

Planning as Satisfiability with Preferences ∗

Enrico Giunchiglia and Marco Maratea
DIST - University of Genova, Viale F. Causa 15, Genova, Italy

{enrico,marco@dist.unige.it}

Abstract

Planning as Satisfiability is one of the most well-known and
effective technique for classical planning: SATPLAN has been
the winning system in the deterministic track for optimal
planners in the 4th International Planning Competition (IPC)
and a co-winner in the 5th IPC.
In this paper we extend the Planning as Satisfiability ap-
proach in order to handle preferences and SATPLAN in or-
der to solve problems with simple preferences. The resulting
system, SATPLAN(P) is competitive with SGPLAN, the win-
ning system in the category “simple preferences” at the last
IPC. Further, we show that SATPLAN(P) performances are (al-
most) always comparable to those of SATPLAN when solving
the same problems without preferences: in other words, in-
troducing simple preferences in SATPLAN does not affect its
performances. This latter result is due both to the particular
mechanism we use in order to incorporate preferences in SAT-
PLAN and to the relative low number of soft goals (each corre-
sponding to a simple preference) usually present in planning
problems. Indeed, if we consider the issue of determining
minimal plans (corresponding to problems with thousands of
preferences) the performances of SATPLAN(P) are compara-
ble to those of SATPLAN in many cases, but can be signif-
icantly worse when the number of preferences is very high
compared to the total number of variables in the problem. Our
analysis is conducted considering both qualitative and quan-
titative preferences, different reductions from quantitative to
qualitative ones, and most of the propositional planning do-
mains from the IPCs and that SATPLAN can handle.

Introduction
Planning as Satisfiability (Kautz and Selman 1992) is one
of the most well-known and effective technique for classical
planning: SATPLAN (Kautz and Selman 1999) is a planner
based on propositional satisfiability (SAT) and, considering
the track for optimal propositional planner, it has been the
winning system in the 4th International Planning Competi-
tion (IPC) (Hoffmann and Edelkamp 2005) and a co-winner
in the last IPC (IPC-5). Given a planning problem Π, the
basic idea of planning as satisfiability is to convert the prob-
lem of determining the existence of a plan for Π with a fixed
makespan n into a SAT formula ϕ such that there is a one-to-
one correspondence between the plans of Π with makespan

∗The authors would like to thank Chic-Wei Hsu for his help
with SGPLAN. This work has been partially supported by MIUR.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

n and the interpretations satisfying ϕ. Of course, for SAT-
PLAN effectiveness, it is crucial the availability of very effec-
tive SAT solvers, like MINISAT (Eén and Sörensson 2003).
MINISAT is based on the Davis-Logemann-Loveland proce-
dure (DLL) like most of the state-of-the-art SAT checkers,
and won the last SAT competition in 2005.

In this paper we extend the Planning as Satisfiability ap-
proach in order to handle both qualitative and quantitative
preferences, and SATPLAN in order to solve problems with
simple preferences. The basic idea, extending the results
presented in (Giunchiglia and Maratea 2006) in the SAT set-
ting, is to explore the search space of possible plans in accor-
dance with the expressed preferences, i.e., to force the split-
ting of the SAT solver in order to follow the given partial
order on preferences. Qualitative preferences are naturally
handled in this way, while quantitative preferences need an
encoding of the objective function to minimize/maximize.
Our system, that we call SATPLAN(P), allows for handling
both qualitative and quantitative preferences, the latter un-
der two possible encodings of the objective function. We
show that SATPLAN(P) is competitive with SGPLAN when
considering simple preferences, and that SATPLAN(P) is as
effective as SATPLAN on all the problems we consider, i.e.,
that introducing simple preferences in SATPLAN does not af-
fect its performances. The first result is remarkable given
that SGPLAN is the clear winner in the category “simple
preferences” in the last IPC. The second result is some-
how surprising, given that limiting the splitting of the SAT
solver can cause an exponential degradation of its perfor-
mances (Järvisalo, Junttila, & Niemelä 2005). We correlate
the good behavior of SATPLAN(P) to the relative low num-
ber (in the order of tens) of soft goals (i.e., simple prefer-
ences) in the problems. To evaluate the impact of the num-
ber of preferences (wrt the total number of variables) on the
performances of SATPLAN(P) we considered the problem of
determining “minimal” plans: in this case, any action vari-
able corresponds to a preference and it is thus common to
have problems with several thousands of preferences. We
show that the performances of SATPLAN are not affected
even in this settings for many problems. However, SAT-
PLAN(P) can be much slower than SATPLAN when consid-
ering problems with a very high ratio (i.e., > 45%) of num-
ber of preferences (i.e., action variables) to the total num-
ber of variables. Of course, in most cases SATPLAN(P) re-

