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Abstract. Competitive native solvers for Answer Set Programming (ASP) per-
form a backtracking search by assuming the truth of literals. The choice of literals
(the heuristic) is fundamental for the performance of these systems.
Most of the efficient ASP systems employ a heuristic based on look-ahead, that is,
a literal is tentatively assumed and its heuristic value is based on its deterministic
consequences. However, looking ahead is a costly operation, and indeed look-
ahead often accounts for the majority of time taken by ASP solvers. For Satisfia-
bility (SAT), a radically different approach, called look-back heuristic, proved to
be quite successful: Instead of looking ahead, one uses information gathered dur-
ing the computation performed so far, thus looking back. In this approach, atoms
which have been frequently involved in inconsistencies are preferred.
In this paper, we carry over this approach to the framework ofdisjunctiveASP.
We design a number of look-back heuristics exploiting peculiarities of ASP and
implement them in the ASP system DLV. We compare their performance on a
collection of hard ASP programs both structured and randomly generated. These
experiments indicate that a very basic approach works well, outperforming all of
the prominent disjunctive ASP systems — DLV (with its traditional heuristic),
GnT, and CModels3 — on many of the instances considered.

1 Introduction

Answer set programming (ASP) is a comparatively novel programming paradigm, which
has been proposed in the area of nonmonotonic reasoning and logic programming. The
idea of answer set programming is to represent a given computational problem by a
logic program whose answer sets correspond to solutions, and then use an answer set
solver to find such solutions [1]. The knowledge representation language of ASP is very
expressive in a precise mathematical sense; in its general form, allowing for disjunc-
tion in rule heads and nonmonotonic negation in rule bodies, ASP can representevery
problem in the complexity class�P2 and�P2 (under brave and cautious reasoning, re-
spectively) [2]. Thus, ASP is strictly more powerful than SAT-based programming, as
it allows for solving problems which cannot be translated to SAT in polynomial time
(unlessP = NP ). For instance, several problems in diagnosis and planning under in-
complete knowledge are complete for the complexity class�P2 or �P2 [3, 4], and can
be naturally encoded in ASP [5, 6].
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Since the model generators of native ASP systems are similar to the DPLL proce-
dure, employed in many SAT solvers, the heuristic (branching rule) for the selection of
the branching literal (i.e., the criterion determining the literal to be assumed true at a
given stage of the computation) is fundamentally important for the efficiency of an ASP
system. Many of the efficient ASP systems, and especially the disjunctive ASP systems,
employ a heuristic based on look-ahead. This means that the available choices are hy-
pothetically assumed, their deterministically entailed consequences are computed, and
a heuristic function is evaluated on the result. The look-ahead approach has been shown
to be effective [9, 10] and it bears the additional benefit of detecting choices that de-
terministically cause an inconsistency. However, the sheer number of potential choices
and the costly computations done for each of these makes the look-ahead a rather costly
operation. Indeed, look-ahead often accounts for the majority of time taken by ASP
solvers.

In SAT, a radically different approach, called look-back heuristics, proved to be
quite successful [11]: Instead of making tentative assumptions and thus trying to look
into the future of the computation, one uses information already collected during the
computation so far, thus looking back; atoms which have been most frequently in-
volved in inconsistencies are heuristically preferred (following the intuition that “most
constrained” atoms are to be decided first).

In this paper, we take this approach from SAT to the framework of disjunctive ASP,
trying to maximally exploit peculiarities of ASP, and experiment with alternative ways
of addressing the key issues arising in this framework. The main contributions of the
paper are as follows.
� We define a framework for look-back heuristics in disjunctive ASP. We build upon
the work in [12], which describes a calculus identifying reasons for encountered incon-
sistencies in order to allow backjumping (i.e., avoiding backtracking to choices which
do not contribute to an encountered inconsistency). For obtaining a “most constrained
choices first” strategy, we prefer those choices that were the reasons for earlier inconsis-
tencies. Our framework exploits the peculiarities of disjunctive ASP, a relevant feature
concerns the full exploitation of “hidden” inconsistencies which are due to the failure
of stable-model checks.
� We design a number of look-back heuristics for disjunctive ASP. In particular, we
study different ways of making choices when information on inconsistencies is poor
(e.g., at the beginning of the computation, when there is still nothing to look back to).
We consider also different ways of choosing the “polarity” (positive or negative) of the
atoms to be taken (intuitively negative choices keep the interpretation closer to mini-
mality, which is mandatory in ASP).
�We implement all proposed heuristics in the ASP system DLV [7].
� We carry out an experimental evaluation of all proposed heuristics on programs en-
coding random and structured 2QBF formulas, the prototypical problem for�P2 (the
class characterizing hard disjunctive ASP programs).

