
university-logo

Propositional Satisfiability (SAT) and
SAT-based decision procedures

Marco Maratea
j.w.w. Enrico Giunchiglia

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab)
Dipartimento di Informatica, Sistemistica e Telematica (DIST)

L’Aquila, 09 Apr 2008

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Motivation

1 Propositional satisfiability (SAT) is one of the most studied
fields in AI and CS

2 Very efficient and specialized SAT procedures exist

⇒ use SAT solvers for deciding more expressive logics and
formalisms . . .

⇒ . . . reusing most of the work and knowledge available in
SAT

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

SAT: The problem

A literal l is a proposition p or its negation ¬p. (¬¬p ≡ p)
Given the literals l1, . . . , lk , a clause is l1 ∨ · · · ∨ lk .
Given the clauses c1, . . . , cm, a CNF (Conjunctive Normal
Form) formula is c1 ∧ · · · ∧ cm.
An assignment, or valuation v , is a partial function from the
propositions to {TRUE,FALSE}.
We can extend the definition of v in the natural way to
assign truth values to literals, clauses and formulas.
Given a CNF formula ϕ, we define the propositional
satisfiability problem (SAT):

Does there exist an assignment v to the propositions in ϕ
such that ϕ is true?

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

SAT: Examples

1 ϕ := {p,p ∨ ¬q,¬r} has the satisfying (total) assignments
{p := TRUE, q := TRUE, r := FALSE}
{p := TRUE, q := FALSE, r := FALSE}

2 ϕ := {¬p,p ∨ ¬q, r ∨ ¬p,q} has no satisfying assignments
because the clause {p ∨ ¬q} can not be satisfied.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

The complexity of SAT

Prototypical NP-complete problem

n variables imply 2n possible interpretations (total
assignments) from which a satisfying one has to be
guessed

A SAT solver is a program that tries to find satisfying
interpretations automatically

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Formulas and circuits

s1 = (

s︷ ︸︸ ︷
(x1 ⊕ x3)⊕

c︷ ︸︸ ︷
(x2 ∧ x4))

s2 = (x2 ⊕ x4)

input signal variable
gate operator

inverter⇔not
signal subformula
output formula value

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Example I: Equivalence verification

Setting
Σ is the abstract model
Σ′ is the implementation

Miter-based FCEV
SAT of (s1 ⊕ s′1) ∨ (s2 ⊕ s′2)

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Example II: AI Planning
Planning problem

Is a triple 〈I, tr ,G〉 where (given the sets of fluents F and actions A)

I is a SAT formula over F and represents the set of initial states;

tr is a SAT formula over F ∪A ∪ F ′ where F ′ = {f ′ : f ∈ F} is a
copy of the fluent signature and represents the transition relation

G is a SAT formula over F and represents the set of goal states.

Plan (Kautz and Selman. ECAI 1992)

The planning problem Π with makespan n is the SAT formula Πn

I0 ∧ ∧n
i=1tri ∧Gn (n ≥ 0) (1)

tri is the formula obtained from tr by substituting each symbol
p ∈ F ∪ A with pi−1 and each f ∈ F ′ with fi

I0 and Gn are obvious

A plan for Πn is an interpretation satisfying (1).
M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

SAT: Solving methods

Resolution algorithm

Local search algorithms

(Ordered) Binary Decision Diagrams (OBDDs)

Stalmark’s method

Davis-Logemann-Loveland (DLL) algorithm

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Agenda

DLL

DLL-based (SAT-based) decision procedures

Application I: Answer Set Programming (ASP)

Application II: Separation Logic (SL) (a.k.a. Difference
Logic)

Application III: SAT-related optimization problems
(Max-SAT, Min-ONE)

Conclusions

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

The DLL algorithm

function SAT(φ) return DLL(cnf(φ), ∅);

function DLL(ϕ,S)
if ϕ = ∅ then return TRUE ;
if ∅ ∈ ϕ then return FALSE ;
if {l} ∈ ϕ then return DLL(ϕl ,S ∪ {l});
A := an atom occurring in ϕ;
return DLL(ϕA,S ∪ {A}) or

DLL(ϕ¬A,S ∪ {¬A}).