turns plans with better quality than plain SATPLAN both in
the case of planning with soft goals and in the case of de-
termining minimal plans. Our analysis is conducted consid-
ering both qualitative and quantitative preferences, different
encodings of the objective function in the case of quanti-
tative preferences, and most of the propositional planning
domains considered in the IPCs and that SATPLAN can han-
dle. About the encodings, our experimental analysis points
out that the one based on (Warners 1998) leads to better
performances than that based on (Bailleux and Boufkhad
2003) on most problems. This last fact does not agree with
the good results presented in (Bailleux and Boufkhad 2003;
Büttner and Rintanen 2005). Summing up, in this paper:

1. We extend (i) the planning as satisfiability approach
in order to deal with both qualitative and quantita-
tive preferences, and (ii) SATPLAN in order to handle
simple preferences. We use the technique presented
in (Giunchiglia and Maratea 2006) in the SAT setting for
solving MAXSAT and MINONE problems.

2. We show that SATPLAN(P) is competitive with the state-
of-the-art system SGPLAN when considering soft goals,
and as competitive as SATPLAN when the latter is given
the same problems but without soft goals.

3. We show that the performances of SATPLAN(P) are com-
parable to those of SATPLAN (when given the same prob-
lems without preferences) even when there are a high
number of preferences, and that large deviations are pos-
sible if the ratio between the number of preferences to the
total number of variables is relatively high (> 45%).

4. In the case of quantitative preferences, our analysis shows
that the encoding based on (Warners 1998) leads to bet-
ter performances than the one based on (Bailleux and
Boufkhad 2003).

Basic preliminaries
Let F and A be the set of fluents and actions respectively. A
state is an interpretation of the fluent signature. A complex
action is an interpretation of the action signature. Intuitively,
a complex action α models the concurrent execution of the
actions satisfied by α.

A planning problem is a triple 〈I, tr,G〉 where

• I is a Boolean formula over F and represents the set of
initial states;

• tr is a Boolean formula overF∪A∪F ′ whereF ′ = {f ′ :
f ∈ F} is a copy of the fluent signature and represents
the transition relation of the automaton describing how
(complex) actions affect states (we assume F ∩ F ′ = ∅);

• G is a Boolean formula over F and represents the set of
goal states.

The above definition of planning problem differs from the
traditional ones in which the description of actions’ effects
on a state is described in an high-level action language like
STRIPS or PDDL. We preferred this formulation because
the techniques we are going to describe are independent of
the action language used, at least from a theoretical point

of view. The only assumption that we make is that the de-
scription is deterministic: there is only one state satisfying
I and the execution of a (complex) action α in a state s can
lead to at most one state s′. More formally, for each state
s and complex action α there is at most one interpretation
extending s ∪ α and satisfying tr.
Consider a planning problem Π = 〈I, tr,G〉. In the follow-
ing, for any integer i:
• if F is a formula in the fluent signature, Fi is obtained

from F by substituting each f ∈ F with fi,
• tri is the formula obtained from tr by substituting each

symbol p ∈ F ∪ A with pi−1 and each f ∈ F ′ with fi.
If n is an integer, the planning problem Π with makespan n
is the Boolean formula Πn defined as

I0 ∧ ∧n
i=1tri ∧Gn (n ≥ 0) (1)

and a plan for Πn is an interpretation satisfying (1).
For example, considering the planning problem of going

to work from home. Assuming that we can use the car or the
bus or the bike, this scenario can be easily formalized using
a single fluent variable AtWork and three action variables
Car, Bus and Bike with the obvious meaning. The problem
with makespan 1 can be expressed by the conjunction of the
formulas:

¬AtWork0,
AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0),

AtWork1,
(2)

in which the first formula corresponds to the initial state,
the second to the transition relation, and the third to
the goal state. (2) has 7 plans (i.e., satisfying inter-
pretations), each corresponding to a non-empty subset of
{Car0, Bus0, Bike0}.