The results are very encouraging, the new heuristics perform very well compared to
the traditional disjunctive ASP systems DLV, GnT [8] and CModels3 [13]. In particu-
lar, a very basic heuristic outperforms all other systems on a large part of the considered
instances.



To our knowledge, while look-back heuristics have been widely studied for SAT
(see, e.g., [11] [14], [15]), so far only few works have studied look-back heuristics for
_-free ASP [16, 17], and this is the first paper on look-back heuristics for disjunctive
ASP.1

2 Answer Set Programming Language

A (disjunctive) ruler is a formula

a1 _ � � � _ an :– b1; � � � ; bk; not bk+1; � � � ; not bm:

wherea1; � � � ; an; b1; � � � ; bm are function-free atoms andn � 0; m � k � 0. The
disjunctiona1 _ � � � _ an is theheadof r, while b1; � � � ; bk; not bk+1; � � � ; not bm is
the body, of which b1; � � � ; bk is thepositive body, andnot bk+1; � � � ; not bm is the
negative bodyof r.

An (ASP) programP is a finite set of rules. An object (atom, rule, etc.) is called
groundorpropositional, if it contains no variables. Given a programP, let theHerbrand
UniverseUP be the set of all constants appearing inP and theHerbrand BaseBP be the
set of all possible ground atoms which can be constructed from the predicate symbols
appearing inP with the constants ofUP .

Given a ruler,Ground(r) denotes the set of rules obtained by applying all possible
substitutions� from the variables inr to elements ofUP . Similarly, given a program
P, theground instantiationGround(P) of P is the set

S
r2P Ground(r).

For every programP, its answer sets are defined using its ground instantiation
Ground(P) in two steps: First answer sets of positive programs are defined, then a
reduction of general programs to positive ones is given, which is used to define answer
sets of general programs.

A setL of ground literals is said to beconsistentif, for every atom` 2 L, its com-
plementary literalnot ` is not contained inL. An interpretationI for P is a consistent
set of ground literals over atoms inBP .2 A ground literal` is true w.r.t. I if ` 2 I; `
is falsew.r.t. I if its complementary literal is inI; ` is undefinedw.r.t. I if it is neither
true nor false w.r.t.I. InterpretationI is total if, for each atomA in BP , eitherA or
not A is in I (i.e., no atom inBP is undefined w.r.t.I). A total interpretationM is a
modelfor P if, for every r 2 Ground(P), at least one literal in the head is true w.r.t.
M whenever all literals in the body are true w.r.t.M . X is ananswer setfor a positive
programP if it is minimal w.r.t. set inclusion among the models ofP.

Example 1.For the positive programP1 = fa _ b _ c: ; :–a:g, fb; not a; not cg and
fc; not a; not bg are the only answer sets.

For the positive programP2 = fa _ b _ c: ; :–a: ; b :–c: ; c :–b:g, fb; c; not ag is
the only answer set.

1 The disjunctive ASP system CModels3 [13] “indirectly” uses look-back heuristics, since it
works on top SAT solvers which may employ this technique.

2 We represent interpretations as set of literals, since we have to deal with partial interpretations
in the next sections.



The reductor Gelfond-Lifschitz transformof a general ground programP w.r.t. an
interpretationX is the positive ground programPX , obtained fromP by (i) deleting
all rulesr 2 P the negative body of which is false w.r.t. X and (ii) deleting the negative
body from the remaining rules. An answer set of a general programP is a modelX of
P such thatX is an answer set ofGround(P)X .

