
university-logo

Satisfiability and Preferences:
Solving Optimization Problems with DLL

Marco Maratea
j.w.w. Enrico Giunchiglia

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab)
DIST - Univ. Genova

L’Aquila, 10 Apr 2008

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

SAT: The problem

A literal l is a proposition p or its negation ¬p (¬¬p ≡ p).
Given the literals l1, . . . , lk , a clause is l1 ∨ · · · ∨ lk .
Given the clauses c1, . . . , cm, a CNF (Conjunctive Normal
Form) formula is c1 ∧ · · · ∧ cm.
An assignment, or valuation v , is a partial function from the
propositions to {TRUE,FALSE}.
We can extend the definition of v in the natural way to
assign truth values to literals, clauses and formulas.
Given a CNF formula ϕ, we define the propositional
satisfiability problem (SAT):

Does there exist an assignment v to the propositions in ϕ
such that ϕ is true?

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

SAT: Examples

1 ϕ := {p,p ∨ ¬q,¬r} has the (total) satisfying assignments
{p := TRUE, q := TRUE, r := FALSE}
{p := TRUE, q := FALSE, r := FALSE}

2 ϕ := {¬p,p ∨ ¬q, r ∨ ¬p,q} has no satisfying assignments
because the clause {p ∨ ¬q} can not be satisfied.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

The complexity of SAT

Prototypical NP-complete problem

n variables imply 2n possible interpretations (total
assignments) from which a satisfying one has to be
guessed

A SAT solver is a program that tries to find satisfying
interpretations automatically

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Formulas and circuits

s1 = (

s︷ ︸︸ ︷
(x1 ⊕ x3)⊕

c︷ ︸︸ ︷
(x2 ∧ x4))

s2 = (x2 ⊕ x4)

input signal variable
gate operator

inverter⇔not
signal subformula
output formula value

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Example I: Equivalence verification

Setting
Σ is the abstract model
Σ′ is the implementation

Miter-based FCEV
SAT of (s1 ⊕ s′1) ∨ (s2 ⊕ s′2)

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Example II: AI Planning
Planning problem

Is a triple 〈I, tr ,G〉 where (given the sets of fluents F and actions A)

I is a SAT formula over F and represents the set of initial states;

tr is a SAT formula over F ∪A ∪ F ′ where F ′ = {f ′ : f ∈ F} is a
copy of the fluent signature and represents the transition relation

G is a SAT formula over F and represents the set of goal states.

Plan (Kautz and Selman, ECAI 1992)

The planning problem Π with makespan n is the SAT formula Πn

I0 ∧ ∧n
i=1tri ∧Gn (n ≥ 0) (1)

tri is the formula obtained from tr by substituting each symbol
p ∈ F ∪ A with pi−1 and each f ∈ F ′ with fi

I0 and Gn are obvious

A plan for Πn is an interpretation satisfying (1).
Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

SAT: Solving methods

Resolution algorithm

Local search algorithms

(Ordered) Binary Decision Diagrams (OBDDs)

Stalmark’s method

Davis-Logemann-Loveland (DLL) algorithm

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

The DLL algorithm

function SAT(φ) return DLL(CNF(φ), ∅);

function DLL(ϕ,S)
if ϕ = ∅ then return TRUE ;
if ∅ ∈ ϕ then return FALSE ;
if {l} ∈ ϕ then return DLL(ϕl ,S ∪ {l});
A := an atom occurring in ϕ;
return DLL(ϕA,S ∪ {A}) or

DLL(ϕ¬A,S ∪ {¬A}).

ϕl

ϕl returns the formula obtained from ϕ by (i) deleting the
clauses containing l , and (ii) deleting ¬l from the others.

Theorem (Davis, Logemann and Loveland, JACM 1962)

SAT(φ) returns TRUE if φ is satisfiable, and FALSE otherwise.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Motivation

DLL is a decision procedure: Given a formula ϕ, it can
decide whether it is satisfiable, or not.

In many cases such an information is not enough.

