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SOMMARIO/ABSTRACT


In questo articolo presentiamo la tecnica del backjump-
ing per la Programmazione Logica Disgiuntiva, prendendo
spunto dai lavori svolti per solutori per Constraint e log-
ica proposizionale. A differenza dei lavori citati, ci fo-
calizzaremo su backjumping senza (clause) learning. Pre-
senteremo un fondamento teorico per questa tecnica sfrut-
tando le peculiarit̀a della logica su cui lavoriamo. Pre-
senteremo un calcolo delle reasons che, confrontato con
metodi tradizionali, riduce le informazioni che devono es-
sere mantenute, salvaguardando allo stesso tempo la cor-
rettezza ed efficienza della tecnica del backjumping. La
suddetta tecnicàe stata implementata in DLV. Per valu-
tarne l’efficacia, abbiamo svolto diversi esperimenti sia su
istanze generate casualmente che su istanze strutturate, stu-
diando inoltre l’effetto dell’interazione tra backjumping e
due diverse euristiche. I risultati degli esperimenti fanno
notare come il backjumping ha effetti positivi usando en-
trambe le euristiche, in particolare su programmi derivanti
da istanze strutturate in logica porposizionale e da altre is-
tanze in logica booleana quantificata.


In this work we present a backjumping technique for Dis-
junctive Logic Programming under the Stable Model Se-
mantics, building upon technologies developed for con-
straint solving and satisfiability testing. Different from
most related work, we focus on backjumping without
(clause) learning, providing a new theoretical framework
for backjumping in our setting, exploiting its peculiari-
ties. We present a reason calculus and associated com-
putations, which, compared to the traditional approaches,
reduce the information to be stored, while fully preserving
the correctness and the efficiency of the backjumping tech-
nique, handling specific aspects of disjunction in a benign
way. We implemented the proposed technique in DLV. We
have conducted experiments on hard random and struc-
tured instances in order to assess the impact of our tech-
nique, studying the effect of the backjumping method in re-
lation to two different heuristics. The experiments suggest


that backjumping has positive effects for any of these two
heuristics. In particular, we have noted a great reduction
in execution time for structured propositional satisfiability
and quantified boolean formula instances.


1 Introduction
SDLP. Disjunctive Logic Programming under the Stable
Model Semantics (SDLP)1, is a programming paradigm
which has been proposed in the area of nonmonotonic rea-
soning and logic programming. The idea of SDLP is to
represent a given computational problem by a logic pro-
gram whose stable models correspond to solutions, and
then use a solver to find such a solution[16].


The knowledge representation language of SDLP is very
expressive in a precise mathematical sense; in its general
form, allowing for disjunction in rule heads and nonmono-
tonic negation in rule bodies, SDLP can representevery
problem in the complexity classΣP


2 andΠP
2 (under brave


and cautious reasoning, respectively)[8]. Thus, SDLP is
strictly more powerful than SAT-based programming (un-
less some widely believed complexity assumptions do not
hold), as it allows us to solve even problems which can-
not be translated to SAT in polynomial time. The high ex-
pressive power of SDLP can be profitably exploited in AI,
which often has to deal with problems of high complexity.
For instance, problems in diagnosis and planning under in-
complete knowledge are complete for the the complexity
classΣP


2 or ΠP
2 , and can be naturally encoded in SDLP[1;


14]. By now, several systems are available, which imple-
ment SDLP: DLV2, GnT3, and recently cmodels-34.


Main Issues. Most of the optimization work on related
SDLP systems has focused on the efficient evaluation


1Often SDLP is referred to as Answer Set Programming (ASP). While
ASP supports also a second (“strong”) kind of negation, it can be simu-
lated in SDLP. To avoid confusion, we will only use the term SDLP in
this paper.


2http://www.dlvsystem.com/
3http://www.tcs.hut.fi/Software/gnt/
4http://www.cs.utexas.edu/users/tag/cmodels/







of non-disjunctive programs (whose power is limited to
NP/co-NP), whereas the optimization of full SDLP has
been treated in fewer works (e.g., in[12]).


