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Motivation

1. Propositional satisfiability (SAT) is one of the most studied
fields in AI and CS

2. Very efficient and specialized SAT procedures exist

⇒ use SAT solvers for deciding more expressive logics and
formalisms . . .

⇒ . . . reusing most of the work and knowledge available in SAT
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SAT: The problem

A literal l is a proposition (variable/atom) p or its negation ¬p.
Given the literals l1, . . . , lk , a clause is l1 ∨ · · · ∨ lk .
Given the clauses c1, . . . , cm, a Conjunctive Normal Form (CNF)
formula is c1 ∧ · · · ∧ cm.
An assignment, or valuation v , is a partial function from the
propositions to {true,false}.
We can extend the definition of v in the natural way to assign
truth values to literals, clauses and formulas.

Given a CNF formula Γ, we define the propositional satisfiability
problem (SAT):

Does there exist an assignment v to the propositions
in Γ such that Γ is true?
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SAT: Examples

1. ϕ := {p, p ∨ ¬q,¬r} has the satisfying assignments
I {p := true, q := true, r := false}
I {p := true, q := false, r := false}

2. ϕ := {¬p, p ∨ ¬q, r ∨ ¬p, q} has no satisfying assignments
because the clause {p ∨ ¬q} can not be satisfied.
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SAT: Solving methods

I Resolution algorithm

I Local search algorithms

I (Ordered) Binary Decision Diagrams (OBDDs) (Bryant 1992)

I Davis-Logemann-Loveland (DLL) algorithm
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Agenda

I DLL algorithm

I SAT/DLL-based approaches to ASP

I Experiments with ASP solvers

I Relation between ASP and SAT procedures

I Further experiments
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DLL algorithm

function dll-rec(Γ,S)
〈Γ,S〉 := unit-propagate(Γ,S);
if (∅ ∈ Γ) return false;
if (Γ = ∅) return true;
A := ChooseAtom(S);
return dll-rec(s-assign(A, Γ)),S ∪ {A}) or

dll-rec(s-assign(A, Γ)),S ∪ {A});

function unit-propagate(Γ,S)
if ({l} ∈ Γ) return unit-propagate(s-assign(l , Γ),S ∪ {l});
return 〈Γ,S〉;

s-assign(l , Γ) deletes all the clauses containing l , and all the
occurrences of l .
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Introduction to ASP

A (logic) program Π is a finite set of rules of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An (1)

Let P be the set of atoms in Π, A0 ∈ P ∪ {⊥}, {A1, . . . ,An} ⊆ P.
A0 is the head.

Comp(Π) (Clark 1978) consists of formulas of the type

A0 ≡
∨

(A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

for each symbol in P ∪ {⊥}. In the equation, the disjunction
extends over all rules (1) in Π with head A0.

For the class of tight logic programs (Fages 1994; Erdem and
Lifschitz 2003), there is 1-1 correspondence between the ASP
solutions and the models of Comp(Π).
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SAT-based ASP: Previous approaches (I)

Cmodels algorithm (focus on finding one answer set)

1. Computes Γ = Comp(Π). (and converts it into a set of
clauses)

2. Checks if Γ is tight.

3. If it is, finds a model X of Γ by a SAT solver. If such a model
exists returns true, otherwise false.
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SAT-based ASP: Previous approaches (II)

assat algorithm (Lin and Zhao 2002,2004)

1. Computes Γ = Comp(Π). (and converts it into a set of
clauses)

2. Finds a model X of Γ by a SAT solver. If no such a model
exists, return false.

3. Checks if X is an answer set: If X is an answer set, then
returns true. Otherwise

a) finds (at least) one “loop formula” which is not satisfied by X ,
and adds it to Γ; and

b) goes back to step 2.

The foundation of the algorithm is in the following theorem:

Theorem
Let LF(Π) be the set of loop formulas associated with the loops of
Π. X is an answer set iff is a model of Comp(Π) ∪ LF(Π).
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assat disadvantages

I It is not guaranteed to work in polynomial space.

I Some computation can be repeated. (several times)

I It introduces new variables, other than the ones needed by the
clause-form transformation

Besides these weakness, assat showed to be very competitive wrt
state-of-the-art systems like smodels and dlv.