The solution has also to be “optimal” in some sense, e.g., it
has to minimize/maximize a given objective function

Example: (classical) Planning with action costs

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Goal of the talk

1 Present a simple model for qualitative preferences on
Boolean variables

2 Present two algorithms for solving satisfiability problems
with preferences

3 Show how optimal models can be computed via simple
modifications to DLL

4 Show how MIN-ONE, MAX-SAT and other problems can be
recasted and solved in the framework

5 Show the viability of the approaches with experimental
analysis

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Assignments and optimal models

Assignment

An assignment µ is a consistent set of literals
An assignment µ is total if it is maximally consistent
An assignment µ satisfies (or is a model of) a formula ϕ if
for each C ∈ ϕ, µ ∩ C 6= ∅

Setting
1 ≺ is a partial order on the set of total assignments

satisfying the formula ϕ.
2 Intuitively, µ ≺ µ′ means than µ is preferred to µ′.

Optimality of an assignment
1 A model µ is optimal (for ϕ) if there exists a total

assignment extending µ which is a minimal element of the
partial order.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

From ≺ on literals to ≺ on models

Setting

A qualitative preference is a pair 〈S,≺〉 where
S is a set of literals representing preferences; and
≺ is a partial order on (the literals in) S

µ ≺ µ′

µ and µ′ are total assignments. µ ≺ µ′ if and only if
1 there exists a literal l ∈ S with l ∈ µ and l ∈ µ′; and
2 ∀l ′ ∈ S ∩ (µ′ \ µ), ∃l ∈ S ∩ (µ \ µ′) such that l ≺ l ′.

Example

S = {x0, x1} with x1 ≺ x0. Then,
1 {x1, x0} ≺ {x1, x0} ≺ {x1, x0} ≺ {x1, x0};
2 if ϕ is (x0 ∨ x1), the optimal model is {x1, x0}.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

OPT-DLL

function OPT-DLL(ϕ,µ,S, ≺)
1 if (∅ ∈ ϕ) return FALSE;
2 if (ϕ = ∅) return µ;
3 if ({l} ∈ ϕ) return OPT-DLL(ϕl , µ ∪ {l},S,≺);
4 l := a minimal unassigned variable in S,≺ if ∃

and a literal in ϕ otherwise.
5 v := OPT-DLL(ϕl , µ ∪ {l},S,≺);
6 if (v 6= FALSE) return v ;
7 return OPT-DLL(ϕl , µ ∪ {l},S,≺).

Theorem (Giunchiglia and Maratea, ECAI 2006)

OPT-DLL(ϕ, ∅,S,≺) returns an optimal model of ϕ wrt 〈S,≺〉 if ϕ
is satisfiable, and FALSE otherwise.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Qualitative preferences: Example
Preference

1 {¬Bus0,¬Bike0}, {¬Bus0 ≺ ¬Bike0}

OPT-DLL looks for a model extending
1 {¬Bus0,¬Bike0}; if no such model exists, OPT-DLL looks

for a model extending
2 {¬Bus0,Bike0}; if no such model exists, OPT-DLL looks for

a model extending
3 {Bus0,¬Bike0}; if no such model exists, OPT-DLL looks for

a model extending
4 {Bus0,Bike0}; if no such model exists, OPT-DLL returns

false.

Formulas
1 AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0)

2 ¬AtWork0 ∧ AtWork1

{Car0,AtWork1} is the optimal model.
Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Quantitative preferences
Idea
Quantitative preferences are reduced to qualitative.

A quantitative preference is a pair 〈S, c〉 where

S is the set of preferences;

c is a function which maps each element of S to a positive
integer number (a weight).

Adder and solving algorithm

1 an assignment µ is optimal if is maximize the utility function
defined as

∑
l∈µ∩S c(l)

2 adder(S, c) is an adder for S with output bn−1, . . . ,b0,
(n = dlog2(

∑
l∈S c(l) + 1)e) s.t.

∑
l∈S∩µ c(l) =

∑n−1
i=0 µ

′(bi)× 2i ,
where µ′(bi) is 1 if bi ∈ µ′, and is 0 otherwise. It is implemented
in linear time using the encoding of (Warners, ILP 1998).

3 OPT-DLL(ϕ∪ adder(S), ∅, {bn−1, . . . ,b0},bn−1 ≺ · · · ≺ b0) returns
an optimal model for ϕ wrt 〈S,1〉 if ϕ is satisfiable, and FALSE
otherwise.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Quantitative preferences: Example

Formulas
1 AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0)

2 ¬AtWork0 ∧ AtWork1

If we have the preferences:
1 {¬Bike0,¬Bus0,¬Car0}, assuming the reward function c is

constant and different from 0, then the optimal models are
{Bike0,AtWork1}, {Bus0,AtWork1}, {Car0,AtWork1}.