Example 2.Given the (general) programP3 = fa _ b :–c: ; b :–not a; not c: ; a _
c :–not b:g andI = fb; not a; not cg, the reductPI3 is fa_ b :–c:; b:g. It is easy to see
thatI is an answer set ofPI3 , and for this reason it is also an answer set ofP3.

3 Answer Set Computation

In this section, we describe the main steps of the computational process performed by
ASP systems. We will refer particularly to the computational engine of the DLV system,
which will be used for the experiments, but also other ASP systems, employ a similar
procedure.

An answer set programP in general contains variables. The first step of a compu-
tation of an ASP system eliminates these variables, generating a ground instantiation
ground(P) of P.3 The subsequent computations are then performed onground(P).

Function ModelGenerator(I: Interpretation): Boolean;
var inconsistency: Boolean;
begin

I := DetCons(I);
if I = L then return False; (* inconsistency *)
if no atom is undefined in Ithen return IsAnswerSet(I);
Select an undefined ground atomA according to a heuristic;
if ModelGenerator(I [ fAg) then return True;
else returnModelGenerator(I [ fnot Ag);

end;

Fig. 1.Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is sketched
in Figure 1. The ModelGenerator function is initially called with parameterI set to the
empty interpretation.4 If the programP has an answer set, then the function returns
True, settingI to the computed answer set; otherwise it returns False. The Model Gen-
erator is similar to the DPLL procedure employed by SAT solvers. It first calls a function
DetCons(), which returns the extension ofI with the literals that can be deterministi-
cally inferred (or the set of all literalsL upon inconsistency). This function is similar
to a unit propagation procedure employed by SAT solvers, but exploits the peculiarities

3 Note thatground(P) is usually not the fullGround(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sets asP.

4 Observe that the interpretations built during the computation are 3-valued, that is, a literal can
be True, False or Undefined w.r.t.I.



of ASP for making further inferences (e.g., it exploits the knowledge that every answer
set is a minimal model). If DetCons does not detect any inconsistency, an atomA is
selected according to a heuristic criterion and ModelGenerator is called onI [fAg and
on I [ fnot Ag. The atomA plays the role of a branching variable of a SAT solver.
And indeed, like for SAT solvers, the selection of a “good” atomA is crucial for the
performance of an ASP system. In the next section, we describe some heuristic criteria
for the selection of such branching atoms.

If no atom is left for branching, the Model Generator has produced a “candidate” an-
swer set, the stability of which is subsequently verified byIsAnswerSet(I). This function
checks whether the given “candidate”I is a minimal model of the programGround(P)I
obtained by applying the GL-transformation w.r.t.I, and outputs the model, if so.IsAn-
swerSet(I)returns True if the computation should be stopped and False otherwise.

4 Reasons for Literals

Once a literal has been assigned a truth value during the computation, we can associate
a reason for that fact with the literal. For instance, given a rulea :–b; c; not d:, if b
andc are true andd is false in the current partial interpretation, thena will be derived
as true (by Forward Propagation). In this case, we can say thata is true “because”b
andc are true andd is false. A special case arechosenliterals, as their only reason is
the fact that they have been chosen. The chosen literals can therefore be seen as being
their own reason, and we may refer to them as elementary reasons. All other reasons are
consequences of elementary reasons, and hence aggregations of elementary reasons.

Each literall derived during the propagation (i.e., DetCons) will have an associated
set of positive integersR(l) representing the reason ofl, which are essentially the re-
cursion levels of the chosen literals which entaill. Therefore, for any chosen literalc,
jR(c)j = 1 holds. For instance, ifR(l) = f1; 3; 4g, then the literals chosen at recursion
levels 1, 3 and 4 entaill. If R(l) = ;, thenl is true in all answer sets.