But (much) better could be done not considering the SAT solver
as a “black-box”.
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Cmodels2: DLL-based decision procedure for ASP

function Cmodels2(Π) return dll-rec(lp2sat(Π),∅,Π);

function dll-rec(Γ,S ,Π)
〈Γ,S〉 := unit-propagate(Γ,S);
if (∅ ∈ Γ) return false;
if (Γ = ∅) return test(S ,Π);
A := ChooseAtom(S);
return dll-rec(s-assign(A, Γ)),S ∪ {A}) or

dll-rec(s-assign(A, Γ)),S ∪ {A});

function unit-propagate(Γ,S)
if ({l} ∈ Γ) return unit-propagate(s-assign(l , Γ),S ∪ {l});
return 〈Γ,S〉;

Cmodels2 employs the SAT solvers simo, a zchaff-like solver.
test(S ,Π) returns true if S ∩ P is an answer set of Π, and false,
otherwise.
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Extension to non-basic rules

Cmodels2 can work with other types of rules other than the basic
ones showed before, namely:

I choice rules,
{A0, . . . ,Ak} ← Ak+1, . . . ,Am, not Am+1, . . . , not An

I cardinality and weight constraint rules

A0 ← L{A1 = w1, . . . , Am = wm, not Am+1 = wm+1, . . . , not An = wn}U

All these rules, together with the basics, can be translated into
basic nested rules

A0 ← A1, . . . ,Am, not Am+1, . . . , not Ak , not not Ak+1, . . . , not not An.

A choice rule {A} ←. is translated in A← not not A, while weight
constraint rules are translated using the method presented in
(Ferraris and Lifschitz, TPLP 2005).
For a basic nested program Π, Comp(Π) is defined as well.
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Cmodels2: Discussion

1. Cmodels2(Π) returns true iff Π has an answer set

2. Cmodels2 works in polynomial space

3. Cmodels2(Π) can be modified in order to compute all the
answer sets of a program Π

4. test(S ,Π) can fail because of “loops” in Π

5. Most state-of-the-art SAT solvers are a (non-recursive)
implementation of DLL

6. Most state-of-the-art SAT solvers are based on “learning” in
order to backjump irrelevant nodes while backtracking and
avoid the exploration of useless parts of the search tree
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Cmodels2: Computing reasons

If SAT solvers are based on learning

1. Learning procedures require test(S ,Π) to return a
S ′ ⊆ S such that for each S ′′ entailing Comp(Π) and
with S ′ ⊆ S ′′, S ′′ ∩P is ensured not to be an AS of Π

2. One such set is S , but it is important that S be as
small as possible:

⇒ one possibility it to return S ∩ P, or (better)
⇒ we can compute a subset of S which falsifies one

of the loop formulas in Π
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Cmodels2: Advantages

With respect to assat, Cmodels2 has a number of advantages,
other than points 2. and 3. in the discussion slide

I it works with basic and non-basic rules

I no computation is ever repeated

I it does not introduce extra variables (except the ones needed
by the clause form transformation)

With respect to smodels and dlv, Cmodels2 has the advantage
of being SAT-based, and thus it can leverage on the great amount
of work done in SAT
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Experimental results: Tight programs

smodels smodels-cc assat dlv Cmodels2
4c1000 22.28 4.95 0.6 0.48
4c3000 202.84 1143.13 2.19 8.86
4c6000 856.13 TIME 14.85 99.50

schur.4-43 0.43 0.95 0.67 590.57 1.4
schur.4-44 0.44 91.25 1.07 TIME 5.97
schur.4-45 571.17 1110.68 434.93 TIME 229.04

15puz.18 17.55 6.94 1.06 141.68 0.98
15puz.19 20.94 7.14 3.61 208.41 1.35
15puz.20 70.27 8.22 4.59 TIME 1.28

pige.9.10 44.77 65.91 1.1 1.26
pige.10.11 484.63 1029.38 23.83 12.41
pige.51.50 106.79 24.29 2.49 1.63

Table: 4c* = 4 coloring; schur* = schur numbers; 15puz* = puzzle; and
pige* = pigeons programs.
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Experimental results: Blocks world

Standard programs Extended programs

#b #s sm smcc assat Cm2 sm smcc Cm2

8 i-1 7.48 7.17 0.86 0.49 0.53 0.66 0.15
11 i-1 36.18 35.53 3.15 1.64 1.6 1.96 0.39

8 i 17.35 9.3 0.98 0.63 0.76 0.8 0.22
11 i 37.71 43.9 3.59 2.16 1.87 2.57 0.52

8 i+1 12.08 15.17 1.09 1.34 1.8 1.05 0.68
11 i+1 54.3 62.39 3.9 2.49 2.5 4.12 0.6

