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Abstract. Answer Set Programming (ASP) emerged in the late 1990s as
a new logic programming paradigm which has been successfully applied
in various application domains. Propositional satisfiability (SAT) is one of
the most studied problems in Computer Science. ASP and SAT are closely
related: Recent works have studied their relation, and efficient SAT-based
ASP solvers (like assat and Cmodels) exist.
In this paper we report about (i) the extension of the basic procedures
in Cmodels in order to incorporate the most popular SAT reasoning
strategies, and (ii) an extensive comparative analysis involving also other
state-of-the-art answer set solvers. The experimental analysis points out,
besides the fact that Cmodels is highly competitive, that the reasoning
strategies that work best on “small but hard” problems are ineffective on
“big but easy” problems and vice-versa.

1 Introduction

Answer Set Programming (ASP) emerged in the late 1990s as a new logic pro-
gramming paradigm [32, 34], and has been successfully applied in various domains
including space shuttle control [35], planning [26], and the design and implementa-
tion of query answering systems [2]. Syntactically, ASP programs look like Prolog
programs, but they are treated by rather different computational mechanisms.
Indeed, ASP systems like Cmodels [24], smodels [36], smodelscc [37], dlv [21],
and assat [27, 29] interpret logic programs via the answer set semantics [11, 12].
The goal is to find the “models” (called answer sets) of the program, and not to
evaluate whether a query is true or not, as in standard Prolog systems. The ASP
approach is thus similar to propositional satisfiability checking, where proposi-
tional formulas encode the problem and models of the formula correspond to the
solutions of the problem.



Propositional satisfiability (SAT) is one of the most intensely studied fields
in Artificial Intelligence and Computer Science. Various procedures that can deal
with thousands of variables are now available (see, e.g., [19]). Also motivated by
the availability of efficient SAT solvers (such as satz [22] and mchaff [33]), vari-
ous reductions from logic programs to SAT were introduced in the past. The most
popular of such reductions is Clark’s completion [3]. Fages ([10]) showed that if
a logic program is “tight” then its answer sets are in one-to-one correspondence
with the models of its Clark’s completion. From a theoretical point of view, Fages’
result was then generalized to include programs with infinitely many rules [25],
programs tight “on their completion models” [1], programs with nested expres-
sions in the bodies of the rules [8], and disjunctive programs [20]. From a practical
point of view, computation of answer sets via Clark’s completion and SAT solving
has been first implemented in Cmodels, and has been also shown to be effective
on many classes of problems. Then, using “loop formulas” [20], it was possible to
enable SAT-based answer set solvers, like assat and Cmodels2 (Cmodels ver.
2), to work also on the class of “non-tight” logic programs.

In [27, 29, 15] assat and Cmodels2 proved to be very competitive w.r.t rival
systems on many classes of problems, with Cmodels2 having some advantages
over assat, like it (i) works on a propositional formula without additional vari-
ables (except for those possibly introduced by the clause form transformation),
and (ii) is guaranteed to work in polynomial space.

Given the SAT-based nature of our procedure, Cmodels2, we have been
able to implement —with a relatively small effort— several search strategies and
heuristics which have been shown effective in the SAT literature. Then, we exper-
imentally analyze which combinations of reasoning strategies work best on which
problems. In particular,

– We implemented various “look-ahead” strategies; “look-back” strategies; and
“heuristics”.

– We considered Cmodels2 with various combinations of strategies, and other
state-of-the-art systems like smodels, smodelscc, assat, and dlv.

– We conducted an extensive experimental analysis, involving all the above
mentioned versions of Cmodels2 and systems, and a variety of tight and
non tight programs, ranging from “small” randomly generated programs with
a few hundred atoms, up to “large” programs with tens of thousands variables.

Our experimental results show that the look-back (resp. look-ahead) version of
Cmodels2 has a clear edge over the other state-of-the-art systems that we consid-
ered on large (resp. small randomly generated) problems. The look-back version of
Cmodels2 is very competitive also on the other non random, non large programs
that we considered.

If we focus on the performances of the various versions of Cmodels2, the
experimental results also point out that:

1. On the small randomly generated problems, “look-ahead solvers” (featuring
a rather sophisticated look-ahead based on “failed literal”, a simple look-back
strategy –essentially backtracking– and a heuristic based on the information
gleaned during the look-ahead phase) are best.



2. On the large problems,“look-back solvers” (featuring a simple but efficient
look-ahead strategy –essentially unit-propagation with 2 literal watching–,
a rather sophisticated look-back based on “learning” and a constant time
heuristic based on the information gleaned during the look-back phase) are
best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead (resp. look-
back) solver does not lead to better performances if the resulting solver is run
on the small (resp. large) problems that we considered.