Among the most recent proposals for enhancing the
evaluation of non-disjunctive programs, we mention the
definition of backjumping and clause learning mecha-
nisms. These techniques had been successfully employed
in CSP solvers[19; 5] and propositional SAT solvers[2;
18] before, and were “ported” to non-disjunctive logic pro-
gramming under the stable model semantics (SLP) in[23;
22], resulting in the system Smodelscc.


In this paper we address two questions:
◮ How can backjumping be generalized to disjunctive pro-
grams?
◮ Is backjumping without clause learning effective?


Contributions. In this paper we first present a gener-
alization of the CSP and SAT approaches for backjump-
ing to disjunctive programs by defining areason calculus
for the DetCons function of DLV (which roughly corre-
sponds to unit propagation in DPLL-based SAT solvers
and AtLeast/AtMost in Smodels). The reasons established
by the calculus can then be exploited for effective back-
jumping. Special attention is paid to peculiarities of the
disjunctive setting. We also describe the implementation
of these techniques in the DLV system, the state-of-the-art
SDLP system. In fact, our implementation aims at reduc-
ing the information to be stored as much as possible, while
maintaining the best jumping possibilities.


Subsequently, we assess our method and implementa-
tion by an experimentation activity. We have tested the
impact of backjumping both with and without the employ-
ment of the lookahead, on random 3SAT instances,ΣP


2 -
hard QBF, and some structured SAT instances. The results
of the experiments let us conclude the following:


• DLV with backjumping is preferable to the version
without backjumping, independently of the heuristic
employed.


• Backjumping without clause learning is effective.


• Even in cases in which the search space is not pruned
by backjumping, the overhead is negligible.


2 Disjunctive Logic Programming


In this section, we provide a brief introduction to the syn-
tax and semantics of Disjunctive Logic Programming; for
further background see[7; 11].


Syntax. A disjunctive rule r is a formula
a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.


wherea1, · · · , an, b1, · · · , bm are atoms5 andn ≥ 0, m ≥
k ≥ 0. A literal is either an atoma or its default nega-
tion not a. Given a ruler, let H(r) = {a1, ..., an} de-
note the set of head literals,B+(r) = {b1, ..., bk} and


5For simplicity, we do not consider strong negation in this paper. It
can be emulated by introducing new atoms and integrity constraints.


B−(r) = {not bk+1, ...,not bm} the set of positive and
negative body literals, resp., andB(r) = B+(r) ∪B−(r).
the set of body literals.


A rule r with B−(r) = ∅ is calledpositive; a rule with
H(r) = ∅ is referred to asintegrity constraint. If the body
is empty we usually omit the:- sign.


A disjunctive logic programP is a finite set of rules;P
is apositiveprogram if all rules inP are positive (i.e.,not-
free). An object (atom, rule, etc.) containing no variables
is calledgroundor propositional.


Given a literal l, let not.l = a if l = not a, oth-
erwise not.l = not l, and given a setL of literals,
not.L = {not.l | l ∈ L}.


Semantics. Here we briefly review the semantics of a
disjunctive logic program, given by its stable models.


Given a programP, let theHerbrand UniverseUP be
the set of all constants appearing inP and theHerbrand
BaseBP be the set of all possible ground atoms which can
be constructed from the predicate symbols appearing inP
with the constants ofUP .


Given a ruler, Ground(r) denotes the set of rules ob-
tained by applying all possible substitutionsσ from the
variables inr to elements ofUP . Similarly, given a
programP, the ground instantiationP of P is the set⋃


r∈P
Ground(r).


For every programP, we define its stable models us-
ing its ground instantiationP in two steps: First we define
the stable models of positive programs, then we give a re-
duction of general programs to positive ones and use this
reduction to define stable models of general programs.


A setL of ground literals is said to beconsistentif, for
every atomℓ ∈ L, its complementary literalnot ℓ is not
contained inL. An interpretationI for P is a consistent set
of ground literals over atoms inBP .6 A ground literalℓ is
truew.r.t. I if ℓ ∈ I; ℓ is falsew.r.t. I if its complementary
literal is in I; ℓ is undefinedw.r.t. I if it is neither true nor
false w.r.t.I.