ϕl

ϕl returns the formula obtained from ϕ by (i) deleting the
clauses containing l , and (ii) deleting ¬l from the others.

Theorem (Davis, Logemann and Loveland, JACM 1962)

SAT(φ) returns TRUE if φ is satisfiable, and FALSE otherwise.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

SAT-based decision procedures

Given a formula t in the theory T that can be
abstracted/compiled into SAT

function BEYSAT (t) return DLL(cnf(T2SAT(t)), ∅);
function DLL(ϕ,S)

if ϕ = ∅ then return test(S, t);
if ∅ ∈ ϕ then return FALSE ;
if {l} ∈ ϕ then return DLL(ϕl ,S ∪ {l});
A := an atom occurring in ϕ;
return DLL(ϕA,S ∪ {A}) or

DLL(ϕ¬A,S ∪ {¬A}).

test(S, t) returns TRUE if S is a “solution” for the formula t , and
FALSE, otherwise.

Expected property

BEYSAT returns TRUE if t is satisfiable in T , and FALSE

otherwise.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

From DLL to BEY-SAT: Discussion

1 Most state-of-the-art (SOTA) SAT solvers are a
(non-recursive) implementation of DLL

2 If SOTA SAT solvers are based on “learning” in order to
backjump irrelevant nodes while backtracking and avoid
the exploration of useless parts of the search tree, it is
important that test(S, t) does not return only FALSE, but
also a “witness” of inconsistency (called reason)

3 BEYSAT(t) works in polynomial space if both T2SAT and
test(S, t) does

4 depending on T , BEYSAT(t) can be (easily) modified in
order to compute all the solutions of t

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Application I: Answer Set Programming (ASP)

Answer Set (stable model) Programming is a programming
paradigm proposed by Marek, Truszczynski and Niemela
in 1999.
It is a form of declarative programming. It is based on logic
rules and on the answer set semantic of Prolog proposed
by Gelfond and Lifschitz in 1988.
In answer set programming we obtain the answers by
declaring the properties of the answers, by the mean of
logic rules.
ASP has been used in several fields like planning,
commonsense reasoning, (bounded) model checking,
security protocols.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

ASP: Logic rules for 3-colorability problem

Example

% Simple graph containing 3 nodes and 3 edges: edges
% between nodes 1 and 2, 2 and 3, 3 and 1, respectively.
node(1). node(2). node(3).
edge(1,2). edge(2,3). edge(3,1).
% Declaration of the three colors.
col(red). col(green). col(blue).
% A node has some color.
color(X,red) v color(X,green) v color(X,blue) :- node(X).
% Neighboring nodes should not have the same color.
:- edge(X,Y), color(X,C), color(Y,C), col(C).

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Basic preliminaries

A (logic) program Π is a finite set of rules of the form

A0 ← A1, . . . ,Am,not Am+1, . . . ,not An (2)

Let P be the set of atoms in Π, A0 ∈ P ∪ {⊥}, {A1, . . . ,An} ⊆ P.
A0 is the head. not is the negation as failure operator.

Comp(Π) consists of formulas of the type

A0 ≡
∨

(A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

for each symbol in P ∪ {⊥}. In the equation, the disjunction
extends over all rules (2) in Π with head A0.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

What is an answer set?

Consider first Π in which m = n. Let X be a set of atoms.
We say that X is closed under Π if for every rule in Π,
A0 ∈ X whenever {A1, . . . ,Am} ⊆ X .
We say that X is an answer set for Π if X is the smallest set
closed under Π.
Consider now the general case n > m. The reduct ΠX of Π
related to X is the set of rules

A0 ← A1, . . . ,Am

such that X ∩ {Am+1, . . . ,An} = ∅.
We say that X is an answer set for Π if X is an answer set
for ΠX .
problem.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