Using the terminology in [17], our comparison is “fair” because all the reasoning
strategies are realized on a common platform and thus the experimental evalu-
ation is not biased by the differences due to the quality of the implementation,
and is “significant” because Cmodels2 implements current state-of-the-art look-
ahead/look-back strategies and heuristics. We believe that these results have im-
portant consequences both for developers and also for people interested in bench-
marking ASP systems. For instance, our results say that we can hardly expect to
develop a solver with the best performances on all the categories of problems. As
a consequence,

– developers should focus on specific classes of benchmarks (e.g., on randomly
generated programs), and

– benchmarking should take into account whether solvers have been designed
for specific classes of programs: Indeed, it hardly makes sense to run a solver
designed for random (resp. large) programs on large (resp. random) programs.

2 Formal Background

Syntax of Logic Programs. A rule is an expression of the form

p0 ← p1, . . . , pk, not pk+1, . . . , not pm, not not pm+1, . . . , not not pn (1)

(0 ≤ k ≤ m ≤ n) where p0 is an atom or the symbol ⊥ (⊥ is the logical symbol
standing for the empty disjunction, i.e., False), p1, p2, . . . , pn are atoms, and the
symbol not is the “negation” as failure operator. p0 is the head of the rule, and
the expression at the right of the arrow is the body. The intuitive meaning of a
rule (1) is that p0 is in the solution whenever the body is satisfied.

A (non disjunctive logic) program is a finite set of rules.
If the head of a rule is ⊥, we call the rule a constraint. If a rule (1) contains

an expression of the form not not pi, then the rule is called nested, otherwise the
rule is non nested or basic. If a logic program Π contains at least one nested rule,
Π is a nested program, otherwise is non nested or basic.

Answer Sets for Logic Programs. In order to give the definition we consider
first the case in which the program Π does not contain the negation as failure
operator not (i.e. for each rule (1) in Π, n = m = k). Let Π be such a program
and let X be a set of atoms. We say that X is closed under Π if for every rule
(1) in Π, p0 ∈ X whenever {p1, p2, . . . , pk} ⊆ X. In the n = m = k hypothesis,



Π has only one answer set, and it is the smallest set of atoms closed under Π.
Computing such an answer set can be done in linear time, via the Dowling-Gallier
procedure [5], or via unit-propagation (assuming the symbol “←” is understood
as the standard material implication, and “,” as conjunction). Now consider an
arbitrary program Π. Let X be a set of atoms. A rule

p0 ← p1, . . . , pk

belongs to the reduct ΠX of Π with respect to X if and only if there is a rule (1)
in Π with X ∩ {pk+1, . . . , pm} = ∅ and {pm+1, . . . , pn} ⊆ X. ΠX is a program
without negation as failure. We say that a subset X of the atoms in Π is an
answer set for Π if X is an answer set for ΠX [11, 20]. Determining the existence
of an answer set for a program Π is an NP-complete problem. Indeed, checking
if a set of atoms X is an answer set of Π can be done in linear time by first
computing the reduct ΠX and then computing the answer set of ΠX .

Completion. Consider a program Π. The completion Comp(Π) of a program
Π is a propositional formula defined starting from Π; see [3, 30] for details.

The following theorem, due to Marek and Subrahmanian ([31]) for basic pro-
grams and generalized in [8] to nested programs, relates the answer sets of a
program to the models of its completion. In the following, we say that a set of
atoms X satisfies (or is a model of) a set of formulas Γ if Γ is satisfied by the
interpretation which assigns True to an atom p if and only if p ∈ X.

Theorem 1. Let Π be a program. If X is an answer set of Π, then X satisfies
the completion of Π.

Tight Programs. Theorem 1 can be strengthened in the case of tight programs.
A program Π is tight if its dependency graph is acyclic. The dependency graph
of a program Π is the directed graph G such that

- the nodes of G are the atoms in Π, and
- for every rule (1) in Π, G has an edge from p0 to each atom in {p1, . . . , pk} .

The following Theorem has been proved by Fages ([10]) for basic programs,
and it has been generalized by Erdem and Lifschitz ([8]) to nested programs.

Theorem 2. Let Π be a tight program and X a set of atoms. X is an answer
set for Π iff X satisfies the completion of Π.