The process of defining reasons for derived (non-chosen) literals is calledreason
calculus. The reason calculus we employ defines the auxiliary concepts of satisfying
literals and orderings among satisfying literals for a given rule. It also has special defi-
nitions for literals derived by the well-founded operator. Here, for lack of space, we do
not report details of this calculus, and refer to [12] for a detailed definition.

When an inconsistency is determined, we use reason information in order to under-
stand which chosen literals have to be undone in order to avoid the found inconsistency.
Implicitly this also means that all choices which are not in the reason do not have any
influence on the inconsistency. We can isolate two main types of inconsistencies:(i)
Deriving conflicting literals, and(ii) failing stability checks. Of these two, the second
one is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, that DetCons determines that
an atoma and its negationnot a should both hold. In this case, the reason of the
inconsistency is – rather straightforward – the combination of the reasons fora and
not a: R(a) [R(not :a).

Inconsistencies from failing stability checks are different and a peculiarity of dis-
junctive ASP, as non-disjunctive ASP systems usually do not employ a stability check.



This situation occurs if the function IsAnswerSet(I) of Section 3 returns false, hence if
the checked interpretation (which is guaranteed to be a model) is not stable. The rea-
son for such an inconsistency is always based on an unfounded set, which has been
determined inside IsAnswerSet(I) as a side-effect. Using this unfounded set, the reason
for the inconsistency is composed of the reasons of literals which satisfy rules which
contain unfounded atoms in their head (the cancelling assignments of these rules). Note
that unsatisfied rules with unfounded atoms in their heads are not relevant for stability
and hence do not contribute to the reason. The information on reasons for inconsis-
tencies can be exploited for backjumping, as described in [12], by going back to the
closest choice which is a reason for the inconsistency, rather than always to the imme-
diately preceding choice. In the remainder of this paper, we will describe extensions of
a backjumping-based solver by further exploiting the information provided by reasons.
In particular, in the following section we describe how reasons for inconsistencies can
be exploited for defining a look-back heuristic.

5 Heuristics

In this section we will first describe the two main heuristics for DLV (based on look-
ahead), and subsequently define several new heuristics based on reasons, which are
computed as side-effects of the backjumping technique. Throughout this section, we
assume that a ground ASP programP and an interpretationI have been fixed. We
first recall the “standard” DLV heuristichUT [9], which has recently been refined to
yield the heuristichDS [18], which is more “specialized” for hard disjunctive programs
(like 2QBF). These are look-ahead heuristics, that is, the heuristic value of a literalQ
depends on the result of takingQ true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the application of DetCons on
I [ fQg; w.l.o.g., we assume thatext(Q) is consistent, otherwiseQ is automatically
set to false and the heuristic is not evaluated onQ at all.

Standard Heuristic of DLV (hUT ). This heuristic, which is the default in the DLV
distribution, has been proposed in [9], where it was shown to be very effective on many
relevant problems. It exploits a peculiar property of ASP, namelysupportedness: For
each true atomA of an answer setI, there exists a ruler of the program such that the
body of r is true w.r.t.I andA is the only true atom in the head ofr. Since an ASP
system must eventually converge to a supported interpretation,hDS is geared towards
choosing those literals which minimize the number ofUnsupportedTrue (UT)atoms,
i.e., atoms which are true in the current interpretation but still miss a supporting rule.
The heuristichUT is “balanced”, that is, the heuristic values of an atomQ depends on
both the effect of takingQ andnot Q, the decision betweenQ andnot Q is based on
the same criteria involving UT atoms.

Enhanced Heuristic ofDLV (hDS).
The heuristichDS , proposed in [19] is based onhUT , and is different fromhUT

only for pairs of literals which are not ordered byhUT . The idea of the additional
criterion is that interpretations having a “higher degree of supportedness” are preferred,
where the degree of supportedness is the average number of supporting rules for the



true atoms. Intuitively, if all true atoms have many supporting rules in a modelM ,
then the elimination of a true atom from the interpretation would violate many rules,
and it becomes less likely finding a subset ofM which is a model ofPM (which would
disprove thatM is an answer set). Interpretations with a higher degree of supportedness
are therefore more likely to be answer sets. Just likehUT , hDS is “balanced”.