ASP: Examples

1. Be Π1: p ← not q.
q ← not r .

The only AS is {q}

2. Be Π2: p ← not q
q ← not p

The ASs are {p} and {q}

3. Be Π3: p ← not p

Π3 does not have AS.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Cmodels2 decision procedure
function CMODELS2(Π) return DLL(cnf(Comp(Π)), ∅);

function DLL(ϕ,S)
if ϕ = ∅ then return test(S,Π);

if ∅ ∈ ϕ then return FALSE ;
if {l} ∈ ϕ then return DLL(ϕl ,S ∪ {l});
A := an atom occurring in ϕ;
return DLL(ϕA,S ∪ {A}) or

DLL(ϕ¬A,S ∪ {¬A}).

test
test(S,Π) returns TRUE if S ∩ P is an answer set of Π, and
FALSE, otherwise.

Theorem (Giunchiglia, Maratea and Lierler; JAR 2006)

CMODELS2(Π) returns TRUE if Π has an answer set, and FALSE

otherwise.
M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

From DLL to Cmodels2: Discussion

1 CMODELS2(Π) can be easily modified in order to compute
all the answer sets of a program Π

2 test(S,Π) can fail because of “loops” in Π. The reason is
extracted from the “loop formulas”

Example

Π: p ← p,Comp(Π) is p ≡ p

3 CMODELS2 works in polynomial space

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Experimental results: Blocks world

Standard programs Extended programs
#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2
8 i-1 12.32 0.80 1.19 0.81 0.47
11 i-1 71.78 2.97 4.19 2.97 1.01
8 i 40.87 0.89 2.18 1.56 1.40
11 i 71.42 3.17 4.52 3.41 1.16
8 i+1 23.35 0.96 0.97 4.99 0.31
11 i+1 107.48 3.54 3.33 5.21 0.75

Table: Blocks world: “#b” is the number of blocks. “#i” the smallest
number of steps for which a solution is found.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Experimental results: H.C. complete graphs

Standard programs Extended programs
SMODELS ASSAT DLV CMODELS2 SMODELS CMODELS2

np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 14.51 314.46 3.37 8.39 1.79
np60c 594.46 48.80 770.07 5.81 20.47 3.41
np70c 1323.61 291.60 1679.12 8.22 39.41 5.87
np80c 2354.28 32.51 3407.35 14.20 75.36 9.18
np90c TIME 779.06 TIME 22.23 122.53 14.19

np100c TIME − TIME 28.63 185.52 20.76
np120c TIME − TIME 53.33 418.15 41.84

Table: Complete graphs. npXc corresponds to a graph with “X” nodes.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Experimental results: Formal Verification problems

SMODELS ASSAT DLV CMODELS2
mutex4 33.92 0.62 840.60 0.68

phi4 0.24 2.98 1.44 TIME
mutex2 0.09 1.78 0.12
mutex3 229.57 MEM 24.16

phi3 2.87 236.91 3.91

Table: Checking requirements in a deterministic automaton.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Application II: Separation Logic (SL) (a.k.a. Difference
Logic)

Decision procedures able to decide quantifier-free
first-order theories are becoming increasingly important in
Artificial Intelligence and Formal Verification.

Several properties of hardware, timed automata, and
software can be modeled in quantifier-free first-order
theories as well as planning and scheduling problems.

Separation Logic (SL) (a.k.a. Difference Logic) is one of
such decidable quantifier-free first-order theories that
allows boolean combination of difference constraints
(x − y ≤ c).

Two divisions of the SMT (Satisfiability Modulo Theories)
Competitions are on Difference Logic.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Why Separation Logic?

SL is a good compromise between efficiency and
expressivity.
It combines propositional atoms with a restricted form of
linear arithmetic via the standard boolean connectives.
Many available benchmarks are in SL and a lot of
properties of systems and planning/scheduling constraints
can be encoded in this logic.

Example

1 “Activity A1 lasts for 10 units of time at most”: e1 − s1 ≤ 10

2 “Activity A1 should start before activity A2 finishes”: s1 ≤ e2

3 “Activity A1 should start before activity A2 finishes, otherwise A3
should start when A2 finishes”: s1 ≤ e2 ∨ s3 = e2

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

SL: Definitions

Fix a domain of interpretation D for the arithmetic variables
(the set of real or the set of integer numbers).