Loop Formulas. Theorem 1 states that if X is an answer set of program Π
then X satisfies Comp(Π). Theorem 2 says that the converse is also true if the
program is tight. If the program is non tight, Lin and Zhao ([27, 29]) proved that
to have the identity mapping between the answer sets of a basic program Π and
the models of its completion, we have to consider the loop formulas of Π. Lee
and Lifschitz ([20]) extended the concept of loop formulas to nested programs and
proved that the same result holds with the extended definition. The interested
reader can reference to the mentioned papers; here we only report the main result



Theorem 3. Let Π be a program. Let Comp(Π) be the completion of Π. Let
LF (Π) be the set of all the loop formulas associated with the loops of Π. For each
set of atoms X, X is an answer set of Π iff X is a model of Comp(Π)∪LF (Π).

3 The Cmodels2 system

As we already said, Cmodels is a system for tight logic programs. In [15] we have
presented a procedure, called ASP-SAT, that extend Cmodels in order to work
also with non-tight logic programs. ASP-SAT is based on the dll algorithm: It
work on (the clausification of) the completion of a program Π, and check if a
model corresponds to an answer set. Cmodels2 is the name that we use for the
resulting system; refer to the above mentioned paper for more details.

Cmodels2 implementation. Cmodels2 is implemented on top of the simo sys-
tem [16]. simo is a mchaff-like SAT solver and thus features unit-propagation
based on a two-literal watching data structure, 1-UIP learning and VSIDS heuris-
tics (see [33] for a description of these techniques). However, it does not feature
the low level optimizations of mchaff, and thus it is on average within a factor of
3 slower than mchaff. We have used simo because is the system we know better,
and this allowed us to a relatively easy integration of the other search strategies
and heuristics used for the experimental analysis.

Some modifications have to be made if we want to use a SAT solver as basis
for an answer set solver. This is because simo (and many other SAT solvers as
well) pre-processes the input set of clauses and

1. eliminates tautological clauses (i.e., clauses with both an atom and its nega-
tion as disjuncts),

2. assigns pure literals, i.e., each atom p is assigned to True if ¬p does not belong
to any clause in the input formula, and similarly for ¬p.

These operations are not harmful in SAT solving. However, if the SAT solver
is used —as in our case— as basis for an answer set solver, both operations
may lead to incorrect results. In order to avoid undesired behaviors, simo pre-
processing has been modified in order to keep tautological clauses, and to not
assign pure literals. In order to evaluate the impact of different search strategies
and heuristics in solving answer set programs, we have enhanced simo with search
strategies and heuristics other than those implemented by mchaff. In particular,
we implemented:

– Failed-literal detection: Before branching, for each unassigned atom p, p is
assigned to True and then unit-propagation is called again: If a contradiction
is found, p is said to be a failed literal, ¬p can be safely assigned, and unit-
propagation is again performed. Otherwise, ¬p is checked following the same
procedure implemented for p.

– Standard backtracking: Learning is disabled, and recovery from failure is per-
formed by chronologically backtracking to the latest assigned branching lit-
eral.



– The unit heuristic, based on the failed-literal detection technique. Given an
unassigned atom p, while doing failed-literal on p we count the number u(p) of
unit-propagation caused, and then we select the atom with maximum 1024×
u(p)× u(¬p) + u(p) + u(¬p). The atom is assigned to True first.

The above search strategies and heuristics are not novel: They are standard
techniques in the SAT field. Indeed, current state-of-the-art SAT solvers can be
divided in two main categories:

– “look-ahead” solvers, featuring a rather sophisticated look-ahead based on
“failed literal”, a simple look-back (essentially backtracking) and a heuristic
based on the information gleaned during the look-ahead phase. These solvers
are best for dealing with “small but relatively difficult” randomly generated
k-cnf formulas. A solver in this category is satz [22].

– “look-back” solvers, featuring a simple look-ahead (essentially unit-propagation
with 2 literal watching), a rather sophisticated look-back based on “1-UIP
learning” and a constant time heuristic based on the information gleaned
during the look-back phase. These solvers are best for dealing with “large but
relatively easy” instances, typically encoding non random problems. A solver
in this category is mchaff [33].

1 By combining simo original reasoning strategies with those newly implemented,
we can obtain both a mchaff-like and a satz-like SAT solver, and consequently,
a “look-back” answer set solver, and a “look-ahead” answer set solver. Our goal
is to confirm the expectations that, also in answer set programming

– on randomly generated problems, look-ahead solvers are best, while
– on large problems, look-back solvers are best

4 Experimental Results

Solvers, benchmarks and setting. In order to evaluate the effectiveness of
our approach, we comparatively tested Cmodels2 against other state-of-the-art
systems on a variety of benchmarks. The systems we considered are smodels
version 2.27, smodelscc version 1.08, assat version 2.00, dlv release of 2005-02-
23.2 It worths remarking that while smodels, smodelscc, assat and Cmodels2
use lparse as preprocessor, and thus can be run on the same input files, dlv does
not. This explains why dlv has been run only on a few benchmarks. Analogously,
assat can only deal with basic programs and thus it has not been run on some
instances. Finally, for dlv we mention that it is a system specifically designed
1 The terminology “small but relatively difficult” and “large but relatively easy” refer to

the number of atoms and are used to convey the basic intuitions about the instances.
To get an idea for SAT, in the SAT2003 competition, instances in the random and
industrial categories had, on average, 442 and 42703 atoms respectively [19].

