
optsat: A Tool for Solving SAT related
Optimization Problems

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (Italy)

{enrico,marco}@dist.unige.it
1 Introduction
Propositional satisfiability (SAT) is one of the most important and central prob-
lems in Artificial Intelligence and Computer Science. Basically, most SAT solvers
are based on the well-known Davis-Logemann-Loveland (DLL) procedure. DLL is
a decision procedure: given a SAT formula φ, it can decide if φ is satisfiable (and it
can return a satisfying assignment µ), or not. Often, this is not sufficient, in that
we would like µ to be also “optimal”, i.e., that µ has also to minimize/maximize
a given objective function. max-sat, min-one, distance-sat and their weighted
versions are popular optimization problems. (In the following, φ is the input for-
mula expressed as a set of clauses). Almost all the systems that can deal with
these problems follow a classical branch&bound schema: whenever a satisfying
assignment µ for φ with a cost cµ is found, the search goes on looking for another
satisfying assignment with a lower (or higher, depending on the problem) cost.

In this paper, we present optsat (OPTimal SATisfiability), a tool for solv-
ing SAT related optimization problems based on the dll algorithm. Here, for
simplicity, we focus on max-sat and min-one problems. max-sat is the prob-
lem of finding an assignment (i.e., a consistent set of literals) satisfying as many
clauses in φ as possible; min-one is the problem of determining an assignment
satisfying φ and with as few as possible variables assigned to true. min-sat and
max-one are defined analogously. Differently from other systems, optsat does
not follow a branch&bound schema, but it solves these optimization problems by
imposing a partial ordering on the literals to branch on. max-sat, min-one but
also distance-sat and other SAT-related optimization problems can be solved
in this way. Moreover, optsat is not limited, like all the other systems, to the
computation of assignments which are optimal with respect to a given numeric
function. optsat can also solve max-sat⊆ and min-one⊆ problems. max-sat⊆
is the problem of finding an assignment satisfying a set S of clauses and such that
there is no assignment satisfying a set S′ of clauses with S ⊂ S′ ⊆ φ. min-one⊆
is defined analogously. Any solution which is “max-sat”-optimal, is also “max-
sat⊆”-optimal: however, in many application domains it may be sufficient to have
a “max-sat⊆”-optimal solution, and this can be much easier. In the following, op-
timality is defined under cardinality (resp. subset inclusion) if we are considering
a max-sat/min-one (resp. max-sat⊆/min-one⊆) or analogous problems.

2 The optsat system

optsat algorithm is described in details in [GM06]. Here we highlight its main
points, and we present its input format, the newly implemented encodings, and
report about the results obtained with them and with the integration of Minisat.



The input format. optsat input format is an extension of the well-known
DIMACS format for SAT: in the comment lines (the ones starting with “c”) there
are all the informations that optsat uses to solve the problem, i.e., the type of
the problem (if it is a max-sat, min-sat, max-one, or min-one problem: this is
specified using two flags max/min and SAT/ONE, see Example 1); and the type
of optimality considered, if under cardinality or subset inclusion. The line starting
with “p” is the usual problem line for DIMACS.
Example 1. We specify a min-one⊆ problem with the header

c min ONE
c subset
p cnf n m

The parsing phase. Consider φ having n variables and m clauses. In this phase,
the input file is parsed, and some operations are performed in order to define the
SAT formula φ′ that will be fed to the back-end SAT solver. First, if the problem
is max-sat or min-sat, following a well-known method, φ is modified as follow:
each clause Ci ∈ φ is replaced by C ′

i defined as {¬si ∪ Ci}, where si is called
clause selector and is a newly introduced variable. Second, if optimality is by
cardinality, we compute a formula encoding the objective function. We call this
function adder(S), where S is defined depending on the problem we are facing,
i.e. (i) in the case of a min-one or max-one problem, S is the set of variables in
φ or, (ii) in the case of a min-sat or max-sat problem, S is the set {s1, . . . , sm}
of clause selectors. The goal of adder(S) is to define a sequence bv, . . . , b0 of new
variables such that for any assignment µ of the extended signature, the value
of the objective function when considering the assignment µ corresponds to an
assignment of bv, . . . , b0. adder(S) can be realized, in polynomial time, in many
ways. In optsat, adder(S) is implemented in the following ways:

1. Bailleux/Boufkhad (BB) [BB03]. In this encoding a unary representation of
integers is used: an integer x s.t. 0 ≤ x ≤ n is represented using n propositional
variables {x1, . . . , xn} with (the first) “x” variables assigned to 1 (true), and
the others to 0 (false). This representation has the property that when a
variable xj has value true, all the variables xk with 1 ≤ k < j, are true
as well; and similarly if xk has value false. The encoding is efficient wrt
unit-propagation but it adds a quadratic number of new clauses.

2. BBmod (BB modified): we modified the BB encoding, in order to enforce that
when bi is assigned to false (resp. true), also bi+1 (resp. bi−1) is assigned
to false (resp. true) by unit propagation.

3. Warners [War98]. Here is used a binary representation of integers, e.g., the
value x of the objective function is represented as x = ΣM

i=02
ixi, where xi

are again propositional variables, and M = blog2(x)c for x > 0, and M = 0
otherwise. This is a linear time and space encoding, that relies on sums via
adder circuits and, as presented in the paper, works directly with objective
functions with weights. In optsat, the encoding is optimized for the non
weighted case, and the size of the encoding is approximately halved.

The first two encodings are new for optsat.