The Look-back Heuristics (hLB). We next describe a family of new look-back heuris-
ticshLB . Different tohUT andhDS , which provide a partial order on potential choices,
hLB assigns a number (V (L)) to each literalL (thereby inducing an implicit order).
This number is periodically updated using the inconsistencies that occurred after the
most recent update. Whenever a literal is to be selected, the literal with the largest
V (L) will be chosen. If several literals have the sameV (L), then negative literals are
preferred over positive ones, but among negative and positive literals having the same
V (L), the ordering will be random.

In more detail, for each literalL, two values are stored:V (L), the current heuristic
value, andI(L), the number of inconsistenciesL has been a reason for (as discussed in
Section 4) since the most recent heuristic value update. After having chosenk literals,
V (L) is updated for eachL as follows:V (L) := V (L)=2 + I(L). The motivation for
the division (which is assumed to be defined on integers by rounding the result) is to
give more impact to more recent values. Note thatI(L) 6= 0 can hold only for literals
that have been chosen earlier during the computation.

A crucial point left unspecified by the definition so far are the initial values ofV (L).
Given that initially no information about inconsistencies is available, it is not obvious
how to define this initialization. On the other hand, initializing these values seems to
be crucial, as making poor choices in the beginning of the computation can be fatal for
efficiency. Here, we present two alternative initializations: The first, denoted byhMFLB , is
done by initializingV (L) by the number of occurrences ofL in the program rules. The
other, denoted byhLFLB , involves ordering the atoms with respect tohDS , and initializing
V (L) by the rank in this ordering. The motivation forhMFLB is that it is fast to compute
and stays with the “no look-ahead” paradigm ofhLB . The motivation forhLFLB is to try
to use a lot of information initially, as the first choices are often critical for the size of
the subsequent computation tree.

We introduce yet another option forhLB , motivated by the fact that answer sets
for disjunctive programs must be minimal with respect to atoms interpreted as true,
and the fact that the checks for minimality are costly: If we preferably choose false
literals, then the computed answer set candidates may have a better chance to be already
minimal. Thus even if the literal, which is optimal according to the heuristic, is positive,
we will choose the corresponding negative literal first. If we employ this option in the
heuristic, we denote it by addingAF to the superscript, arriving athMF;AFLB andhLF;AFLB
respectively.

Note also that the complexity of look-ahead heuristics is in general quadratic (in
the number of atoms), and becomes linear if a bound on the number of atoms to be
analyzed is a-priori known. On the other hand,hLB heuristics are constant time, but
need the valuesV (L) to be re-ordered after having chosenk literals.



6 Experiments

We have implemented all the proposed heuristics in DLV; in this section, we report on
their experimental evaluation.

6.1 Compared Methods

For our experiments, we have compared several versions of DLV [7], which differ on
the employed heuristics and the use of backjumping. For having a broader picture, we
have also compared our implementations to the competing systems GnT and CModels3.
The considered systems are:
� dlv.ut: the standard DLV system employinghUT (based on look-ahead).
� dlv.ds: DLV with hDS , the look-ahead based heuristic specialized for�P2 /�P2 hard
disjunctive programs.
� dlv.ds.bj: DLV with hDS and backjumping.
� dlv.mf: DLV with hMFLB .5

� dlv.mf.af: DLV with hMF;AFLB .
� dlv.lf : DLV with hLFLB .
� dlv.lf.af : DLV with hLF;AFLB .
� gnt [8]: The solver GnT, based on the Smodels system, can deal with disjunctive ASP.
One instance of Smodels generates candidate models, while another instance tests if a
candidate model is stable.
� cm3 [13]: CModels3, a solver based on the definition of completion for disjunctive
programs and the extension of loop formulas to the disjunctive case. CModels3 uses two
SAT solvers in an interleaved way, the first for finding answer set candidates using the
completion of the input program and loop formulas obtained during the computation,
the second for verifying if the candidate model is indeed an answer set.

Note that we have not taken into account other solvers like Smodelscc [16] or Clasp
[17] because our focus is on disjunctive ASP.