2 See http://www.tcs.hut.fi/Software/smodels/, http://www.nku.edu/~wardj1/

Research/smodels_cc.html, http://assat.cs.ust.hk/, http://www.dbai.tuwien.
ac.at/proj/dlv/



for disjunctive logic programs, and that very different results can be obtained
depending on the specific encoding being used.

Considering Cmodels2, we have the possibility to combine different look-
ahead/look-back search strategies and heuristics. In order to keep track of which
combination we are using, we will refer to a combination of search strategies and
heuristics using an acronym where the first, second and third letter denote the
look-ahead, look-back and heuristic used, respectively. We considered 4 combina-
tion of reasoning strategies

1. ulv: our default answer set solver, incorporating a mchaff-like look-back SAT
solver, with standard Unit propagation, backtracking enhanced with Learning,
and VSIDS heuristic.

2. fbu: a standard satz-like look-ahead solver, with unit propagation enhanced
with Failed literal detection, standard Backtracking, and the Unit heuristic.

3. flv: an hybrid solver, featuring unit propagation enhanced with Failed literal
detection, backtracking enhanced with Learning, and the VSIDS heuristic.

4. flu: an hybrid solver, featuring unit propagation enhanced with Failed literal
detection, backtracking enhanced with Learning, and the Unit heuristic.

We considered only these 4 combinations of reasoning strategies and heuristics
because, besides of being the most significant, the other possible combinations do
not make even sense: VSIDS heuristic requires “learning” in order to be significant,
while unit heuristic requires failed-literal. fbu and ulv are the two solvers that we
expect to perform best on randomly generated programs and on large programs
respectively. Assuming that the expectations are met, the performances of the
two hybrid solvers are of interest in order to: (i) determine whether adding a
powerful look-back (resp. look-ahead) to a look-ahead (resp. look-back) solver
leads to better performances on randomly generated (resp. large) programs; and
(ii) get indications about which combination of reasoning strategy is the most
promising on non randomly generated and non large programs.

All the solvers where run in their plain (optimal) configuration unless sug-
gested by the authors. For examples, smodelscc has been run with option “-
nolookahead” (look-ahead turned off) as explicitly suggested by the authors in
the smodelscc’s home page. For assat, we had to increase its internal limit on
the number of atoms in the (grounded) logic program (variable c maxatom).

About the benchmarks, our test-set includes both tight and non tight, both
randomly generated and non randomly generated programs. Each benchmark
belongs to a class of publicly available programs which have been used before
in the literature, or to a class of benchmarks for which a generator is available.
In this last case, we may have generated bigger instances than those reported in
the literature. In order to validate our expectations, we divide the benchmarks in
three categories, being (i) randomly generated programs, (ii) “large” programs
with more than (approximately) 10000 atoms, and (iii) other problems not falling
in the previous categories. A program is non basic when a program contains choice
rules or weight constraints. Recall that choice and weight constraint rules are
eliminated with the help of auxiliary atoms and nested rules of the form (1).

The results of the solvers on the most difficult instances of each class is given
by means of tables, as it is customary in the answer set literature. In the tables,



(i) the first column is a progressive number; (ii) the second column is the ratio
between number of rules and number of atoms for random problems, and the
name of the benchmark in case it is a non randomly generated program; (iii)
the third column contains the number of atoms (#VAR) after grounding. For non
random problems, a “+” to the right of the number indicates that the instance
has answer sets; and (iv) the remaining columns are one per solver, and they
indicate its performances. For each row, the best result is in bold, and the results
within a factor of 2 from the best are underlined.

Finally, all the tests were run on a Pentium IV PC, with 2.8GHz processor,
1024MB RAM, running Linux. For smodels, smodelscc, assat and Cmodels2,
the time taken by lparse is not counted.3 Further, each system was stopped after
3600 seconds of CPU time on non random problems, and 600 seconds on random
problems, or when it exceeded all the available memory. In the tables, these
cases are denoted with “TIME” and “MEM” respectively. Otherwise, the tables
report the CPU times in seconds needed by each solver to solve the problem.
Some of the results here presented have also been presented in [15, 13, 14]: All
the experiments have been relaunched. This justifies the minor differences in the
results, especially with [15], where the experiments were conducted on a Pentium
IV PC, with 1.8GHz processor, 512MB RAM DDR 266MHz, running Linux.