Table: Blocks world: “#b” is the number of blocks. “#s” is the number
of steps.
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Experimental results: H.C. complete graphs

Standard programs Extended programs

sm smcc assat dlv Cm2 sm smcc Cm2

np30c 4.08 2.18 1.61 9.55 0.35 0.26 0.68 0.17
np40c 22.05 6.57 70.97 44.7 0.85 0.75 1.16 0.66
np50c 84.49 15.3 24.17 142.55 1.66 2.3 1.95 2.21

np60c 242.61 30.81 84.87 361.8 2.83 7.05 3.82 3.55
np70c 557.08 55.31 520.8 798.96 4.69 15.67 5.92 10.54

np80c 1001.88 90.59 53.25 1587.6 7.2 32.29 9.01 15.05

np90c 2064.61 144.72 1416.24 2807.84 10.42 53.21 14.13 32.19

np100c 3573.19 215.37 TIME TIME 14.23 83.11 14.95 34.18

Table: Complete graphs. npXc corresponds to a graph with “X” nodes.
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Experimental results: Formal Verification problems

smodels smodels-cc assat dlv Cmodels2

mutex4 14.14 5.35 0.54 367.89 0.46
phi4 0.18 0.55 1.96 0.83 179.71

mutex2 0.28 0.3 2.6 0.15
mutex3 163.94 110.27 MEM TIME

phi3 3.23 3.04 53.28 1.43

Table: Checking requirements in a deterministic automaton. (Heljanko
and Stefanescu 2003)
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Experimental results: BMC problems

BMC smodels smodels-cc Cmodels2

dp-10.i-O2-b12 132.72 2.25 488.76

dp-10.s-O2-b9 9.75 3.11 6.38

dp-12.s-O2-b10 296.45 1.1 53.2

dp-8.i-O2-b10 1.76 2.42 12.28

dp-8.s-O2-b8 0.73 0.14 0.47

Table: Bounded Model Checking Problems. (Heljanko and Niemela 2003)
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Enhancements to Cmodels

From the point of view of search

1. Introduce new SAT techniques (see next part of the talk!)

2. Design specialized heuristic (see next slide!)

3. Integrate a new SAT solver

4. Loop (formulas) are “too generous” (elementary loops/sets)

From the point of view of expressivity, Cmodels3

1. Extension of Cmodels2 that allows for (non-nested)
disjunctive rules, choice and weight constraints rules

2. test() is a co-NP check: It uses (another) SAT solver for it

3. Interesting preliminary results, more has to be done
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“Heuristic false” (hf) tie-breaking heuristic

Extended programs

smodels smodels-cc Cmodels2 Cmodels2 hf

np30c 0.26 0.68 0.17 0.16
np40c 0.75 1.16 0.66 0.45
np50c 2.3 1.95 2.21 0.91
np60c 7.05 3.82 3.55 1.74
np70c 15.67 5.92 10.54 2.96
np80c 32.29 9.01 15.05 4.73
np90c 53.21 14.13 32.19 7.61
np100c 83.11 14.95 34.18 10.79

smodels smodels-cc assat dlv Cmodels2 Cm2 hf

mutex4 14.14 5.35 0.54 367.89 0.46 0.34
phi4 0.18 0.55 1.96 0.83 179.71 TIME

mutex2 0.28 0.3 2.6 0.15 0.07
mutex3 163.94 110.27 MEM TIME 11.82
phi3 3.23 3.04 53.28 1.43 1.94
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SAT-based: Other applications

The SAT/DLL-based approach has been used (in our group) to
develop decision procedures for

I Separation Logic, a decidable quantifier-free fragment of the
first order logic involving propositional logic and linear
arithmetic, with applications in FV and scheduling (TSAT++)

Example

START ∧ ((ei − si ≤ 10) ∨ (sj − ei ≤ 0))

I optimization problem related to SAT (namely Max-SAT,
Min-ONE) with main application in planning (OPTSAT)

and

I QSAT, or QBF, (QuBE++)

I conformant planning (CPlan)
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On the relation between ASP and SAT procedures:
Motivation

I The relation between ASP and SAT has been at the center of
several papers, especially in the last years.

I This is confirmed by the upcoming new (ICLP-)workshop
Lash06: Search and Logic: Answer Set Programming and
SAT.