2 {¬Bike0,¬Bus0,¬Car0}, if we assume c(¬Bike0) = 2 while
c(¬Bus0) = c(¬Car0) = 1, then the optimal models are
{Bus0,AtWork1} and {Car0,AtWork1}.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

MIN-ONE and MIN-ONE⊆

Setting

ϕ is a formula; P is the set of variables in ϕ; µ, µ′ total
assignments.

MIN-ONE and MIN-ONE⊆

1 In MIN-ONE problems, µ ≺ µ′ if |µ ∩ P| < |µ′ ∩ P|.
2 In MIN-ONE⊆ problems, µ ≺ µ′ if µ ∩ P ⊂ µ′ ∩ P.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Solving MIN-ONE and MIN-ONE⊆ with OPT-DLL

Setting

ϕ is a formula; P is the set of variables in ϕ; P = {x : x ∈ P}

MIN-ONE⊆

OPT-DLL(ϕ,∅,P, ∅) returns an optimal assignment if ϕ is
satisfiable, and FALSE otherwise.

MIN-ONE

OPT-DLL(ϕ ∪ adder(P), ∅, {bn−1, . . . ,b0},bn−1 ≺ . . . ≺ b0)
returns an optimal model if ϕ is satisfiable, and FALSE

otherwise.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

MAX-SAT and MAX-SAT⊆

Setting

ϕ is a formula; µ, µ′ are total assignments.

MAX-SAT and MAX-SAT⊆

1 In MAX-SAT⊆ problems, µ ≺ µ′ if the set of clauses satisfied
by µ is a superset of the clauses satisfied by µ′

2 In MAX-SAT problems, µ ≺ µ′ if the cardinality of the set of
clauses satisfied by µ is bigger than the cardinality of the
set of the clauses satisfied by µ′

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

From MAX-SAT and MAX-SAT⊆ to MIN-ONE and
MIN-ONE⊆

Intuition
1 Given a formula ϕ, a new variable vi is added to the clause

Ci ∈ ϕ, e.g., {{a}, {b, c}} becomes {{a, v1}{b, c, v2}}.
2 MAX-SAT and MAX-SAT⊆ correspond to minimize the set of

variables vi assigned to 1, and thus reduce (with some
care) to MIN-ONE and MIN-ONE⊆ problems.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

DISTANCE-SAT and DISTANCE-SAT⊆

DISTANCE-SAT: Definition (Bailleaux and Marquis, JAR 2006)

In DISTANCE-SAT, given a formula ϕ and an assignment µ, the goal is
to find an assignment µ′ satisfying ϕ and differing “as little as
possible” from µ.

DISTANCE-SAT and DISTANCE-SAT⊆

Let ϕ be a formula. Let µ be an assignment. Two facts hold:

1 Let ≺ be a partial order such that l ≺ l if l ∈ µ. If OPT-DLL(ϕ, ∅,≺)
returns an assignment µ′ then µ′ ∈ DISTANCE-SAT⊆(ϕ, µ). If
OPT-DLL(ϕ, ∅,≺) returns FALSE then ϕ is unsatisfiable.

2 Let adder(µ) be an adder of µ with output bn−1, . . . ,b0. Let ≺ be
a partial order on {bn−1, . . . ,b0} such that for each i ∈ [0,n − 1],
bi ≺ bi , and, if i 6= 0, bi ≺ bi−1. If OPT-DLL(ϕ ∪ adder(µ), ∅,≺)
returns an assignment µ′ then µ′ ∩ P ∈ DISTANCE-SAT(ϕ, µ). If
OPT-DLL(ϕ ∪ adder(µ), ∅,≺) returns FALSE then ϕ is
unsatisfiable.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

OPT-DLL drawbacks

By using OPT-DLL, we are guaranteed that the first returned
solution is optimal. On the other hand

We have to impose an ordering on the literals to be
followed while branching; such ordering
implies changes in the DLL algorithm (and related
implementation); and
in the literature, it is well-known that such imposition can
lead to significant degradation in performances

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Another proposal: PREF-DLL

Idea
does not require any modification of DLL heuristic and thus
does not have the OPT-DLL (theoretical) disadvantages;
once a solution is computed, a constraint (i.e., a formula) is
added to the input formula imposing that the new solution
(if any) will be better than the last computed wrt the
qualitative preference on literals expressed.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Preference formulas
Example

ϕ = (¬Fish ∨ ¬Meat) ∧ (¬RedWine ∨ ¬WhiteWine)
〈S,≺〉={Fish,RedWine,WhiteWine},{WhiteWine ≺ RedWine}

The optimal model is {Fish,WhiteWine,¬RedWine,¬Meat}.