Preferences and Optimal Plans
Let Πn be a planning problem Π with makespan n.

In addition to the goals, it may be desirable to have plans
satisfying other conditions. For example, considering the
problem (2), in addition to being at work at time 1, we may
want to avoid taking the bus (at time 0). Formally this pref-
erence is expressed by the formula ¬Bus0, and it amounts to
prefer the plans satisfying ¬Bus0 to those satisfying Bus0. In
general, there can be more than one preference, and it may
not be possible to satisfy all of them. For example, in (2) it is
not possible to satisfy the three possible preferences ¬Bike0,
¬Bus0 and ¬Car0.

A “qualitative” solution to the problem of conflicting pref-
erences is to define a partial order on them. A qualitative
preference (for Πn) is a pair 〈P,≺〉 where P is a set of for-
mulas (the preferences) whose atoms are in Πn, and ≺ is a
partial order on P . The partial order can be empty, meaning
that all the preferences are equally important. The partial or-
der can be extended to plans for Πn. Consider a qualitative
preference 〈P,≺〉. Let π1 and π2 be two plans for Πn. π1 is
preferred to π2 (wrt 〈P,≺〉), iff
1. they satisfy different sets of preferences, i.e., {p : p ∈

P, π1 |= p} 6= {p : p ∈ P, π2 |= p}, and

2. for each preference p2 satisfied by π2 and not by π1 there
is another preference p1 satisfied by π1 and not by π2 with
p1 ≺ p2.

The second condition says that if π1 does not satisfy a pref-
erence p2 which is satisfied by π2, then π1 is preferred to π2

only if there is a good reason for π1 6|= p2, and this good
reason is that π1 |= p1, p1 ≺ p2 and π2 6|= p1. We write
π1 ≺ π2 to mean that π1 is preferred to π2. It is easy to see
that ≺ defines a partial order on plans for Πn wrt 〈P,≺〉. A
plan π is optimal for Πn (wrt 〈P,≺〉) if it is a minimal ele-
ment of the partial order on plans for Πn, i.e., if there is no
plan π′ for Πn with π′ ≺ π (wrt 〈P,≺〉).

A “quantitative” approach to solve the problem of con-
flicting preferences is to assign weights to each of them, and
then minimize/maximize a given objective function involv-
ing the preferences and their weights. In most cases the ob-
jective function is the weighted sum of the preferences: this
has been the case of each planning problem with preferences
in the last IPC. With this assumption, a quantitative prefer-
ence (for Πn) can be defined as a pair 〈P, c〉 where P is a set
of formulas in Πn signature (as before) and c is a function
associating an integer to each preference in P . Without loss
of generality, we can further assume that c(p) ≥ 0 for each
p ∈ P and that we are dealing with a maximization problem.
Thus, a plan is optimal (wrt 〈P, c〉) if it maximizes1∑

p∈P :π|=p

c(p). (3)

For instance, considering the planning problem (2), if we
have the qualitative (resp. quantitative) preference

• 〈{¬Bike0,¬Bus0,¬Car0}, ∅〉, (resp.
〈{¬Bike0,¬Bus0,¬Car0}, c〉, where c is the con-
stant function 1) then there are three optimal plans,
corresponding to {Bike0}, {Bus0}, {Car0}.

• 〈{¬Bike0,¬Bus0,¬Car0}, {¬Bike0 ≺ ¬Car0}〉, (resp.
〈{¬Bike0,¬Bus0,¬Car0}, c〉, where c(¬Bike0) = 2
while c(¬Bus0) = c(¬Car0) = 1) then there are two
optimal plans, corresponding to {Bus0}, {Car0}.

• 〈{Bike0 ∨ Bus0}, ∅〉, (resp. 〈{Bike0 ∨ Bus0}, c〉, where c
is the constant function 1) then all the plans except for the
one corresponding to {Car0} are optimal.