Randomly generated programs. Table 1 shows the results for “small” pro-
grams, randomly generated according to two different methodologies:

1. Problems (1)-(10) are translation of randomly generated k-SAT instances. A
k-SAT instance consists of L distinct clauses, where each clause is generated
by randomly selecting k different atoms and negating each with probability
0.5. The number of distinct atoms in a k-SAT instance is a priori fixed and
denoted with N . Each k-SAT instance F is converted to a program as follows
– if C = (l1∨. . .∨lk), we define sat2tlp(C) to be the rule⊥ ← not l1, . . . , not lk

where not li is p if li = ¬p and is not p if li is the atom p;
– Then, if F is a k-SAT instance, the translation of F , is

∪C∈F sat2tlp(C) ∪ ∪p∈P {p← not p′, p′ ← not p}

where, for each atom p ∈ P , p′ is a new atom associated to p. These bench-
marks are tight, and have been used in [9, 36, 37].

2. Lines (11)-(20) correspond to programs randomly generated according to the
methodology proposed in [28]. Given a set P with N atoms and a positive
number k, a randomly generated rule has
(a) the head which is randomly selected from P , and
(b) the body consisting of k− 1 different atoms, each randomly selected from

P and negated with probability 0.5.
A randomly generated program with L rules consists of L randomly generated
distinct rules. In general these randomly generated programs are non tight.

3 Adding the times of lparse would not change the picture for dlv when compared to
Cmodels2 and other systems.



PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

1 4 300 1.2 7.23 0.85 2.55 0.59 0.8 1.5 1.37
2 4.5 300 39.97 TIME TIME 130.49 TIME TIME 115.29 40.38
3 5 300 7.57 149.37 TIME 26.78 456.22 538.89 17.64 11.32
4 5.5 300 2.26 33.12 94.78 7.37 72.83 53.26 4.42 3.59
5 6 300 1.05 12.72 22.5 3.26 24.73 21.89 1.83 1.63

6 4 350 4.11 12.6 13.4 49.3 2.2 5.74 11.48 8.85
7 4.5 350 318.1 TIME TIME TIME TIME TIME TIME 384.66
8 5 350 44.2 TIME TIME 147.16 TIME TIME 134.34 54.07
9 5.5 350 12.66 252.11 TIME 32.07 TIME 506.08 20.37 13.61

10 6 350 3.37 37.99 174.61 8.76 95.61 104.36 6.05 4.86

11 4 200 3.3 2.02 2.44 32.39 5.34 3.32 1.93 1.75
12 4.5 200 6.84 1.7 3.28 83.63 6.15 5.82 2.09 1.93
13 5 200 22.8 2.5 8.21 82.97 9.82 9.02 3.88 3.33
14 5.5 200 9.42 1.76 4.14 39.47 7.5 6.38 2.97 2.85
15 6 200 8.12 0.85 1.4 23.93 3.24 2.95 1.25 1.53

16 4 300 298.67 73.64 234.09 TIME 265.43 218.48 41.97 31.05
17 4.5 300 TIME TIME TIME TIME TIME TIME 190.73 135.11
18 5 300 TIME 412.69 TIME TIME TIME TIME 136.67 99.75
19 5.5 300 TIME 233.72 TIME TIME TIME TIME 129.29 78.63
20 6 300 TIME 191.62 TIME TIME TIME TIME 107.34 65.83

Table 1. Performances on randomly generated logic programs. Problems (1)-(10) are
tight programs being the translation of 3-SAT benchmarks. Problems (11)-(20) are ran-
domly generated logic programs using Lin and Zhao’s methodology.

Both categories of problems have been generated with k = 3 and L varying from
0.5×N to 12×N with step 0.5. N has been fixed to 300 and 350 for the instances
being the translation of k-SAT problems, and to 200 and 300 for the instances
generated according to Lin and Zhao’s methodology.

For each ratio L/N (indicated in the column “PB”), we generated 10 instances,
and the table presents the median results for the most difficult 5 ratios (the other
being quite easily solved by all the systems).

On these benchmarks fbu has the overall best performances: it is almost always
the fastest system or within a factor of 2 from the fastest. smodels is faster
than fbu in the median case when considering the translation of k-SAT instances.
However, on these benchmarks, smodels times out on 2 programs when N =
300, while fbu times out only on 1 program.4 smodels’ good performances on
these benchmarks are not surprising given that also smodels implements failed
literal detection, together with a heuristic similar to our unit heuristic. However,
considering the programs generated according to Lin and Zhao’s methodology,

4 Increasing N to 400 we get the same picture: smodels is faster than fbu in the median
case, but it times out on 11 programs, while fbu times out on 10. We decided not to
show the results for N = 400 because most of the other solvers times out also in the
median case for most of the ratios L/N .



PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

21 bw*d9 9956+ 6.76 7.63 1.72 1.02 5.84 2.69 2.75
22 bw*e9 12260 4.3 4.51 4.22 0.98 1.91 1.92 1.93
23 bw*e10 13482+ 11.15 12.43 2.66 1.29 7.51 5.03 4.95

24 4c1000 14955+ 22.28 4.95 0.6 0.48 37.86 15.41 15.23
25 4c3000 44961+ 202.84 1143.13 2.19 8.86 369.27 144.12 142.83
26 4c6000 89951+ 856.13 TIME 14.85 99.50 TIME 583.55 578.98

27 np60c 10742+ 242.61 30.81 84.87 361.80 2.83 1611.32 44.12 44.11
28 np70c 14632+ 557.08 55.31 520.80 798.96 4.69 TIME 97.44 97.87
29 np80c 19122+ 1001.88 90.59 53.25 1587.60 7.2 TIME 195.08 190.49
30 np90c 24212+ 2064.61 144.72 1416.24 2807.84 10.42 TIME 364.54 357.92
31 np100c 29902+ 3573.19 215.37 TIME TIME 14.23 TIME 610.2 608.96

32 np60c 10683+ 7.05 3.82 3.55 340.86 8.03 7.82
33 np70c 14563+ 15.67 5.92 10.54 782.69 15.39 14.92
34 np80c 19043+ 32.29 9.01 15.05 1538.86 23.63 25.94
35 np90c 24123+ 53.21 14.13 32.19 2918.82 38.75 50.08
36 np100c 29803+ 83.11 14.95 34.18 TIME 59.15 62.64

37 mutex4 14698+ 14.14 5.35 0.54 367.89 0.46 28.29 28.3 28.26

38 mutex3 278074+ 163.94 110.27 MEM TIME TIME TIME TIME
39 phi3 16930+ 3.23 3.04 53.28 1.43 55.62 12.15 TIME

Table 2. Performances on large programs. Problems (21)-(26) are tight. Problems (27)-
(39) are non tight.

we see that smodels is not competitive with fbu which (together with flu) scales
much better than all the rival systems.

Considering Cmodels2’s combinations, fbu is the fastest (confirming expec-
tations), but also flu performs quite well. Coupling these facts with the bad per-
formances of flv, it emerges that the unit heuristic is very effective on these bench-
marks and makes learning useless.

Large programs. Table 2 shows the results when considering large (i.e., with
approximately 10.000 or more atoms) programs. As in the previous subsection,
the table is divided in two parts:

1. Programs (21)-(26) are tight: In particular (21)-(23) and (24)-(26) encode
respectively blocks world planning and 4-colorability problems in a graph
with V vertexes. V is the number in the label “4cV ” in column PB. All the
tight programs but bw*e9 have answer sets and are available at smodels’
web site.

2. Programs (27)-(39) are non tight. In particular, we consider Hamiltonian cir-
cuit problems on complete graphs, using both the basic encoding of Niemela ([34])
(programs (27)-(31)), and the non basic encoding (programs (32)-(36)) from
http://www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm. The re-
maining 3 programs in the table are related to the problem of checking re-
quirements in a deterministic automaton and are described in [4]. The first of



these 3 programs is the biggest instance in the suite of the “IDFD” problems,
while the other two programs belong to the “Morin” suite.

Overall, the picture that emerges is that ulv is the fastest system: Even though
smodels is the only system that never times out, it is far slower than ulv (and
other systems as well) on many problems. The good performances of ulv are partic-
ularly remarkable given that the test suite contains Hamiltonian circuit problems,
and these benchmarks have exponentially many loops. Thus, one would expect
these problems to be difficult for assat, but also for all Cmodels2 versions in the
case it will generate and then reject (exponentially) many candidate answer sets.
As it can be observed, this is not the case, at least for ulv. On these benchmarks,
for assat and ulv, the answer set is found after the test of relatively few candi-
date models. The gap in performances can be explained with the different treat
of loop formulas: assat adds the entire loop formula when a candidate model is
not an answer set, and this leads to a considerably higher number of clauses to
be managed. Finally, the table also shows an instance on which assat blows up
in memory: As a matter of facts, assat exceeds all the available memory also on
other instances, here not shown because all the other systems time out on them.