I Despite state-of-the-art ASP solvers are apparently quite
different,

I the main search procedures used by ASP solvers (i.e., “native”
and SAT-based) have been advocated “similar” in many
works. But this has never been formally stated before.
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On the relation between AS and SAT procedures: Goal

We study the computational properties of ASP systems, in order to
formally characterize under which conditions different systems have
same behavior.

We begin our study with smodels and Cmodels2, and then we
see how the results extend to other systems like dlv, smodels-cc
and assat.

The main focus of this work is on tight programs using basic rules,
where we will establish a strong relation between smodels and
Cmodels2 procedures.

We will use the result both on the theoretical side (in order to
show new complexity results for smodels) and on the
experimental side (for evaluating efficient strategies and heuristics
coming from SAT, in ASP systems).
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smodels procedure (I)

function smodels(Π) return smodels-rec(Π, {>});

function smodels-rec(Π,S)
〈Π, S〉 := expand(Π, S);
if ({l , not l} ⊆ S) return false;
if ({A : A ∈ P, {A, not A} ∩ S 6= ∅} = P) return true;
A := ChooseAtom(S);
return smodels-rec(p-elim(A, Π)), S ∪ {A}) or

smodels-rec(p-elim(not A, Π)), S ∪ {not A});

function expand(Π,S)
S ′ := S ;
S := AtLeast(Π, S);
Π := p-elim(S , Π);

S := S ∪ {not A : A ∈ P, A 6∈ AtMost(Π∅, S)};
Π := p-elim(S , Π);
if (S 6= S ′) return expand(Π,S);
return 〈Π, S〉;
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smodels procedure (II)

function AtLeast(Π,S)
if (r ∈ Π and body(r) = ∅ and head(r) 6∈ S)

return AtLeast(p-elim(head(r), Π), S ∪ {head(r)});
if ({A, not A} ∩ S = ∅ and 6 ∃r ∈ Π : head(r) = A)

return AtLeast(p-elim(not A, Π), S ∪ {not A});
if (r ∈ Π and head(r) ∈ S and body(r) 6= ∅ and
6 ∃r ′ ∈ Π, r ′ 6= r : head(r ′) = head(r))
return AtLeast(p-elim(body(r), Π), S ∪ body(r));

if (r ∈ Π and not head(r) ∈ S and body(r) = {l})
return AtLeast(p-elim(not l , Π)), S ∪ {not l});

return S ;

function AtMost(Π,S)
if (r ∈ Π and body(r) = ∅ and head(r) 6∈ S)

return AtMost(p-elim(head(r), Π), S ∪ {head(r)});
return S ;
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From a logic program to a set of clauses

We have defined lp2sat(Π) to be the set of clauses corresponding to
Comp(Π). More precisely, if A0 is an atom, the translation of Π relative
to A0, denoted with lp2sat(Π,A0), consists of

1. for each rule r ∈ Π of the form (1) and whose head is A0, the
clauses:

{A0, nr}, {nr ,A1, . . . ,Am,Am+1, . . . ,An},
{nr ,A1}, . . . , {nr ,Am}, {nr ,Am+1}, . . . , {nr ,An},

where nr is a newly introduced atom, and

2. the clause {A0, nr1 , . . . , nrq} where nr1 , . . . , nrq (q ≥ 0) are the new
symbols introduced in the previous step.

The translation of Π relative to ⊥, denoted with lp2sat(Π,⊥), consists of
a clause {A1, . . . ,Am,Am+1, . . . ,An}, one for each rule in Π of the form
(1) with head ⊥. Finally, the translation of Π, denoted with lp2sat(Π), is
∪p∈P∪{⊥}lp2sat(Π, p).
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From a set of clauses to a logic program

If C is a clause {l1, . . . , ll} (l ≥ 0) we define sat2tlp(C ) to be the
rule

⊥ ← not l1, . . . , not ll .

Then, if Γ is a formula, the translation of Γ, denoted with
sat2tlp(Γ), is

∪C∈Γsat2tlp(C ) ∪ ∪p∈P{p ← not p′, p′ ← not p}

where, for each atom p ∈ P, p′ is a new atom associated to p.
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Relating smodels and Cmodels2

Our goal is to prove that the computations of smodels and
Cmodels2 are highly related if Π is tight. We establish this
comparing the search trees of smodels-rec(Π, {>}) and
dll-rec(lp2sat(Π), ∅).

We say that a set of literals S is a branching node of smodels(Π)
if there is a call to smodels-rec(Π′,S), following the invocation
of smodels(Π). Similar considerations are made for Cmodels2.
If proc is smodels(Π) or Cmodels2(Π), we define

Br(proc) = {S ∩ (P ∪ P) : S is a branching node of proc}.