Planning as Satisfiability with preferences
Let Πn be a planning problem with makespan n. Consider
a qualitative preference 〈P,≺〉. In planning as satisfiability,
plans for Πn are generated by invoking a SAT solver on Πn.
Optimal plans for Πn can be obtained by

1. Encoding the preference P as a formula to be conjoined
with Πn; and
1Assuming that c(p) < 0 for some p ∈ P , we can replace

p with ¬p in P and define c(¬p) = −c(p): the set of opti-
mal plans does not change. Given 〈P, c〉 and assuming we are
interested in minimizing the objective function (3), we can con-
sider the quantitative preference 〈P ′, c′〉 where P ′ = {¬p : p ∈
P} with c′(¬p) = c(p), and then look for a plan maximizing∑

p∈P ′:π|=p
c′(p).

function QL-PLAN(Πn,P ,≺)
1 return OPT-DLL(cnf(Πn ∧ ∧p∈P (v(p) ≡ p)),∅,v(P),v(≺))

function OPT-DLL(ϕ,S,P ′,≺′)
2 if (∅ ∈ ϕ) return FALSE;
3 if (ϕ = ∅) return S;
4 if ({l} ∈ ϕ) return OPT-DLL(ϕl, S ∪ {l}, P ′,≺′);
5 l := ChooseLiteral(ϕ, S, P ′,≺′);
6 V := OPT-DLL(ϕl, S ∪ {l}, P ′,≺′);
7 if (V 6= FALSE) return V ;
8 return OPT-DLL(ϕl, S ∪ {l}, P ′,≺′).

Figure 1: The algorithm of QL-PLAN

2. Modifying DLL in order to search first for optimal plans,
i.e., to branch according to the partial order ≺.

The resulting procedure is reported in Figure 1 in which:

• for each p ∈ P , v(p) is a newly introduced variable;

• v(P) is the set of new variables, i.e., {v(p) : p ∈ P};

• v(≺) =≺′ is the partial order on v(P) defined by v(p) ≺′

v(p′) iff p ≺ p′;

• cnf(ϕ), where ϕ is a formula, is a set of clauses (i.e., set
of sets of literals) such that for any interpretation µ in the
signature of cnf(ϕ), µ |= cnf(ϕ) iff µ |= ϕ: there are well
known methods for computing cnf(ϕ) in linear time by
introducing additional variables.

• S is an assignment, i.e., a consistent set of literals. An as-
signment S corresponds to the partial interpretation map-
ping to true the literals l ∈ S.

• l is a literal and l is the complement of l;

• ϕl returns the set of clauses obtained from ϕ by (i) delet-
ing the clauses C ∈ ϕ with l ∈ C, and (ii) deleting l from
the other clauses in ϕ;

• ChooseLiteral(ϕ, S, P ′,≺′) returns an unassigned literal
l (i.e., such that {l, l} ∩ S = ∅) in ϕ such that either all
the variables is P ′ are assigned, or l ∈ P ′ and all the other
variables v(p) ∈ P ′ with v(p) ≺ l are assigned.

As it can be see from the figure, OPT-DLL is the stan-
dard DLL except for the modification in the heuristic, i.e.,
ChooseLiteral which initially selects literals according to
the partial order ≺′. If we have two preferences p1 =
(¬Bike0 ∧ ¬Bus0 ∧ ¬Car0) and p2 = (¬Bike0 ∧ ¬Bus0)
with p1 ≺ p2 and we consider the problem (2), OPT-
DLL returns the plan corresponding to {Car0} determined
while exploring the branch extending {¬v(p1), v(p2)}. This
plan is optimal, and, in general, it can be proved that QL-
PLAN(Πn,P ,≺) returns

1. FALSE if Πn has no plans, and

2. an optimal plan for Πn wrt 〈P,≺〉, otherwise.