An SL-atom is either a propositional variable or a difference
constraint x − y ≤ c (<,>,≥,=, 6= can be (easily) recast in
≤), where x and y range on D and c is a numeric constant.

An SL-literal is an SL-atom or its negation. An SL-clause is
a finite disjunction of SL-literals. An SL-formula is a finite
conjunction of SL-clauses.

Deciding the satisfiability of an SL-formula ψ means
answer the question: “Is there an SL-assignment to
propositional atoms and arithmetic variables, such that the
SL-formula ψ is true?”).

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

TSAT++ decision procedure

Given a formula ψ in SL,

function TSAT++(ψ) return DLL(cnf(Abstract(ψ)), ∅);
function DLL(ϕ,S)

if ϕ = ∅ then return test(S, ψ);

if ∅ ∈ ϕ then return FALSE ;
if {l} ∈ ϕ then return DLL(ϕl ,S ∪ {l});
A := an atom occurring in ϕ;
return DLL(ϕA,S ∪ {A}) or

DLL(ϕ¬A),S ∪ {¬A}).

test(S, ψ) returns TRUE if the set of constraints in S is
consistent, FALSE otherwise.

Theorem (Armando, Castellini, Giunchiglia and Maratea; JAR
2005)

TSAT++(ψ) returns TRUE if ψ has a solution, and False
otherwise.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

From DLL to TSAT++: Discussion

test(S, ψ) can fail because of sets of inconsistent
difference constraints in ψ. The reason is extracted using
the Bellman-Ford algorithm considering the difference
constraints involved in a negative cycle.

TSAT++ works in polynomial space

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Disjunctive Temporal Problem (DTPs)

These are well-known random problems from the AI community.
DTPs are randomly generated by fixing the number k of
expressions x − y ≤ c per SL-clause, the number n of
arithmetic variables, a positive integer L such that all the
constants are taken in [−L,L]. Then:

1 the number of clauses m is increased in order to range
from satisfiable to unsatisfiable instances from 2*n to 14*n
step n,

2 for each tuple of values of the parameters, 100 instances
are generated and then given to the solvers, and

3 the median of the CPU time is plotted against the m/n
ratio.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

TSAT++’s performance (1): DTPs

Figure: Evaluation on the DTP on 35 variables. Integer domain (left)
and real domain (right). Setting: k = 2, L = 100.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

TSAT++’s performance (2): hand-made problems

K T unique TSAT++ TSAT++p MathSAT SEP
100 5 NO 0.01 0.11 0.61 1.18
100 5 YES 0.04 7.57 TIME 0.17
250 5 NO 0.08 0.76 5.40 52.20
250 5 YES 0.21 194.99 TIME 0.77
500 5 NO 0.29 4.46 21.22 742.99
500 5 YES 1.05 TIME TIME 4.85
1000 5 NO 1.07 22.3 – TIME
1000 5 YES 6.45 TIME – 22.53
2000 5 NO 3.76 94.23 – –
2000 5 YES 29.90 TIME – –

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

TSAT++’s performance (3): real-world problems

Figure: Real-world problems.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Application III: SAT-related optimization problems

There is some interesting research related to SAT, namely
1. Max-SAT: Given an unsatisfiable SAT instance, how many

clauses can be satisfied at most (at the same time)?
2. Min-One: Given a satisfiable SAT instance, find the

satisfying assignment with the maximum (minimum)
number of variables assigned to TRUE

These problems have applications in planning, model
checking, correcting the minimum amount of inconsistent
knowledge, and more.
We propose an approach based on preferences.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Application III: Preferences

Preference
A (qualitative) preference is pair G,≺ where

G is a set of literals (the set of preferences) and intuitively
represents the set of literals that we would like to have satisfied

≺ is a partial order on G and intuitively models the relative
importance of our preferences.