We say that smodels(Π) and Cmodels2(Π) are equivalent if
Br(smodels(Π)) = Br(Cmodels2(Π)).

Theorem
For each tight program Π, smodels(Π) and Cmodels2(Π) are
equivalent.
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New results for smodels: Pigeonhole principle

The complexity of a procedure proc on a program Π is the smallest N
such that |Br(proc)| = N.
Consider the formula PHPm

n where n,m are two natural numbers, and
consisting of the clauses

{Ai,1,Ai,2, . . . ,Ai,n} (i ≤ m),
{Ai,k ,Aj,k} (i , j ≤ m, k ≤ n, i 6= j).

The formulas PHPm
n are from (Haken 1985) and encode the pigeonhole

principle. If n < m, PHPm
n are unsatisfiable and it is well known that any

procedure based on resolution (like dll-rec) has an exponential
behavior on these formulas.

Corollary
The complexity of smodels and Cmodels2 on sat2tlp(PHPn

n−1) is
exponential in n.

The result extends to Cmodels2 because it is based on dll-rec. For
smodels, it relies on the fact that sat2tlp(PHPn

n−1) is tight, and thus
smodels and Cmodels2 are equivalent.
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New results for smodels: Randomly generated k-CNF
formulas

A formula Γ is a k-CNF if each clause in Γ consists of k literals.
The random family of k-CNF formulas is a k-CNF whose clauses
have been randomly selected with uniform distribution among all
the clauses C of k literals and such that, for each two distinct
literals l and l ′ in C , l 6= l ′.

Corollary

Consider a random k-CNF formula Γ with n atoms and m clauses.
With probability tending to one as n tends to infinity, the
complexity of smodels and Cmodels2 on sat2tlp(Γ) is
exponential in n if the density d = m/n ≥ 0.7× 2k .

This result follows from (Chvátal and Szemerédi 1988), and again
from the fact that sat2tlp(Γ) is tight on the random family, from
the fact that Cmodels2 is based on dll-rec and our equivalence
result on tight programs.
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New results for smodels: Deciding the best literal

We define a literal l to be optimal for a program Π if there exists a
minimal search tree of smodels(Π) whose root is labeled with l .
The following result echoes the one by (Liberatore 2000) for
dll-rec.

Corollary

In smodels, deciding the optimal literal to branch on is both
NP-hard and co-NP hard, and in PSPACE for tight programs.

There are many other results holding for dll-rec that can be
lifted to smodels, including (Monasson 2004) and (Achlioptas et
al. 2001) for average complexity of coloring randomly generated
graphs and for exponential lower bounds on random 3-CNF
formulas also below the satisfiability threshold.
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smodels and Cmodels2 are not equivalent on non-tight
programs

Consider again the pigeonhole formulas. They give us the
opportunity to define a class of formulas that are exponentially
hard for Cmodels2 but easy for smodels.

For each formula Γ, defines sat2nlp(Γ) to be the program
∪C∈Γsat2tlp(C ) ∪ ∪p∈P{p ← p}.

Corollary

The complexity of smodels and Cmodels2 on sat2nlp(PHPn
n−1)

is 0 and exponential in n respectively.

In this case, sat2nlp(PHPn
n−1) is non-tight, and smodels can

determine the non existence of answer sets without branching
mainly thanks to the procedure AtMost.

The above results can be easily generalized to any formula Γ which
is known to be exponentially hard for dll-rec.
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Extending the results to other systems

assat is different from Cmodels2 only on non-tight programs,
assuming that Γ is computed as lp2sat(Π).
smodels-cc is smodels enhanced with “clause-learning”
look-back strategies.
Results in (Haken 1985) and (Chvátal and Szemerédi 1988) hold
for any proof systems based on resolution. Enhancing smodels
and Cmodels2 with “learning” look-back strategies does not
lower the exponential complexity.
Thus, the related corollaries hold also for smodels-cc and assat.

dlv core algorithm is similar to the one of smodels. In particular,
the rules used by AtLeast to extend the assignment S are very
similar to those used by the dlv procedure DetCons. (see (Faber
2002), pagg. 41-44.)

We (Enrico, Nicola and I) are working on the comparison between
dlv algorithm, dll-rec (thus Cmodels) and smodels.

Marco Maratea SAT, SAT-based ASP and their relation.