Consider now a quantitative preference 〈P, c〉. The prob-
lem of finding an optimal plan for Πn wrt 〈P, c〉 can be
solved again using OPT-DLL in Figure 1 as core engine.

function QT-PLAN(Πn,P ,c)
1 return OPT-DLL(cnf(Πn ∧ Bool(P, c)),∅,b(c),p(c))

Figure 2: The algorithm of QT-PLAN

The basic idea is to encode the value of the objective func-
tion (3) as a sequence of bits bn−1, . . . , b0 and then con-
sider the qualitative preference 〈{bn−1, . . . , b0}, {bn−1 ≺
bn−2, . . . , b1 ≺ b0}〉. In more details, let Bool(P, c) be a
Boolean formula such that:
1. if n = dlog2((

∑
p∈P c(p)) + 1)e, Bool(P, c) contains n

new variables bn−1, . . . , b0; and
2. for any plan π satisfying Πn, there exists a unique inter-

pretation µ to the variables in Πn ∧ Bool(P, c) such that
(a) µ extends π and satisfies Πn ∧ Bool(P, c);
(b)

∑
p∈P :π|=p c(p) =

∑n−1
i=0 µ(bi) × 2i, where µ(bi) is 1

if µ assigns bi to true, and is 0 otherwise.
If the above conditions are satisfied, we say that Bool(P, c)
is a Boolean encoding of 〈P, c〉 with output bn−1, . . . , b0.
Bool(P, c) can be realized in polynomial time in many ways,
see, e.g., (Warners 1998).

The resulting procedure is represented in Figure 2 in
which Bool(P, c) is a Boolean encoding of 〈P, c〉 with out-
put bn−1, . . . , b0, b(c) = {bn−1, . . . , b0} and p(c) is the par-
tial order bn−1 ≺ bn−2, . . . , b1 ≺ b0.

If we have two preferences p1 = (¬Bike0 ∧ ¬Bus0 ∧
¬Car0) and p2 = (¬Bike0 ∧ ¬Bus0) with c(p1) = 2 and
c(p2) = 1, then two bits b1 and b0 are sufficient as output of
Bool({p1, p2}, c). Further, if we consider the problem (2),
OPT-DLL returns the plan corresponding to {Car0} deter-
mined while exploring the branch extending ¬b1, b0. This
plan is optimal, and, as in the qualitative case, it can be
proved that QT-PLAN(Πn,P ,c) returns

1. FALSE if Πn has no plans, and
2. an optimal plan for Πn wrt 〈P, c〉, otherwise.

Implementation and Experimental Analysis
As we already said in the introduction, we use SATPLAN as
underlying planning system. SATPLAN is the most famous
system using the planning as satisfiability approach and we
already mentioned its good performances in IPCs. SATPLAN
can only handle propositional domains, and, among them,
we considered the pipesworld, satellite, airport, promela
philosophers and optical, psr, depots, driverLog, zenoTravel,
freeCell, logistic, blocks, mprime and mistery domains from
the first 4 IPCs, and pathway, storage, tpp and trucks from
IPC-5. Notice that we do not consider the domains in the
“simple preferences” track in IPC-5 because they are not
handled by SATPLAN: this task would lead to a main re-
implementation of the system. Consequently, we do not use
such domains even for SGPLAN, otherwise the results would
be incomparable. These are standard planning problems in
which the goal corresponds to a set S of literals and without
soft goals. We modified these problems in order to interpret
all the literals in S as “soft goals”. More precisely, we con-
sidered both the qualitative preference 〈S, ∅〉 and the quan-
titative preference 〈S, c〉 in which c is the constant function

1. These preferences and constraint encode the fact that the
goals in S are now “soft” in the sense that it is desirable but
not necessary to achieve them.

We implemented OPT-DLL in MINISAT which is also one
of the solvers SATPLAN can use, and that we set as de-
fault for SATPLAN.2 In the case of quantitative prefer-
ences, we considered Warners’ (1998), and also Bailleux
and Boufkhad’s (2003) encodings of Bool(P, c), denoted
with W-encoding and BB-encoding respectively. The size of
W-encoding is linear in |P | while BB-encoding is quadratic.
However, the latter has better computational properties and
it has been reported in the literature to lead to good re-
sults (Bailleux and Boufkhad 2003; Büttner and Rintanen
2005). In the following, we use SATPLAN(s), SATPLAN(w)
and SATPLAN(b) to denote SATPLAN modified in order to
handle qualitative, quantitative with W-encoding and quan-
titative with BB-encoding preferences, respectively.