6.2 Benchmark Programs and Data

The proposed heuristic aims at improving the performance of DLV on disjunctive ASP
programs. Therefore we focus on hard programs in this class, which is known to be able
to express each problem of the complexity class�P2 . All of the instances that we have
considered in our benchmark analysis have been derived from instances for 2QBF, the
canonical�P2 -complete problem. This choice is motivated by the fact that many real-
world, structured instances for problems in�P2 are available for 2QBF on QBFLIB
[20], and moreover, studies on the location of hard instances for randomly generated
2QBFs have been reported in [21–23].

The problem 2QBF is to decide whether a quantified Boolean formula (QBF)� =
8X9Y �, whereX andY are disjoint sets of propositional variables and� = D1^ : : :^
Dk is a CNF formula overX [ Y , is valid.

5 Note that all systems withhLB heuristics exploit backjumping.



The transformation from 2QBF to disjunctive logic programming is a slightly al-
tered form of a reduction used in [24]. The propositional disjunctive logic programP�
produced by the transformation requires2 � (jXj + jY j) + 1 propositional predicates
(with one dedicated predicatew), and consists of the following rules. Rules of the form
v _ �v: for each variablev 2 X [ Y .
Rules of the formy  w: �y  w: for eachy 2 Y . Rules of the formw  
�v1; : : : ; �vm; vm+1; : : : ; vn: for each disjunctionv1 _ ::: _ vm _ :vm+1 _ ::: _ :vn
in �. The rule not w. The 2QBF formula� is valid iff P� has no answer set [24].

We have selected both random and structured QBF instances. The random 2QBF
instances have been generated following recent phase transition results for QBFs [21–
23]. In particular, the generation method described in [23] has been employed and the
generation parameters have been chosen according to the experimental results reported
in the same paper. We have generated 13 different sets of instances, each of which is
labelled with an indication of the employed generation parameters. In particular, the
label “A-E-C-�” indicates the set of instances in which each clause hasA universally-
quantified variables andE existentially-quantified variables randomly chosen from a
set containingC variables, such that the ratio between universal and existential vari-
ables is�. For example, the instances in the set “3-3-50-0.8” are 6CNF formulas (each
clause having exactly 3 universally-quantified variables and 3 existentially-quantified
variables) whose variables are randomly chosen from a set of 50 containing 22 univer-
sal and 28 existential variables, respectively. In order to compare the performance of
the systems in the vicinity of the phase transition, each set of generated formulas has
an increasing ratio of clauses over existential variables (from 1 to maxr). Following the
results presented in [23], maxr has been set to 21 for each of the sets 3-3-50-* and 3-
3-70-*, and 12 for each of the 2-3-80-*. We have generated 10 instances for each ratio,
thus obtaining, in total, 210 and 120 instances per set, respectively.

The structured instances we have analyzed are:

– Narizzano-Robot - These are real-word instances encoding the robot navigation
problems presented in [25].

– Ayari-MutexP - These QBFs encode instances to problems related to the formal
equivalence checking of partial implementations of circuits, as presented in [26].

– Letz-Tree - These instances consist of simple variable-independent subprograms
generated according to the pattern:8x1x3:::xn�19x2x4:::xn(c1^: : :^cn�2) where
ci = xi _ xi+2 _ xi+3, ci+1 = :xi _ :xi+2 _ :xi+3, i = 1; 3; : : : ; n� 3.

The benchmark instances belonging to Letz-tree, Narizzano-robot, Ayari-MutexP have
been obtained from QBFLIB [20], including the 32 Narizzano-robot instances used in
the QBF Evaluation 2004, and all the89 instances from Letz-tree and Ayari-MutexP.