Let r be a ground rule inP. The head ofr is true w.r.t.
I if existsa ∈ H(r) s.t. a is true w.r.t.I (i.e., some atom
in H(r) is true w.r.t. I). The body ofr is true w.r.t. I if
∀ℓ ∈ B(r), ℓ is true w.r.t. I (i.e. all literals onB(r) are
true w.r.tI). The body ofr is falsew.r.t. I if ∃ℓ ∈ B(r)
s.t. ℓ is false w.r.tI (i.e., some literal inB(r) is false w.r.t.
I). The ruler is satisfied(or true) w.r.t. I if its head is true
w.r.t. I or its body is false w.r.t.I.


InterpretationI is total if, for each atomA in BP , either
A or not.A is in I (i.e., no atom inBP is undefined w.r.t.
I). A total interpretationM is amodelfor P if, for every
r ∈ P, at least one literal in the head is true w.r.t.M


whenever all literals in the body are true w.r.t.M . X is a
stable modelfor a positive programP if its positive part is
minimal w.r.t. set inclusion among the models ofP.


6We represent interpretations as sets of literals, since we have to deal
with partial interpretations in the next sections.







The reductor Gelfond-Lifschitz transformof a general
ground programP w.r.t. an interpretationX is the positive
ground programPX , obtained fromP by (i) deleting all
rulesr ∈ P whose negative body is false w.r.t. X and (ii)
deleting the negative body from the remaining rules.


A stable model of a general programP is a modelX of
P such thatX is a stable model ofPX .


SDLP Properties. Given an interpretationI for a ground
programP, we say that a ground atomA is supportedin
I if there exists asupportingrule r ∈ ground(P), i.e. the
body ofr is true w.r.t.I andA is the only true atom in the
head ofr. If M is a stable model ofP, then all atoms in
M are supported[17; 15].


An important property of stable models is related to the
notion of unfounded set[21; 15]. Let I be a (partial) in-
terpretation for a ground programP. A setX ⊆ BP of
ground atoms is an unfounded set forP w.r.t. I if, for each
a ∈ X and for each ruler ∈ P such thata ∈ H(r), at least
one of the following conditions holds: (i)B(r) ∩ not.I 6=
∅, (ii) B+(r) ∩ X 6= ∅, (iii) (H(r) − X) ∩ I 6= ∅.


Let IP denote the set of all interpretations ofP for
which the union of all unfounded sets forP w.r.t. I is
an unfounded set forP w.r.t. I as well7. GivenI ∈ IP , let
GUSP(I) (thegreatest unfounded setof P w.r.t. I) denote
the union of all unfounded sets forP w.r.t. I.


If M is a total interpretation for a programP. M is a
stable model ofP iff not.M = GUSP(I) [15].


With every ground programP, we associate a directed
graphDGP = (N,E), called thedependency graphof P,
in which (i) each atom ofP is a node inN and (ii) there
is an arc inE directed from a nodea to a nodeb iff there
is a ruler in P such thatb anda appear in the head and
positive body ofr, respectively.


The graphDGP singles out the dependencies of the
head atoms of a ruler from the positive atoms in its body.


A programP is head-cycle-free(HCF) iff there is no
rule r in P such that two atoms occurring in the head ofr


are in the same cycle ofDGP [3].
A componentC of a dependency graphDG is a maxi-


mal subgraph ofDG such that each node inC is reachable
from any other. Thesubprogramof C consists of all rules
having some atom fromC in the head. An atom is non-
HCF if the subprogram of its component is non-HCF.


3 Model Generation in DLV


In this section, we briefly describe the procedure in DLV
for computing the deterministic consequences, namely
DetCons. For the Model Generator, it is sufficient to say
that it is similar to the Davis-Putnam procedure: It pro-
duces some “candidate” stable modelsI, eachI is then
verified by a function IsUnfoundedFree(I), which checks
whetherI is minimal. The Model Generator works on a


7While for non-disjunctive programs the union of unfounded sets is
an unfounded set for all interpretations, this does not holdfor disjunctive
programs (see[15]).


ground instantiationground(P) of the logic programP.
More details can be found in[15; 9].