In our first experiments, we consider SATPLAN(w)/(b)/(s),
SGPLAN (Hsu et al. 2007), and plain SATPLAN. SGPLAN has
been the clear winner in the category “Simple Preferences
Domains” in the recent IPC-5 and is thus the reference sys-
tem for the problems that we consider. SATPLAN has been
included in order to evaluate the differences in the perfor-
mances between our systems and SATPLAN itself: we expect
SATPLAN to satisfy less soft goals but to have performances
no worse than SATPLAN(w)/(b)/(s). A final crucial observa-
tion: Since there are no “hard” goals, the various versions
of SATPLAN would always find a valid plan, even when the
makespan n is 0 (in which case the returned plan would be
the empty one). In order to avoid this situation, for SAT-
PLAN/(w)/(b)/(s) we added a constraint saying that at time n
at least one of the soft goals has to be satisfied. Because of
this, we discarded the problems whose original version has
only one goal because they would have no soft goal.

All the tests have been run on a Linux box equipped with
a Pentium IV 2.4GHz processor and 512MB of RAM. Time-
out has been set to 300s. The results are shown in Table 1.

In the Table, each row and column is an abbreviation
for the corresponding class of problems and system respec-
tively; the first (resp. second) number reports the total num-
ber of soft goals satisfied (resp. timeouts or segmentation
faults) in that class of problems. Looking at the table, we
see that SATPLAN(w)/(b) never time out and that on 11 out
of the 19 classes of problems we considered, they manage to
satisfy more soft goals than SGPLAN (and SATPLAN). SG-
PLAN on the other hand, has several time outs/segmentation
faults, the latter due to the high number of grounded opera-
tors in the problems.3

Figure 3 shows the performances of the systems. In the
figure, each point (x, y) means that in y seconds, x problems
are solved. The figure shows the very good performances

2SATPLAN’s default solver is SIEGE: we run SATPLAN with
SIEGE and MINISAT and we have seen no significant differences
in SATPLAN’s performances.

3Personal communication with the authors. The authors also
suggested that the ADL version of the problems may lead to less
segmentation faults. We tried the ADL versions of the optical and
philosopher problems and the numbers that we got are 0/52 and
12/22 respectively.

sgP SATP SATP(w) SATP(b) SATP(s)
pipe 0/0 0/7 0/18 0/18 0/17
pipet 0/0 0/5 0/11 0/11 0/11
sat 0/10 0/4 0/4 0/4 0/4
air 0/23 0/9 0/11 0/11 0/11

phil 29/0 0/29 0/464 0/464 0/464
opt 12/0 0/12 0/90 0/90 0/90
psr 12/157 0/48 0/231 0/231 0/231
dep 2/3 0/4 0/7 0/7 0/7
driv 0/71 0/10 0/54 0/54 0/50
zeno 0/44 0/9 0/24 0/24 0/24
free 0/12 0/3 0/8 0/8 0/8
log 0/51 0/10 0/33 0/33 0/33

block 0/33 0/9 0/12 0/12 0/12
mpr 0/0 0/4 0/4 0/4 1/3
myst 0/0 0/2 0/2 0/2 0/2
path 7/0 0/7 0/21 0/21 0/21
stor 0/30 0/9 0/10 0/10 0/10
TPP 5/14 0/9 0/27 0/27 0/27
truck 3/0 0/3 0/3 0/3 0/3

Table 1: Results on domains coming from IPCs. x/y stands
for x time outs or segmentation faults, y soft goals satisfied.

of SATPLAN/(w)/(b)/(s) if compared to those of SGPLAN.
Moreover, it also shows that the performances of SATPLAN
are not affected when adding preferences, i.e., when impos-
ing an order on the variables to be used for splitting in the
SAT solver. This result is somehow surprising given that
limiting the splitting of the SAT solver can cause an ex-
ponential degradation of its performances (Järvisalo, Junt-
tila, & Niemelä 2005). Such exponential degradation never
shows up for SATPLAN(w)/(b), and SATPLAN(s) does not
solve only one instance.