6.3 Results

All the experiments were performed on a 3GHz PentiumIV equipped with 1GB of
RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using thetime command shipped with the system, counting total CPU time
for the respective process.



dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3

2-3-80-0.4 106 114 114 107 100 109 103 3 47
2-3-80-0.6 83 88 89 92 71 90 83 4 58
2-3-80-0.8 78 92 95 93 70 89 86 3 65
2-3-80-1.0 78 90 91 98 66 88 85 8 77
2-3-80-1.2 72 89 94 105 74 93 95 4 87

3-3-50-0.8 210 210 210 210 210 210 210 21 166
3-3-50-1.0 191 205 202 201 199 203 202 30 163
3-3-50-1.2 196 207 206 208 203 207 206 41 191

3-3-70-0.6 126 136 135 140 127 131 131 1 61
3-3-70-0.8 112 115 115 128 103 113 119 0 68
3-3-70-1.0 91 108 109 137 94 110 108 3 82
3-3-70-1.2 104 121 122 139 90 117 121 5 108
3-3-70-1.4 106 123 124 151 98 131 126 3 118

#Total 1552 1698 1706 1809 1505 1691 1675 126 1291

Table 1.Number of solved instances within timeout for Random 2QBF.

We start with the results of the experiments with random 2QBF formulas. For every
instance, we have allowed a maximum running time of 6 minutes. In Table 1 we re-
port, for each system, the number of instances solved in each set within the time limit.
Looking at the table, it is clear that the new look-back heuristic combined with the
”mf” initialization (corresponding to the system dlv.mf) performed very well on these
domains, being the version which was able to solve most instances in most settings,
particularly on the 3-3-70-* sets. Also dlv.lf performed quite well, while the other vari-
ants do no seem to be very effective. Considering the look-ahead versions of DLV,
dlv.ds performed reasonably well. Considering GnT and CModels3, we can note that
they could solve comparatively few instances.

Comparing between the 3-3-50-* and 3-3-70-* settings, we can see that dlv.mf is
the system that scales best: It is on the average when considering 50 variables, while it
is considerably better when considering 70 variables.

We do not report details on the execution times due to lack of space, as aggre-
gated results such as average or median are problematic because of the many timeouts.
However, for 3-3-50-0.8 all DLV-based systems terminated, and here the average times
do not differ dramatically, the best being dlv.ds (23.62s), dlv.mf (25.26s) and dlv.ds.bj
(26.02s). In other settings, such as 2-3-80-0.6, we observe that dlv.mf is the best on
average time over the solved instances (18.31s), while all others solve fewer instances
with a higher average time. Similar considerations hold for 3-3-70-1.2 where dlv.mf
solves 17 instances more than the second best, dlv.ds.bj, yet its average time is about
30% lower (22.93s vs. 34.89s).

In Tables 2, 3 and 4, we report the results, in terms of execution time for finding
one answer set, and number of instances solved within 11 minutes, about the groups:
Letz-Tree, Narizzano-Robot, and Ayari-MutexP, respectively. The last columns (AS?)
indicate if the instance has an answer set (Y), or not (N). A “–” in these tables indicates
a timeout. ForhLB heuristics, we experimented a few different values for “k”, and we
obtained the best results fork=100. However, it would be interesting to analyze more



thoroughly the effect of the factork. In Table 2 we report only the instances which
were solved within the time limit by at least one of the compared methods. On these
instances, dlv.mf was able to solve all the shown 23 instances, followed by CModels3
(18) and dlv.lf (15). Moreover, dlv.mf was also always the fastest system on each in-
stance (sometimes dramatically), if we consider the instances on which it took more
than 1 sec.