DetCons. The role of DetCons is similar to the Boolean
Constraint Propagation (BCP, often referred to asunit
propagation) procedure in Davis-Putnam SAT solvers.
However, DetCons is more complex than BCP, which is
based on the simple unit propagation inference rule, while
DetCons implements a set of inference rules. Those rules
combine an extension of the Well-founded operator for dis-
junctive programs with a number of techniques based on
SDLP program properties. We will not define these rules
or their implementation in detail here, as they are not a
novelty of this paper, and refer to[4] for their precise defi-
nitions and implementation.


While the full implementation of DetCons involves four
truth values (apart from true, false, and undefined, there is
also “must be true”), here we treat “must be true” as true
for simplicity, as they are treated in the same way with re-
spect to backjumping. Moreover, we group the inference
rules using the same terminology as[23] for better compa-
rability: (i) Forward Inference,(ii) Kripke-Kleene Nega-
tion, (iii) Contraposition for True Heads,(iv) Contraposi-
tion for False Heads,(v) Well-founded Negation.


Rule (i) derives an atom as true if it occurs in the head
of a rule in which all other head atoms are false and the
body is true. Rule(ii) derives an atom as false if no rule
can support it. Rule(iii) applies if for a true atom only
one rule is left that can support it, and makes inferences
ensuring that this rule supports the atom, i.e. derives all
other head atoms as false, atoms in the positive body as
true and atoms in the negative body as false. Rule(iv)
makes inferences for rules which have a false head: If only
one body literal is undefined, derive a truth value for it
such that the body becomes false. Finally, rule(v) sets
all members of the greatest unfounded set to false. We note
that rule(v) is only applied on recursive HCF subprograms
for complexity reasons[4].


4 Backjumping


Reasons for Literals. Until now, we used the term “rea-
son” in an intuitive way. We will now define more formally
what such reasons are and how they can be handled.


We start by reviewing the intuition of reason of a literal
(representing a truth value of the literal’s atom). A rule
a:- b, c,not d. can give rise to the following propagation:
If b andc are true andd is false in the current partial inter-
pretation, thena is derived to be true (by Forward Propa-
gation). In this case, we say thata is true “because”b and
c are true andd is false.


More generally, the reason of a derived literal consists of
the reasons of those literals that entail its truth. While for
Forward Propagation it is rather clear which literals entail
the derived one, this is somewhat more intricate for other
propagations. However, there is only one way for a literal
to become true unconditionally, i.e. no other literals entail







its truth: These are thechosenliterals. In this case, their
only reason is their choice.


The only elementary reasons are therefore thechosenlit-
erals; all other reasons are aggregations of reasons of other
literals. There are also cases in which literals are uncon-
ditionally true, for example atoms occurring in facts (rules
with singleton head and empty body). Since at any point
during the computation there is a unique chosen literal at
any recursion level, we may identify the reason of a cho-
sen literal by an integer number (starting from 0) represent-
ing its recursion level. Reasons of derived literals are then
(possibly empty) collections of integers.


Each literall derived during the propagation (through
DetCons) will have an associated set of positive integers
R(l) representing the reason ofl, which represent the set
of choices entailingl. Therefore, for any chosen literal
c, |R(c)| = 1 holds, while for any derived (i.e., non-
chosen) literaln, |R(n)| ≥ 1 holds. For instance, if
R(l) = {1, 3, 4}, then the literals chosen at recursion lev-
els 1,3 and 4 entaill.


Determining Reasons for Derived Literals. The pro-
cess of defining reasons for derived (non-chosen) literals
is usually calledreason calculus. For doing this, we have
defined the auxiliary concepts of satisfying literals and or-
derings among satisfying literals for a given rule. Here, for
lack of space, we do not report details for all rules that we
have seen before. Details can be found in[20].


Reasons for Inconsistencies. We will now turn to how
to exploit reasons during the computation. We will use
reason information when inconsistencies occur, in order to
understand what assumptions have to be changed in order
to avoid the inconsistency, and what other assumptions do
not have any influence on the inconsistency. In DLV, we
can isolate two main sources of inconsistency:(i) Deriving
conflicting literals, and(ii) failing stability checks.