Considering the different Cmodels2 versions —beside the fact that ulv is the
best version— by comparing ulv and flv we see that adding failed-literal usually
causes a significant degradation in the performances. These results match the
expectations. Indeed, ulv (and also assat) uses a mchaff-like solver and performs
a few operations at each (branching) node: For (very) large programs, even a
linear-time (in the number of atoms) operation can be prohibitive if performed
at each branching node. Interestingly, considering flv, flu and fbu we see that it is
almost always the case that the last system performs better than the second, and
that the second is better than the first. On these benchmarks, adding learning to
a look-ahead solver does not help. However, the gap between fbu and flu is not
big: Adding learning to fbu does not help, but does not hurt too much. We believe
that this is due to the lazy data structures used by the Cmodels2 versions, which
are fundamental to keep low the burden of managing learned clauses.

Non random, non large programs. Table 3 contains the results on non ran-
dom, non large logic programs. In more details,5

1. Benchmarks (40)-(48) and (73)-(77) are respectively tight and non tight bounded
model checking (BMC) problems of asynchronous concurrent systems, as de-
scribed in [18]. These problems are about proving properties in a given number
of steps, represented as the last number in the instance name.

2. Benchmarks (49)-(54) are about the Schur numbers problem, expressed as ba-
sic (49)-(51) and non basic (52)-(54) programs respectively. The label “schurX.K-
N” refers to a problem where, given a positive integer n, the set of integers N

5 Benchmarks (40)-(48), (73)-(77) and the generator are available at http://www.tcs.
hut.fi/~kepa/experiments/boundsmodels/. Benchmarks (49)-(57) are available at
the asparagus web page http://asparagus.cs.uni-potsdam.de/. Benchmarks (58)-
(60) belong to the smodels test suite and are publicly available at http://www.tcs.
hut.fi/Software/smodels/tests/, encoding by Niemela ([34]).



PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

40 d*12*i*9 1186 368 435.48 223.93 290.15 353.53 TIME
41 k*i*29 3199 990.95 20.88 415.54 204.87 44.14 589.45
42 k*s*29 3169 909.46 16.89 353.69 1028.77 59.99 TIME
43 m*3*i*10 1933+ 10.98 1.65 16.23 32.23 26.71 16.55
44 m*4*i*12 3475+ 1132.16 3.82 1063.15 867.49 TIME 3229.09
45 m*4*s*8 1586+ 89.26 1.3 17.02 27.59 421.30 327.55
46 q*i*17 2201 517.64 53.71 1539.96 505.15 259.05 816.26
47 e*3*i*15 7832+ 35.58 77.02 479.28 TIME 7.15 6.87
48 e*4*i*13 6447 221.18 56.21 87.63 567.27 20.02 19.41

49 schur1.4-43 736+ 0.43 0.95 0.67 590.57 1.4 2.07 0.82 0.88
50 schur1.4-44 753+ 0.44 91.25 1.07 TIME 5.97 5.62 92.63 43.01
51 schur1.4-45 770 571.17 1110.68 434.93 TIME 229.04 417.34 244.35 116.51

52 schur2.4-43 564+ 0.33 0.56 1.27 1.04 0.4 0.38
53 schur2.4-44 577+ 82.72 47.78 6.14 2.8 47.99 18.93
54 schur2.4-45 590 578.73 672.86 226.69 392.78 148.39 63.2

55 15puz.18 5945+ 17.55 6.94 1.06 141.68 0.98 2.9 9.85 9.24
56 15puz.19 6258+ 20.94 7.14 3.61 208.41 1.35 2.93 11.65 10.76
57 15puz.20 6571 70.27 8.22 4.59 TIME 1.28 10.22 64.54 82.68

58 pige.9.10 210 44.77 65.91 1.1 1.26 4.33 1259.84 32.06
59 pige.10.11 253 484.63 1029.38 23.83 12.41 55.46 TIME 339.06
60 pige.51.50 5252+ 106.79 24.29 2.49 1.63 221.33 6.85 7.26

61 8 i-1 2329 7.48 7.17 0.86 0.49 0.85 0.84 0.81
62 11 i-1 4760 36.18 35.53 3.15 1.64 4.92 2.47 2.44
63 8 i 2627+ 17.35 9.30 0.98 0.63 1.27 0.89 0.88
64 11 i 5301+ 37.71 43.90 3.59 2.16 15.55 6.07 5.79
65 8 i+1 2925+ 12.08 15.17 1.09 1.34 4.31 1.34 1.37
66 11 i+1 5842+ 54.30 62.39 3.9 2.49 24.27 22.01 19.71