Preference formula
The preference formula for µ wrt S,≺ is

(∨l:l∈S,l 6∈µl) ∧ (∧l ′:l ′∈S,l ′∈µ(∨l:l∈S,l 6∈µ,l≺l ′ l ∨ l ′)) (2)

µ′ which satisfies (2) are such that µ′ ≺ µ.

Example
Considering the preference above

if S1 = {Meat,RedWine,¬Fish,¬WhiteWine}, then (2) is

ψ1 : (Fish ∨WhiteWine) ∧ (WhiteWine ∨ RedWine)

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

The SATPREF decision procedure

S,≺ := a qualitative preference on literals;
ϕ := the input formula; ψ := >; µopt := ∅;

function PREF-DLL(ϕ ∪ ψ, µ)
if ⊥ ∈ (ϕ ∪ ψ)µ then return FALSE ;
if µ is total µopt := µ; ψ := Reason(µ,S,≺); return FALSE ;
if {l} ∈ (ϕ ∪ ψ)µ then return PREF-DLL(ϕ ∪ ψ, µ ∪ {l});
return PREF-DLL(ϕ ∪ ψ, µ ∪ {A}) or

PREF-DLL(ϕ ∪ ψ, µ ∪ {¬A}).

Reason(µ,S,≺) returns the set of clauses corresponding to the
preference formula for S wrt S,≺;

Theorem (Di Rosa, Giunchiglia and Maratea, 2008)

PREF-DLL terminates, and then µopt is empty if ϕ is
unsatisfiable, and an optimal model of ϕ wrt S,≺ otherwise.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Experimental analysis

domain #I OPTSAT SATPREF OPBDP PBS4 MSAT+ BSOLO MMSAT OPTSAT SATPREF

1 MINONE 26 0.69(26) 0.2(26) 85.37(7) 17.56(19) 7.33(24) 115.73(22) 87.21(24) 93.24(24) 23.99(25)
2 Partial MINONE 21 77.99(19) 2.7(21) − 223.14(15) 43.32(18) 433.21(16) 391.21(12) 74.28(21) 69.89(21)
3 MAXSAT 35 26.68(34) 11.25(35) 20.89(3) 98.55(10) 130.37(31) 192.56(23) 229.73(21) 218.86(31) 175.12(31)

4 MAXCUT-1 5 0.01(5) 0.01(5) 0.99(1) 66.67(1) 0.86(1) 76.57(1) 1.09(3) 7.56(1) 7.52(1)
5 MAXCUT-2 62 0.01(62) 0.01(62) 230.33(5) 0.01(2) 247.54(7) 0.01(2) 194.52(52) 66.86(4) 21.61(3)

6 PSEUDO-1 7 0.02(7) 0.01(7) 2.2(4) 147.58(4) 0.25(5) 30.18(4) 4.75(5) 22.8(5) 36.66(5)
7 PSEUDO-2 17 0.03(17) 0.01(17) − 85.88(1) 490.36(5) − 81.93(2) 90.36(3) 338.26(3)
8 PSEUDO-3 148 4.81(130) 0.19(131) 16.65(85) 18.08(90) 11.52 (104) 22.23 (94) 62.08 (107) 31.8(103) 60.59(109)
9 PSEUDO-4 15 11.69(15) 3.12(15) 81.83(5) 102.75(9) 43.74(15) 373.73(8) 109.49(14) 41.49(15) 36.1(15)

10 MAXONE 60 0.96(60) 0.13(60) 296.26(35) 11.48(60) 2.02(58) 40.96(60) 22.5(60) 293(56) 7.87(58)
11 MAXCLIQUE 62 0.01(62) 0.06(62) 70.37(16) 23.79(13) 154.39(22) 248.26(14) 61.97(36) 54.14(19) 178.04(23)

Table: Results for solving satisfiability problems with qualitative
(columns 4-5) and quantitative (columns 6-14) preferences. Problems
are: MIN-ONE (row 1), partial MIN-ONE (row 2), MAX-SAT (rows 3-5),
and partial MAX-SAT (rows 6-11).