Of these two, the second one is particular for SDLP,
while the first one is the only source for inconsistencies
in SAT and non-disjunctive SLP.


Deriving conflicting literals means, in our setting, that
DetCons determines that an atoma and its negationnot a


should both hold. In this case, the reason of the inconsis-
tency is – rather straightforward – the combination of the
reasons fora and not a: R(a) ∪ R(not.a). Obviously,
this inconsistency reason does not depend on the inference
rules used when determining the inconsistency.


As mentioned above, inconsistencies from failing sta-
bility checks are a peculiarity of SDLP. This situation oc-
curs if the function IsUnfoundedFree(I) returns false. Intu-
itively, this means that the current interpretation (whichis
guaranteed to be a model) is not stable.


This situation is similar to the well-founded negation
operator described above. The difference is that in case
of a failed stability check, some unfounded atoms are al-
ready true in the interpretation, while they are normally


undefined in the case of well-founded negation. Note that
with the default computation strategy employed in DLV,
failed stability checks will be due to some non-HCF sub-
program, as otherwise the well-founded negation operator
would have triggered before.


The reason for such an inconsistency is therefore based
on an unfounded set, which has been determined during
IsUnfoundedFree(I). Given such an unfounded set, the rea-
son for the inconsistency is composed of the reasons of lit-
erals which satisfy rules which contain unfounded atoms
in their head (the cancelling assignments of these rules).
Unsatisfied rules with unfounded atoms in their heads do
not contribute to the reason.


Let S be a non-HCF subprogram ofP , I be an interpre-
tation, andX be an unfounded set ofS w.r.t. I, such that
I ∩X 6= ∅. The inconsistency reason is determined as fol-
lows:


⋃
r∈S:a∈X∧a∈H(r) R∗


r , whereR∗
r is the cancelling


assignment ofr, if r is satisfied w.r.t.I, or R∗
r = ∅ if r


is not satisfied w.r.t.I (in the latter caser contains some
other element fromX).


Using Inconsistency Reasons for Backjumping. When
inside MG some inconsistency is detected (in DetCons or
IsUnfoundedFree), we analyze the inconsistency reason,
and can go directly to the highest level in the inconsis-
tency reason. Going to any level in between (if it exists)
would indeed trigger the encountered inconsistency again
and again. It is worth noticing that when an inconsistency
is encountered during DetCons, the inconsistency reason
will always contain the last but one level, amounting to
simple backtracking.


The inconsistency reasons can be further exploited:
Whenever a recursive invocation of MG returns false, we
know that there has been an inconsistency in this branch,
and we can re-use the inconsistency reasons determined in
it for the inconsistency reason of the respective branch, by
stripping off all recursion levels which are greater than the
current one. This is semantically correct, as in the pres-
ence of the remaining reasons, an inconsistency will def-
initely occur. If at any level, both recursive invocations
return false, we know that the entire subtree is inconsis-
tent. The reason for this tree to be inconsistent are then the
union of the two inconsistency reasons of the branches, mi-
nus the current level (as the inconsistency does not depend
on the choice of the current level). We can then continue
by going directly to the highest level in this inconsistency
reason. The case where these techniques allow for going
directly to a level, which is not the previous recursion level,
is frequently referred to asbackjumping.


Model Generator with Backjumping. In this section
we describe MGBJ (shown in Fig. 1), a modification of the
MG function, which is able to perform non-chronological
backtracking.


It extends the “basic” model generator MG by intro-
ducing additional parameters and data structures, in order







to keep track of reasons and to control backtracking and
backjumping. In particular, two new parametersIR and
bj level are introduced, which hold the inconsistency rea-
son of the subtree of which the current recursion is the root,
and the recursion level to backtrack or backjump to. When
going forward in recursion,bj level is also used to hold
the current level. The variablescurr level, posIR, and
negIR are local to MGBJ and used for holding the cur-
rent recursion level, and the reasons for the positive and
negative recursive branch, respectively.


bool MGBJ (Interpretation& I, Reason& IR,
int& bj level ){


bj level ++;
int curr level = bj level;


if ( ! DetConsBJ ( I, IR ) )
return false;


if ( “no atom is undefined in I” )
if IsUnfoundedFreeBJ( I, IR );


return true;
else


bj level = MAX ( IR );
return false;