2



Solving algorithm. As we already said, optsat is a modification of the dll
algorithm: it takes as input the SAT formula φ′ = φ ∪ adder(S) (with φ consid-
ered here after the introduction of clause selectors in case of min-sat or max-sat
problem, and adder(S) = ∅ if the optimality is under subset inclusion), an assign-
ment µ (initially set to ∅), and a partial order on the set of literals. The main
change that has to be made to the DLL algorithm is in the heuristic.

Consider first the case of an optimization under cardinality problem in which
the sequence bv, . . . , b0 encode the value of the objective function, bv being the
“most significant” variable. Then, the heuristic returns (i) the first not yet as-
signed atom bi (i.e., the variable with the highest index i), if any, or an arbitrary
variable in φ′ (according with the heuristic of the solver); (ii) if a variable in
{bv, . . . , b0} is chosen, the variable is assigned to true in the case of max-sat
or max-one problems, and to false otherwise; if the variable is chosen by the
heuristic of the solver, it is left to the solver the decision about how to assign it.

In the case of an optimization under subset inclusion problem, it returns an
un-assigned atom in S, if any, and assign it to false in the case of min-sat⊆ or
min-one⊆ problems, and to true in the other cases; or an arbitrary atom.

optsat returns an optimal solution if one exists, or that no solution exists
otherwise. In order to see why this is the case, observe that, in the case of mini-
mality under cardinality, variables are preferentially and in order chosen from bv

to b0, while in the case of minimality for subset inclusions, atom in S are chosen.
Only when all these variables are assigned, the choice is delegated to the heuristic
of the underlying solver. Thus, considering, e.g., a min-one or min-sat problem,
the algorithm first explores (assuming no literal in {bv, . . . , b0} are assigned by
unit) the branches with bv, . . . , b0 assigned by false; if all such branches fail,
then it explores the branches with {bv, . . . , b1} assigned to false and b0 to true;
if also these branches fail b0 and b1 are flipped and the search goes on until a
satisfying assignment µ is found, or the entire search space has been explored.

One of the main property of the algorithm is that, when the first satisfying
assignment is found, we are guaranteed that it is also “optimal”.

distance-sat and problems with weights. distance-sat(µ) [BM06] is the
problem of determining an assignment which satisfies the input formula and differ-
ing in as few as possible literals from µ. distance-sat⊆ is defined in the obvious
way. In the weighted version of all the problems we presented, the objective func-
tion to minimize is linear function of the variables. All these problems –but also
others– can be solved by optsat, as shown in [GM06].

3 Experimental results

In optsat, we can now choose between zChaff ver. of 5.13.20041 and Minisat
ver. 1.142 to be used as back-end: each of them has been modified accordingly to
the consideration made in Section 2. These are the winners of the last two SAT
competitions [LS05,LS06] in the industrial categories (Minisat together with the
SAT/CNF minimizer SatElite).

1 http://www.princeton.edu/~chaff/
2 http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

3



In [GM06], we showed that optsat is highly competitive on max-sat/max-
sat⊆ and min-one/min-one⊆ problems if compared with a variety of solvers,
both tailored for a specific optimization problem, and with the solvers that showed
the best performances in the PB evaluation [MR06]. To be also noticed that opt-
sat does not use any “problem-dependent” optimization, like the computation of
an upper-bound of the optimal solution, using incomplete SAT solvers, performed
by most of the max-sat solvers. Here we extend the results in [GM06], by report
about the results obtained with the new encodings and with the integration of
Minisat in our system. For lack of space we do not put any table here: the results
can be found as an appendix at the system home page reported below.

In general, and as expected, because no clauses need to be added, finding a
solution which is optimal under subset inclusion is easier than finding an optimal
solution under cardinality. Considering the CPU times, between the BB based
encodings, BBmod almost always is faster or competitive with BB, and in gen-
eral very competitive for objective functions having a relatively low number of
variables. But, when this number is high, it incurs in memory out. The use of
Minisat generally helps in reducing the time to solve a problem. The reduction
is dramatic, up to 3 orders of magnitude, when considering max-sat⊆ problems.
This highlights one of the main features of our approach, i.e., the possibility of
levering on the enhancement that are continuously made in SAT. For this reason,
we expect our system to further improve its performances thanks to the upcoming
SAT race and future competitions.

Availability of the system. The binary of the system, along with benchmarks
in the optsat input format and a parser to the format of the PB evaluation, are
available at: http://www.star.dist.unige.it/~marco/optsat/.

References

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardi-
nality constraints. In 9th International Conference on Principles and Practice
of Constraint Programming (CP-03), LNCS. Springer, 2003.

[BM06] O. Bailleux and P. Marquis. Some computational aspects of DISTANCE-SAT.
Journal of Automated Reasoning (JAR), To appear, 2006.

[GM06] E. Giunchiglia and M. Maratea. Solving optimization problems with DLL. Ac-
cepted to ECAI 2006. Available at http://www.star.dist.unige.it/~marco/

Data/06ecai.pdf.gz, 2006.
[LS05] D. LeBerre and L. Simon. Fifty-five solvers in vancouver: The SAT 2004 com-

petition. In 8th International Conference on Theory an Applications of Satisfi-
ability Testing. Selected Revised Papers., LNCS 3542. Springer, 2005.

[LS06] D. LeBerre and L. Simon. Preface to the special volume on the sat 2005 com-
petitions and evaluations. Journal of Satisfiability, Boolean Modeling and Com-
putation (JSAT), 2006.

[MR06] V. M. Manquinho and O. Roussel. The first evaluation of pseudo-boolean solvers
(PB05). Journal on Satisfiability, Boolean Modeling and Computation (JSAT),
2:103–143, 2006.

[War98] J. P. Warners. A linear-time transformation of linear inequalities into CNF.
Information Processing Letters, 68(2):63–69, 1998.

4