The good performances of SATPLAN(w)/(b)/(s) can be ex-
plained by the fact that in all the problems considered there
are at most 30 soft goals. This means that OPT-DLL branch-
ing heuristic is forced for at most the initial 30 branches:
while it is known in SAT that the first branches are very im-
portant, they are just a few. Further, for the quantitative case,
the burden introduced by the Boolean encoding of the objec-
tive function is negligible.

In order to evaluate the effectiveness of SAT-
PLAN(w)/(b)/(s) compared to SATPLAN when the number
of preferences is high (i.e., when the heuristic is highly con-
strained) we considered the problem of finding a “minimal”
plan. More precisely, if Πn is the given planning problem
with makespan n, and S is the set of action variables in Πn,
we consider

1. the qualitative preference 〈{¬p : p ∈ S},≺〉 where
¬p ≺ ¬p′ if p precedes p′ according to the lexicographic
ordering, and

2. the quantitative preference 〈{¬p : p ∈ S}, c〉 in which c
is the constant function 1.

These preferences encode the fact that we prefer plans with
as few actions as possible. The qualitative preference has
also been set in order to further constraint the heuristic up to

the point to make it static on the action variables. In this set-
ting, we are expecting a significant degradation in the CPU
performances of SATPLAN(w)/(b)/(s) wrt SATPLAN’s ones.
The results are in the right plot in Figure 3, where,
• on the x-axis there are the problems, sorted according to

the ratio between the number of preferences (i.e., action
variables) and the total number of variables in the instance
for which a plan is found, and

• on the y-axis there is the ratio between the performances
of SATPLAN(w)/(b)/(s) and SATPLAN’s ones, in logarith-
mic scale.

Differently from what we expected, we see that SAT-
PLAN(w)/(s) is as efficient as SATPLAN for a significant
initial portion of the plot, though on a few instances SAT-
PLAN(w) does not terminate within the timeout. SAT-
PLAN(s) is also in many cases more efficient than SATPLAN,
and this reminds the observation in (Giunchiglia et al. 1998)
that preferential splitting on action variables can lead to sig-
nificant speed-ups. Thus, SATPLAN(w)/(s) can be very ef-
fective (or, at least, as effective as SATPLAN) even when
the number of preferences is very high (e.g., several thou-
sands). SATPLAN(b) bad performances are easily explained
by the fact that the quadratic BB-encoding leads to very big
SAT instances: considering for instance the relatively small
“optical1” problem, the first satisfiable SAT instance has
2228 and 34462 variables and clauses respectively, while
the same numbers when considering the W-encodings and
the BB-encodings are 9500 and 56091, 13768 and 1157016
respectively; “optical1” is solved in 1.28s/2.17s/57.14s/1.6s
by SATPLAN/(w)/(b)/(s). Considering the problems with ra-
tio≤ 0.45 on the x-axis, they include all the airport, promela
philosophers and optical and some of the psr, storage and tpp
problems. Of course, SATPLAN(w)/(b)/(s) often return plans
with fewer actions than SATPLAN.

Related works
Considering the literature on preferences in planning, three
recent papers on planning with preferences are (Bienvenu et
al. 2006; Brafman and Chernyavsky 2005; Büttner and Rin-
tanen 2005), but see also the proceedings of the ICAPS’06
workshop on preferences and soft constraints. In the first
paper, the authors define a simple language for expressing
temporally extended preferences and implement a forward
search planner, called PPLAN integrating them. For each
n ≥ 0 PPLAN is guaranteed to be n-optimal, where this
intuitively means that there is no better plan of sequential
length ≤ n. The basic language for expressing preferences
(called “basic desire formulas (BDFs)”) is based on Linear
Temporal Logic (LTL). BDFs are then ranked according to
a total order to form “atomic preference formulas” which
can then combined to form “general and aggregated prefer-
ence formulas”. It is well known how to compile LTL with
a bounded makespan into propositional logic and thus in the
language of Πn. It seems thus plausible that BDFs can be
expressed as preferences in our setting, and we believe that
the same holds for the preference formulas. In (Brafman
and Chernyavsky 2005), the authors show how to extend GP-
CSP (Do and Kambhampati 2001) in order to plan with pref-