Reason posIR, negIR;


Select an undefined atomA using a heuristic;


R(A)= { curr level};
if ( MGBJ( I ∪ {A}, posIR, bjlevel )


return true;
if (bj level< curr level)


IR = posIR;
return false;


bj level = curr level;
R(not A) = { curr level};
if ( MGBJ ( I ∪ {not A}, negIR, bjlevel )


return true;


if ( bj level< curr level )
IR = negIR;
return false;


IR = trim( curr level, Union ( posIR, negIR ) );
bj level = MAX ( IR );
return false;


};


Figure 1: Computation of stable models with backjumping


Initially, the MGBJ function is invoked withI set to
the empty interpretation,IR set to the empty reason, and
bj level set to−1 (but it will become 0 immediately). Like
the MG function, if the programP has a stable model, then
the function returns true and setsI to the computed stable
model; otherwise it returns false. Again, it is straightfor-
ward to modify this procedure in order to obtain all or up
to n stable models. Since this modification gives no addi-
tional insight, but rather obfuscates the main technique, we
refrain from presenting it here.


MGBJ first calls DetConsBJ, an enhanced version of the
DetCons procedure. In addition to DetCons, DetConsBJ
computes the reasons of the inferred literals. Moreover, if
at some point an inconsistency is detected (i.e. the com-
plement of a true literal is inferred to be true), DetConsBJ


builds the reason of this inconsistency and stores it in its
new, second parameterIR before returning false. If an
inconsistency is encountered, MGBJ immediately returns
false and no backjumping is done. This is an optimiza-
tion, because it is known that the inconsistency reason will
contain the previous recursion level. There is therefore no
need to analyze the levels.


If no undefined atom is left, MGBJ invokes IsUnfound-
edFreeBJ, an enhanced version of IsUnfoundedFree. In ad-
dition to IsUnfoundedFree, IsUnfoundedFreeBJ computes
the inconsistency reason in case of a stability checking
failure, and sets the second parameterIR accordingly. If
this happens, it might be possible to backjump, and we set
bj level to the maximal level of the inconsistency reason
(or 0 if it is the empty set) before returning from this in-
stance of MGBJ. If the stability check succeeded, we just
return true.


Otherwise, an atomA is selected according to a heuris-
tic criterion. We set the reason ofA to be the current re-
cursion level and invoke MG recursively, usingposIR and
bj level to be filled in case of an inconsistency. If the re-
cursive call returned true, MGBJ just returns true as well.
If it returned false, the corresponding branch is inconsis-
tent, posIR holds the inconsistency reason andbj level


the recursion level to backtrack or backjump to. Now, if
bj level is less than the current level, this indicates a back-
jump, and we return from the procedure, setting the incon-
sistency reason appropriately before. If not, then we have
reached the level to go to. We set the reason fornot A,
and enter the second recursive invocation, this time using
negIR and reusingbj level (which is reinitialized before).


As before, if the recursive call returns true, MGBJ re-
turns true also, while if it returned false, we check whether
we backjump, settingIR and returning false. If no back-
jump is done, this instance of MGBJ is the root of an in-
consistent subtree, and we set its inconsistency reasonIR


to the union ofposIR and negIR, deleting all integers
which are greater or equal than the current recursion level
(this is done by the function trim). We finally setbj level


to the maximum of the obtained inconsistency reason (or 0
if the set is empty) and return false.


5 Benchmarks


In order to evaluate the backjumping technique described
in Section 4, we have implemented it as an extension of
the DLV system. Judging from SAT, backjumping has the
greatest impact on large, structured problem instances, so
we have studied such instances. Since we want our tool
to be efficient for arbitrary input, we have also considered
randomly generated hard 3SAT problem instances. These
can be seen as important corner cases that the method
should be able to deal with in an efficient way. We
have also experimented with randomly generated 2QBF in-
stances, which are characteristic for SDLP.







Compared Systems. We will now describe the systems
that we have used in the experimentation. Our principal
comparison is of course between the DLV system without
and with the described backjumping technique.