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

A closer look to the performances of SATPREF

domain T1 Q1 #Calls Tf Qf

1 MINONE 0.19 751.6 2 0.2 751.6
2 Partial MINONE 2.68 45.5 2.5 2.7 44.1
3 MAXSAT 0.05 8605.2 21.2 11.25 8847.6
4 MAXCUT/spinglass 0.01 770.4 2 0.01 770.4
5 MAXCUT/dimacs_mod 0.01 695.9 2.2 0.01 701.9
6 PSEUDO/garden 0.01 496 2 0.01 496
7 PSEUDO/logic-synthesis 0.01 152.2 2 0.01 152.2
8 PSEUDO/primes 0.18 368.4 2 0.19 368.4
9 PSEUDO/routing 3.12 58.7 2 3.12 58.7

10 MAXONE/structured 0.12 240.5 8.4 0.13 249.8
11 MAXCLIQUE/structured 0.06 430.4 2 0.06 430.4

Table: CPU time for finding first (T1) and optimal (Tf) solution.
Numbers of recursive calls to PREF-DLL, including the first (#Calls).
Quality of the first (Q1) and optimal (Qf) solution.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

OPTSAT vs. SATPREF

Figure: Degradation of the performances for OPTSAT and SATPREF
on the barrel7 instance. All instances are satisfiable.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

(Our) Related work

We have used / are using / would like to use our framework and
algorithms in the following applications:

Planning as Satisfiability with preferences by using
1 OPT-DLL (Giunchiglia and Maratea, AAAI 2007)
2 SATPREF

Preferences in NMR, e.g., (disjunctive) ASP,
circumscription.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Current work: Algorithms for finding all optimal
solutions

state-of-the-art: no polynomial space algorithms

We are working on two algorithms, which extend OPT-DLL
and PREF-DLL

1 We follow the preferences, and we compute only optimal
solutions by adding, for each computed solution µ, a
formula which disables the generation of assignments µ′

with µ ≺ µ′

2 We do not follow the any order, and we do not add formulas,
but we left the SAT solver to generate assignments and
then we check if it is optimal (a call to a SAT oracle with a
formula involving starting and preference formulas)

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Resolution method

based on resolution rule: l ∨ C1 and ¬l ∨ C2 resolve into
C1 ∨ C2

is the “root” of DLL ancestor (DP)
resolution based theorem provers are usually targeted for
first-order logic
DP variable elimination rule has a number of
disadvantages w.r.t. DLL splitting

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Local search algorithms

randomly select an assignment for ϕ
then try to minimize the unsatisfied clauses
can not guarantee completeness

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

OBDDs

introduced by (Bryant 1992)
Boolean functions are represented via directed acyclic
graphs
in the worst case the graph is exponentially larger (in the
number of variables)
some operations on the graph and between graphs are
very convenient
(ordered): introduces a total order on the variables
highly dependent on the ordering of the variables in the
graph

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Stalmarck’s method

patented proof method developed by Gunnar Stalmarck
(1989)
it is based on a system for natural deduction
bread-first backtracking algorithm
commercial tool Prover and SAT solver Heerhugo are
based on this method
solver Heerhugo can actually deal with more than
propositional logic

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

Diamonds problems

Given a parameter K (number of diamonds), these problems
are characterized by an exponentially large (2K) number of
Boolean models T , some of which correspond to satisfying
SL-assignments; hard instances with a unique satisfying
SL-assignment can be generated.
A second parameter, T (related to the number of edge in each
diamond), is used to make T larger, further increasing the
difficulty.
Variables range over the reals.

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

university-logo

BDD - Example

Figure: BDD for the boolean function
f (x1, x2, x3) = ¬x1× ¬x2x3 + x1× x2 + x2× x3. Binary decision
tree (left) and binary decision diagram (right).

Marco Maratea Satisfiability and Preferences: Solving Opt. Problems with DLL