Figure 3: Left: Performances of SGPLAN, SATPLAN/(w)/(b)/(s). Right: Performances of SATPLAN(w)/(b)/(s) wrt SATPLAN as
a function of the ration between the number of preferences and the number of variables.

erences expressed as a TCP-net (Boutilier et al. 2004). In
the Boolean case, TCP-net can be expressed as Boolean for-
mulas. Though these two works are not based on satisfiabil-
ity, the problem they consider is the same we deal with: find
an optimal plan wrt the given preferences among the plans
with makespan n. However, these approaches and ours can
be easily extended in order to work without a bounded hori-
zon, by simply using an iterative deepening approach, i.e.,
by successively incrementing n, each time using the pre-
viously found solutions to bound the search space, up to a
point in which we are guaranteed to have an optimal solu-
tion independent from the bound n. This is the approach
followed in (Büttner and Rintanen 2005), where the prob-
lem considered is to extend the planning as satisfiability ap-
proach in order to find plans with optimal sequential length.
Interestingly, the authors use a Boolean formula to encode
the function representing the sequential length of the plan.
In their approach, for a given n, the search for an optimal
solution is done by iteratively calling the SAT solver, each
time posting a constraint imposing a smaller value for the
objective function: when the SAT formula becomes unsatis-
fiable, n is set to n + 1 and the process is iterated looking
for a better plan than the one so far discovered. For a fixed
n, the problem considered in (Büttner and Rintanen 2005) is
exactly the same we deal with in Section : finding an optimal
“minimal” plan for Πn using a quantitative approach. The
fundamental difference between our approach and theirs is
that we look for an optimal solution by imposing an ordering
on the heuristic of the DLL solver, while they iteratively call
the SAT solver as a black box. The disadvantage of their
approach is that, e.g., the nogoods computed during a call
are not re-used by the following calls for the same n. Our
approach can also deal with qualitative preferences.

References
O. Bailleux and Y. Boufkhad. Efficient CNF encoding of
Boolean cardinality constraints. In Proc. CP, pages 108–
122, 2003.
M. Bienvenu, C. Fritz, and S. McIlraith. Planning with
qualitative temporal preferences. In Proc. KR, 2006.

C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D.
Poole. Preference-based constrained optimization with CP-
nets. Computational Intelligence, 20(2):137–157, 2004.
R. Brafman and Y. Chernyavsky. Planning with goal pref-
erences and constraints. In Proc. ICAPS, pages 182–191,
2005.
M. Büttner and J. Rintanen. Satisfiability planning with
constraints on the number of actions. In Proc. ICAPS,
pages 292–299, 2005.
M.B. Do and S. Kambhampati. Planning as constraint sat-
isfaction: Solving the planning graph by compiling it into
CSP. Artif. Intell., 132(2), 2001.
N. Eén and N. Sörensson. An extensible SAT-solver. In
Proc. SAT, pages 502–518, 2003.
A. Gerevini and D. Long. Plan constraints and preferences
in PDDL3. In Proc. ICAPS-2006 Workshop on Preferences
and Soft Constraints in Planning, pp. 46-53, 2006.
E. Giunchiglia and M. Maratea. Solving optimization prob-
lems with DLL. In Proc. ECAI, 2006.
E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and
the rest will follow: Exploiting determinism in planning as
satisfiability. In Proc. AAAI, 1998.
J. Hoffmann and S. Edelkamp. The deterministic part of
IPC-4: An overview. JAIR, 2005.
C. Hsu, B. Wah, R. Huang, and Y. Chen Constraint Par-
titioning for Solving Planning Problems with Trajectory
Constraints and Goal Preferences. In Proc. IJCAI, 2007.
Henry Kautz and Bart Selman. Planning as satisfiability.
In Proc. ECAI, 1992.
Henry A. Kautz and Bart Selman. Unifying SAT-based and
graph-based planning. In Proc. IJCAI, 1999.
Järvisalo, M.; Junttila, T.; and Niemelä, I. 2005. Unre-
stricted vs restricted cut in a tableau method for Boolean
circuits. Annals of Mathematics and Artificial Intelligence
44(4):373–399.
Joost P. Warners. A linear-time transformation of linear in-
equalities into conjunctive normal form. Inf. Process. Lett.,
68(2):63–69, 1998.

