function (via an adder function) into a set of clauses, to be added
to the input formula, has already been introduced and discussed in, e.g., [44, 51, 52],
implemented in MINISAT+ [46] and applied to, e.g., planning [53] and telecommuni-
cation feature subscription [54]. However, wrt MINISAT+, in our approach we do not
run the SAT solver multiple times (one for each different value of the objective func-
tion we want to test) till the optimal value is found. Instead, we run the solver once,
and the modification of the heuristic guarantees that the first model our solver finds is
also optimal. Moreover, again in comparison to MINISAT+, which is the system whose
behavior is “closer” to our, there are several other differences, i.e., (i) MINISAT+ can
not reuse the learned clauses from previous calls, while for us this is inherited within
our approach; (ii) we can compute “all” optimal solutions; and (iii) we can deal with
qualitative preferences. Also, MINISAT+ computes an initial bound by calling a SAT
solver.

Finally, we acknowledge that our approach for handling qualitative and quantitative
preferences has some drawbacks:

1. The underlying SAT solver can not be used as black-box but modifications in the
branching heuristics have to be implemented.

2. In SAT, it is known that imposing an ordering on the branching heuristics can lead
to significant degradations in performances (see, e.g. [55, 56]).

3. In the quantitative case, we need an adder formula encoding the value of the objec-
tive function, which can be of significant size.

Despite the above, we have seen that our system compares well with other state-of-
the-art systems even on MIN-ONE/MAX-SAT problems. Further, in practice, significant
degradations in the performances of the underlying SAT solver shows up only when

15 Available at http://iew3.technion.ac.il/˜dcarmel/tutorial/.



the number of preferences is very high. Finally, the modifications to the SAT solver
are minimal and limited to the branching heuristics: Because of this, when a new, more
efficient SAT solver will be available, it will be relatively easy to modify it thus gaining
further efficiency.
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method for Boolean circuits. Annals of Mathematics and Artificial Intelligence, 44(4):373–
399, August 2005.

57. Jörg Siekmann and Graham Wrightson, editors. Automation of Reasoning: Classical Papers
in Computational Logic 1967–1970, volume 1-2. Springer-Verlag, 1983.