Preference relation

Given two (total) models S and S′, S is preferred to S′ (S ≺ S′) iff

1 there exists a literal l ∈ S with l ∈ S and l ∈ S′; and

2 for each literal l ′ ∈ S ∩ (S′ \ S), there exists a literal
l ∈ S ∩ (S \ S′) such that l ≺ l ′.

Optimal models

A model S of a formula ϕ is optimal if it is a minimal element of the
partially ordered set of models of ϕ.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Application III: Example
Example

ϕ = (¬Fish ∨ ¬Meat) ∧ (¬RedWine ∨ ¬WhiteWine)
〈G,≺〉={Fish,RedWine,WhiteWine},{WhiteWine ≺ RedWine}

The optimal model is {Fish,WhiteWine,¬RedWine,¬Meat}.

Preference formula
The preference formula for S wrt G,≺ is

(∨l:l∈G,l 6∈S l) ∧ (∧l ′:l ′∈G,l ′∈S(∨l:l∈G,l 6∈S,l≺l ′ l ∨ l ′)) (3)

S′ which satisfies (3) are such that S′ ≺ S.

Example
Considering the preference above

if S1 = {Meat,RedWine,¬Fish,¬WhiteWine}, then (3) is

ψ1 : (Fish ∨WhiteWine) ∧ (WhiteWine ∨ RedWine)

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

The SATPREF decision procedure

function PREF-DLL(ϕ,G,≺);ψ := >; Sopt := ∅; return DLL(ϕ ∪ ψ, ∅);
function DLL(ϕ ∪ ψ,S)

if ⊥ ∈ (ϕ ∪ ψ)S then return FALSE ;
if S is total Sopt := S; ψ := Reason(S,G,≺); return FALSE ;
if {l} ∈ (ϕ ∪ ψ)S then return PREF-DLL(ϕ ∪ ψ)S,S ∪ {l});
return PREF-DLL(ϕ ∪ ψ,S ∪ {A}) or

PREF-DLL(ϕ ∪ ψ,S ∪ {¬A}).

Reason(S,G,≺) returns the set of clauses corresponding to
the preference formula for S wrt G,≺;

Theorem (Di Rosa, Giunchiglia and Maratea; 2008)

PREF-DLL(ϕ,G,≺) terminates, and then Sopt is empty if ϕ is
unsatisfiable, and an optimal model of ϕ wrt G,≺ otherwise.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Issues in experimental analysis

Representation of the problems
Optimization problems are solved by setting preferences. Given
P the set of atoms in ϕ, ¬P = {¬p : p ∈ P}

for MIN-ONE: 〈G,≺〉 := 〈¬P, ∅〉
for MAX-SAT: the problem is reduced to MIN-ONE bu using
clause selectors

Quantitative preferences

A quantitative preference is a pair 〈G, c〉 where
G is the set of preferences;
c is a function mapping each literal into a positive integer
number (intuitively the weight of the preference)

In our framework, quantitative preferences are reduced to
qualitative.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Analysis on MAX-SAT problems

domain #I OPTSAT SATPREF OPBDP PBS4 MSAT+ BSOLO MMSAT OPTSAT SATPREF

1 MINONE 26 0.69(26) 0.2(26) 85.37(7) 17.56(19) 7.33(24) 115.73(22) 87.21(24) 93.24(24) 23.99(25)
2 Partial MINONE 21 77.99(19) 2.7(21) − 223.14(15) 43.32(18) 433.21(16) 391.21(12) 74.28(21) 69.89(21)
3 MAXSAT 35 26.68(34) 11.25(35) 20.89(3) 98.55(10) 130.37(31) 192.56(23) 229.73(21) 218.86(31) 175.12(31)

4 MAXCUT-1 5 0.01(5) 0.01(5) 0.99(1) 66.67(1) 0.86(1) 76.57(1) 1.09(3) 7.56(1) 7.52(1)
5 MAXCUT-2 62 0.01(62) 0.01(62) 230.33(5) 0.01(2) 247.54(7) 0.01(2) 194.52(52) 66.86(4) 21.61(3)