67 8 i-1 1897 0.53 0.66 0.15 0.29 0.27 0.27
68 11 i-1 3812 1.6 1.96 0.39 1.71 0.75 0.7
69 8 i 2132+ 0.76 0.8 0.22 0.42 0.27 0.3
70 11 i 4233+ 1.85 2.57 0.52 6.76 1.9 1.88
71 8 i+1 2367+ 1.8 1.05 0.68 1.65 0.47 0.49
72 11 i+1 4654+ 2.5 4.12 0.6 10.42 5.26 5.21

73 d*10*i*12 1488+ 132.72 2.25 488.76 1212.89 152.8 TIME
74 d*10*s*9 1140+ 9.75 3.11 6.38 19.31 87.64 TIME
75 d*12*s*10 1511+ 296.45 1.1 53.2 165.9 733.9 TIME
76 d*8*i*10 1003+ 1.76 2.42 12.28 25.03 1.21 11.86
77 d*8*s*8 819+ 0.73 0.14 0.47 3.73 2.38 1221.53

Table 3. Performances on non random, non large programs. Benchmarks (40)-(60) are
tight, while the others are non tight.



defined as N = {1, 2, . . . n} has to be partitioned into K bins such that each
bin is sum-free, i.e., for each Z∈N and Y∈N (i) Z and Z+Z are in different
bins, and (ii) if Z and Y are in the same bin, then Z+Y is in a different
bin. We denote with X=1 the basic encoding and with X=2 the non basic
encoding.

3. Benchmarks (55)-(57) are programs encoding the 15 puzzle problem. In a
label “15puz.M”, M denoted the number of moves in which the final configu-
ration has to be reached. The initial configuration is not fixed and varies from
program to program.

4. Benchmarks (58)-(60) are tight programs encoding pigeons problems. In a
label “pige.h.p”, h denotes the number of holes and p the number of pigeons.

5. Benchmarks (61)-(72) are blocks world planning problems encoded as basic
programs in lines (61)-(66), and as non basic programs in lines (67)-(72)),
the formulations due to Erdem ([7]). In the tables, in the column PB the “8”
or “11” represents the number of blocks; while an “i” (standing for “number
of steps”) means that the instance corresponds to the problem of finding a
plan in “i” steps, where “i” is the minimum integer for which a plan exists.
Thus, the instances with “i” and “i + 1” in the label admit at least one
answer set, while those with “i − 1” do not have answer sets. Technically
speaking, these programs are non tight. However, these problems are “tight
on their completion models” [1]: If Π is one such program, each model of the
completion of Π is guaranteed to be also an answer set of Π.

For these benchmarks results are mixed: On BMC problems, smodelscc has
the best performances overall, while on the other benchmarks it is ulv which has
the best performances overall. What is most interesting is that there is no version
of Cmodels2 dominating the others on the BMC problems. Given this fact and
smodelscc good performances on BMC instances, we believe that on non random,
non large problems the “overall best” solver is somewhere in between ulv and fbu,
i.e., that it can can be obtained by adding a little bit of failed-literal detection to
ulv. This can be done is several ways, e.g., by checking if a literal is failed only if
it belongs to a pool of “most promising” literals (as, e.g., it is done by satz), or
by checking all the literals but not at each branching node. All of this is subject
of future research.

It is also worth noting that, overall, flu is better than flv: This can be explained
by the bad interaction between failed-literal and VSIDS. For non random, large
formulas, this phenomena was already showed to hold in SAT [16].

5 Conclusions and future work

The experimental evaluation shows that:

1. Cmodels2 is competitive with other state-of-the-art systems;
2. depending on the type of program different search strategies are best.

This suggests that future development of answer set solvers should be done by
focusing on certain classes of problems. In our analysis we identified two classes



of programs that need completely different strategies, i.e., random and large pro-
grams. This also implies that benchmarking should be done by considering the
application domain which they have been developed for. This reflects what is
nowadays a standard in the SAT competition, where there is a track for solvers
designed for random problems, and a separate track for solvers designed for large
industrial benchmarks. Solvers get designed and specialized for one track, and
indeed the top performers in one track behave very badly in the other.

Considering the future, there are several directions in which this work can
be improved. First Cmodels2 can be improved as a solver for non disjunctive
programs. One way to do this is by improving the SAT solving part.Performances
can be improved by implementing better failed literal detection strategies and/or
heuristics. Another possibility is to incorporate another SAT solver with the latest
advancements, e.g., MiniSAT [6] the winner of the last SAT competition.

Another direction of work is to extend Cmodels2 in order to deal with dis-
junctive logic programming. A preliminary implementation and analysis are en-
couraging [23], but more work has to be done in order to improve the overall
efficiency of the solver.
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