But there is another parameter, which is important in this
respect. The choice of the heuristic function has a strong
impact on the effectiveness of the backjumping technique
and therefore we consider both systems first with a weak
and then with a strong heuristic. In particular, the weak
heuristic basically amounts to a random choice strategy.
The strong heuristic employs a lookahead technique, that
is, DetCons is invoked on each possible choice atom, and
some values of the result are collected. These values are
then used to choose the “best” atom. For details of this
heuristic function, we refer to[10]. The important aspect is
that inconsistencies can be encountered during the looka-
head. This is like having made one choice, which immedi-
ately leads to an inconsistency. Our implementation treats
this scenario as if a choice has actually been made.


In the sequel, we will refer to systems employing the
weak heuristic aswithout lookahead, and to systems with
the strong heuristic aswith lookahead. It should be noted
that choices made by the strong heuristic are less likely to
lead into inconsistent branches, and so the gain by using
backjumping is more limited than with a weaker heuristic.
This has already been discussed at length in the SAT com-
munity. We will thus deal with the following four versions
of the SDLP system DLV:
STDN The original DLV system without lookahead. It
uses the standard implementation of MG, DetCons, and
IsUnfoundedFree, without reason computation, and em-
ploys the weak heuristic.
BJN This system is DLV enhanced by the backjump-
ing technique using MGBJ, DetConsBJ, and IsUnfound-
edFreeBJ, without lookahead.
STDL The original DLV system with lookahead. It uses
the standard implementation of MG, DetCons, and IsUn-
foundedFree, without reason computation, and employs
the strong heuristic. This is default setting for official DLV
releases.
BJL The final system is DLV enhanced by the
backjumping technique using MGBJ, DetConsBJ, and
IsUnfoundedFreeBJ, this time with lookahead.


Our experiments have been performed on a 1.400
MHz Pentium 4 machine machine with 256K of Level 2
Cache and 256MB of RAM, running SuSE Linux 9.0. The
binaries were generated with GCC 3.3.1 (shipped with the
system). We have allowed at most one hour of execution
time for each instance. For those tests, where there are
multiple instances per instance size, the experimentation
was stopped (for each system) at the size at which some
instance exceeded this time limit.


Benchmark Problems 3SAT is one of the best re-
searched problems in AI and generally used for solving


many other problems by translating them to 3SAT, solving
the 3SAT problem, and transforming the solution back to
the original domain:


Let Φ be a propositional formula in conjunctive nor-
mal form (CNF)Φ =


∧n


i=1(di,1 ∨ . . . ∨ di,3) where the
di,j are classical literals over the propositional variables
x1, . . . , xm. Φ is satisfiable, iff there exists a consistent
conjunctionI of literals such thatI |= Φ.


3SAT is a classical NP-complete problem and can be
easily represented in SDLP as follows: For each proposi-
tional variablexi (1 ≤ i ≤m), we add a rule which ensures
that we either assume that variablexi or its complement
nxi true: xi vnxi. For each claused1 ∨ . . .∨ d3 in Φ
we add the constraint :- not d̄1, . . . ,not d̄3. where
d̄i (1 ≤ i ≤ 3) is xj if di is a positive literalxj , andnxj if
di is a negative literal¬xj .


Our test in this domain include some randomly gen-
erated 3SAT problems and “structured” instances (circuit
verification benchmarks) from the the Superscalar Suite
SSS.1.0 of Miroslav Velev.


We have randomly generated 20 3SAT instances for
each problem size, in the hard region, by using a tool by
Selman and Kautz, which is available atftp://ftp.
research.att.com/dist/ai/ . All input files used
for the benchmarks on random instances are available on
the web athttp://www.mat.unical.it/leone/
backjumping/aicom.tar.gz , while the SSS.1.0
instances can be found athttp://www.ece.cmu.
edu/∼mvelev .


Moreover, to asses the impact of backjumping onΣP
2 -


complete problems we used “∃∀” Quantified Boolean For-
mulas (2QBF), which have already been used in the past
for benchmarking SDLP systems[13; 12].