6 PSEUDO-1 7 0.02(7) 0.01(7) 2.2(4) 147.58(4) 0.25(5) 30.18(4) 4.75(5) 22.8(5) 36.66(5)
7 PSEUDO-2 17 0.03(17) 0.01(17) − 85.88(1) 490.36(5) − 81.93(2) 90.36(3) 338.26(3)
8 PSEUDO-3 148 4.81(130) 0.19(131) 16.65(85) 18.08(90) 11.52 (104) 22.23 (94) 62.08 (107) 31.8(103) 60.59(109)
9 PSEUDO-4 15 11.69(15) 3.12(15) 81.83(5) 102.75(9) 43.74(15) 373.73(8) 109.49(14) 41.49(15) 36.1(15)

10 MAXONE 60 0.96(60) 0.13(60) 296.26(35) 11.48(60) 2.02(58) 40.96(60) 22.5(60) 293(56) 7.87(58)
11 MAXCLIQUE 62 0.01(62) 0.06(62) 70.37(16) 23.79(13) 154.39(22) 248.26(14) 61.97(36) 54.14(19) 178.04(23)

Table: Results for solving satisfiability problems with qualitative
(columns 4-5) and quantitative (columns 6-14) preferences. Problems
are: MIN-ONE (row 1), partial MIN-ONE (row 2), MAX-SAT (rows 3-5),
and partial MAX-SAT (rows 6-11).

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Conclusions

the SAT-based approach is very competitive and often
superior w.r.t. rival approaches in a number of application
areas
it can leverage on the work done on SAT in the last years,
and our algorithms can (easily) take advantages on future
enhancement in the field (SAT competitions every year!)
here we have focused on NP-complete problem, but the
approach
can be/has been applied to “harder” problems such as
disjunctive logic programming and conformant planning

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

References

E. Di Rosa, E. Giunchiglia, M. Maratea - Solving
Optimization Problems with DLL: A new Approach.
Submitted to ECAI 2008.
E. Giunchiglia, Yu. Lierler, M. Maratea - Answer Set
Programming based on Propositional Satisfiability.
Journal of Automated Reasoning (JAR), Vol. 36(4), pgg.
345-377 (2006).
A. Armando, C. Castellini, E. Giunchiglia and M. Maratea -
The SAT-based Approach to Separation Logic.
Journal of Automated Reasoning (JAR), Vol. 35(1-3), pgg.
237-263 (2005).

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Resolution method

based on resolution rule: l ∨ C1 and ¬l ∨ C2 resolve into
C1 ∨ C2

is the “root” of DLL ancestor (DP)
resolution based theorem provers are usually targeted for
first-order logic
DP variable elimination rule has a number of
disadvantages w.r.t. DLL splitting

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Local search algorithms

randomly select an assignment for ϕ
then try to minimize the unsatisfied clauses
can not guarantee completeness

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

OBDDs

introduced by (Bryant 1992)
boolean functions are represented via directed acyclic
graphs
in the worst case the graph is exponentially larger (in the
number of variables)
some operations on the graph and between graphs are
very convenient
(ordered): introduces a total order on the variables
highly dependent on the ordering of the variables in the
graph

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Stalmarck’s method

patented proof method developed by Gunnar Stalmarck
(1989)
it is based on a system for natural deduction
bread-first backtracking algorithm
commercial tool Prover and SAT solver Heerhugo are
based on this method
solver Heerhugo can actually deal with more than
propositional logic

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

Diamonds problems

Given a parameter K (number of diamonds), these problems
are characterized by an exponentially large (2K ) number of
boolean models T , some of which correspond to satisfying
SL-assignments; hard instances with a unique satisfying
SL-assignment can be generated.
A second parameter, T (related to the number of edge in each
diamond), is used to make T larger, further increasing the
difficulty.
Variables range over the reals.

M. Maratea Propositional Satisfiability and SAT-based decision procedures



university-logo

BDD - Example

Figure: BDD for the boolean function
f (x1, x2, x3) = ¬x1× ¬x2x3 + x1× x2 + x2× x3. Binary decision
tree (left) and binary decision diagram (right).

M. Maratea Propositional Satisfiability and SAT-based decision procedures