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

2-38.1 0.31 0.31 0.31 0.36 0.39 0.37 0.33 44.4 1.31 N
2-64.1 0.30 0.30 0.32 0.36 0.39 0.37 0.33 43.77 1.3 N
2-93.1 0.31 0.30 0.32 0.36 0.39 0.37 0.33 44.35 1.3 N
2-69.4 – – – 536.97 – – – – 263.05 N
2-3.5 – – – 14.39 352.94 387.11 364.89 – 431.55 N
2-61.6 – – – 629.35 – – – – – Y
2-72.7 – – – 14.21 – – – – 390.62 N
3-17.2 14.26 7.45 5.67 4.59 5.85 8.22 7.31 – 8.1 N
3-62.4 – – – 362.57 – – – – 211.68 N
3-80.4 – – – 404.93 – – – – 239.96 N
4-78.1 0.30 0.30 0.31 0.43 0.51 0.37 0.33 37.3 1.31 N
4-21.2 13.40 6.84 5.27 3.60 4.25 5.68 7.31 – 8.14 N
4-73.2 13.36 6.80 4.07 2.49 3.18 4.72 6.65 – 6.68 N
4-91.4 – – – 236.41 – – – – 212.76 N
4-85.5 – – 504.61 3.59 156.60 109.04 372.78 – 103.04 N
4-87.8 – – – 244.47 – 600.36 – – – Y
5-29.1 0.30 0.30 0.31 0.43 0.51 0.36 0.32 37.1 1.3 N
5-5.2 13.39 6.83 4.09 2.50 3.18 4.73 6.68 – 6.66 N
5-75.3 655.78188.80 71.56 14.70 31.44 62.93 47.85 – 34.74 N
5-18.5 – – – 357.04 – – – – – Y
5-59.5 – – – 357.15 – – – – – Y
5-55.6 – – – 5.51 – 233.23 – – 219.39 N
5-4.9 – – – 89.16 – – – – – Y

#Solved 10 10 11 23 12 15 12 5 18

Table 2.Execution time (seconds) and number of solved instances on Narizzano-Robot instances.

In Table 3, we then report the results for Ayari-MutexP. In that domain all the ver-
sions of DLV were able to solve all 7 instances, outperforming both CModels3 and
GnT which solved only one instance. Comparing the execution times required by all
the variants of dlv we note that, also in this case, dlv.mf is the best-performing version.

About the Letz-Tree domain, the DLV versions equipped with look-back heuristics
solved a higher number of instances and required less CPU time (up to two orders of
magnitude less) than all competitors. In particular, the look-ahead based versions of
DLV, GnT and CModels3 could solve only 3 instances, while dlv.mf and dlv.lf solved
4 and 5 instances, respectively. Interestingly, here the ”lf” variant is very effective in
particular when combined with the “af” option.



dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.890.65 N
mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – N
mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – N
mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – N
mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – N
mutex-64-s 15.3816.08 17.64 14.97 15.04 18.08 16.97 – – N
mutex-128-s69.0779.39 90.92 62.97 62.97 92.92 93.05 – – N

#Solved 7 7 7 7 7 7 7 1 1

Table 3.Execution time (seconds) and number of solved instances on Ayari-MutexP instances.

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 N
exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 N
exa10-20278.01264.53 275.1 12.31 17.24 5.43 2.86 325.2667.56 N
exa10-25 – – – 303.67 432.32 44.13 19.15 – – N
exa10-30 – – – – – 166.93 129.54 – – N

#Solved 3 3 3 4 4 5 5 3 3
Table 4.Execution time (seconds) and number of solved instances on Letz-Tree instances.

Summarizing, DLV equipped with look-back heuristics showed very positive per-
formance in all of the test cases presented, both random and structured, obtaining good
results both in terms of number of solved instances and execution time compared to
traditionals DLV, GnT and CModels3. dlv.mf, the “classic” look-back heuristic, per-
formed best in most cases, but good performance was obtained also by dlv.lf. The results
of dlv.lf.af on the Letz-Tree instances show that this option can be fruitfully exploited
in some particular domains.

7 Conclusions

We have defined a general framework for employing look-back heuristics in disjunc-
tive ASP, exploiting the peculiar features of this setting. We have designed a number of
look-back based heuristics, addressing some key issues arising in this framework. We
have implemented all proposed heuristics in the DLV system, and carried out exper-
iments on hard instances encoding 2QBFs, comprising randomly generated instances,
generated according to the method proposed in [23], and structured instances from the
QBFLIB archive (Letz-Tree, Narizzano-Robot, Ayari-MutexP). It turned out that the
proposed heuristics outperform the traditional (disjunctive) ASP systems DLV, GnT
and CModels3 in most cases, and a rather simple approach (“dlv.mf”) works particu-
larly well.
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