The problem here is to decide whether a quantified
Boolean formula (QBF)Φ = ∃X∀Y φ, where X and
Y are disjoint sets of propositional variables andφ =
C1 ∨ . . . ∨ Ck is a 3DNF formula overX ∪ Y , is valid.
The transformation from 2QBF to disjunctive logic pro-
gramming we use here has been given in[13], based on a
reduction presented in[6].


The 2QBF formulaΦ is valid iff the related proposi-
tional DLPPΦ has an answer set[6].


We used the benchmark instances from[13]. There,
50 hard instances per problem size were randomly gen-
erated. Each formula contains the same number of univer-
sal and existential variables (|X| = |Y |), and the number
of clauses is equal to the number of variables (|X| + |Y |).
The input files used for the benchmarks are available on the
web athttp://www.dlvsystem.com/examples/
tocl-dlv.zip.


6 Experimental Results


In this section we report the obtained results. We will first
report on the case without lookahead (i.e. using the weak
heuristic), followed by the results with lookahead (i.e. us-
ing the strong heuristic). We focus on structured SAT and







Instance STDN BJN STDL BJL
dlx1 c >2h 5464.80s 306.33s 270.51s
dlx2 cc bug04 >2h >2h 3.57s 2.91s
dlx2 cc bug06 >2h >2h >2h 5498.96s
dlx2 cc bug07 >2h >2h 1301.40s 814.97s
dlx2 cc bug08 >2h >2h 1890.81s 854.00s


Table 1: Execution Time on solved SSS.1.0 SAT instances


2-QBF instances. For random 3SAT, it is important to
know that there is no or very small overhead when using
backjumping.


Results without Lookahead We start with the struc-
tured satisfiability instances. Here, we have allowed two
hours of execution time, and report only on those instances,
which have been solved by at least one of the tested sys-
tems in the allotted time. The execution times are reported
in Table 1. We can see that STDN was not able to solve
any of these instances within 2 hours. BJN, however, could
solve one instance (dlx1c), the number of explored choice
points was quite impressive (about 80 millions).


About 2QBF, in Fig. 2, we report average (left) and max-
imum (right) execution time. We note that BJN scales
much better than STDN: While BJN could solve each in-
stance up to size 80 within 1 hour each, this is only possible
up to size 52 for STDN.


Results with Lookahead Let us now turn to the versions
with lookahead and a strong heuristics. Originally, we did
not expect too much of this combination, as one of the con-
clusions in similar studies for SAT seemed to be that the
combination of strong heuristics and backjumping (includ-
ing clause learning) does not have advantages in general.
However, as the results in this section will show, it seems
that in our setting this combination works indeed well.


Looking at the results of the structured SAT instances
in Table 1, the picture is quite different: Already STDL
can solve many more instances than STDN within 2 hours,
but BJL manages to solve one (dlx2cc bug06) within 2
hours, which no other tested system could do. Also in the
other examples, BJL is always the fastest system, some-
times more than twice as fast as STDL.


Finally, we report on the experiments with 2QBF in-
stances. Fig. 3 reports the average (left) and maximum
(right) execution time per instance size. Also here, BJL
clearly has an edge over STDL. BJL also managed to solve
more instances within the allotted time than STDL.


7 Conclusion


We have presented a backjumping technique for computing
the stable models of disjunctive logic programs. It is based
on a reason calculus and is an elaboration of the work in
[23; 22], but our work contains some crucial novelties and
improvements: Most importantly, our framework is suit-
able and tailored for disjunctive programs, including novel


techniques for this setting. We have implemented the tech-
nique in the DLV system, and have conducted several ex-
periments with it. In total, the backjumping technique has a
very positive effect on performance in many cases. More-
over, these improvements can be observed with either of
two heuristic methods, which are diametrically different
from each other. So we conclude that the technique for
SDLP is robust with respect to the heuristic method, and in
particular, cooperates well with a lookahead heuristic.


Our backjumping technique is very effective on struc-
tured satisfiability instances, and on randomly generated
hard 2QBF instances (which cannot be solved by SAT
solvers directly under standard complexity assumptions).
It shows little to no impact, but also no relevant slowdown
on randomly generated hard satisfiability instances.
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