Experimental analysis: Assessment (I)

Given the above results, one expects that the combinations of reasoning
strategies that currently dominate in SAT, are also bound to dominate in
ASP, at least on tight logic programs.

We show experimentally, on a wide set of currently challenges
benchmarks, that this is the case (to certain degrees), and results extend
(on the experimental side) to non-tight programs.

We have used our solver, Cmodels2, because it is SAT-based and thus
strengths the relation between SAT and ASP, and also

I its front-end is lparse (Simons 2000), a widely used grounder for
logic programs;

I its back-end solver already incorporates (lazy) data structures for
fast unit propagation as well as some state-of-the-art strategies and
heuristics evaluated in this work; and

I can be also run on non-tight programs.
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Experimental analysis: Assessment (II)

We have further extended Cmodels2 with a variety a look-ahead,
look-back strategies and heuristics coming from the SAT community.

I Look-ahead: basic unit-propagation (u),
unit-propagation+failed-literal (f) (Freeman 1995)

I Look-back: basic backtracking (b),
backtracking+backjumping+learning (l) (Sakallah and Silva 1996;
Bayardo and Schrag 1997; Zhang et. al 2001)

I Heuristic: VSIDS (v) (Moskewicz et al. 2001), Unit-based (u) (Li
and Anbulagan 1997)

We focus on 4 combination of strategies built out of them: ulv, flv, flu
and fbu.
Performing the experiment on a unique platform is of fundamental
importance, otherwise results can be biased by implementation issues.
Given the established “equivalence”, results would extend to smodels
(and to the other systems, according to the considerations made) if
enhanced with corresponding techniques (at least on tight programs).
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Experimental analysis: Small, random programs

PB # VAR ulv flv flu fbu

1 4 300 0.59 0.8 1.5 1.37
2 4.5 300 TIME TIME 115.29 40.38
3 5 300 456.22 538.89 17.64 11.32
4 5.5 300 72.83 53.26 4.42 3.59
5 6 300 24.73 21.89 1.83 1.63

6 4 300 265.43 218.48 41.97 31.05
7 4.5 300 TIME TIME 190.73 135.11
8 5 300 TIME TIME 136.67 99.75
9 5.5 300 TIME TIME 129.29 78.63

10 6 300 TIME TIME 107.34 65.83

Table: Performances on randomly generated logic programs. Problems
(1)-(5) are tight programs being the translation of 3-SAT benchmarks.
Problems (6)-(10) are randomly generated logic programs using Lin and
Zhao’s methodology.
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Experimental analysis: Large programs

PB # VAR ulv flv flu fbu

11 bw*d9 9956+ 1.02 5.84 2.69 2.75
12 bw*e9 12260 0.98 1.91 1.92 1.93
13 bw*e10 13482+ 1.29 7.51 5.03 4.95

14 4c1000 14955+ 0.48 37.86 15.41 15.23
15 4c3000 44961+ 8.86 369.27 144.12 142.83
16 4c6000 89951+ 99.50 TIME 583.55 578.98

17 np80c 19122+ 7.2 TIME 195.08 190.49
18 np90c 24212+ 10.42 TIME 364.54 357.92
19 np100c 29902+ 14.23 TIME 610.2 608.96
20 np80c 19043+ 15.05 1538.86 23.63 25.94
21 np90c 24123+ 32.19 2918.82 38.75 50.08
22 np100c 29803+ 34.18 TIME 59.15 62.64

23 mutex4 14698+ 0.46 28.29 28.3 28.26
24 phi3 16930+ 1.43 55.62 12.15 TIME

Table: (11)-(13) are blocks world; (14)-(16) are 4 coloring; (17)-(22) are
HC on complete graphs; (23)-(24) are “verification” problems.
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Experimental analysis: Non random, non large programs

PB # VAR ulv flv flu fbu
25 k*i*29 3199 415.54 204.87 44.14 589.45
26 k*s*29 3169 353.69 1028.77 59.99 TIME
27 q*i*17 2201 1539.96 505.15 259.05 816.26
28 e*3*i*15 7832+ 479.28 TIME 7.15 6.87
29 e*4*i*13 6447 87.63 567.27 20.02 19.41
30 d*10*i*12 1488+ 488.76 1212.89 152.8 TIME
31 d*10*s*9 1140+ 6.38 19.31 87.64 TIME
32 d*12*s*10 1511+ 53.2 165.9 733.9 TIME
33 d*8*i*10 1003+ 12.28 25.03 1.21 11.86
34 d*8*s*8 819+ 0.47 3.73 2.38 1221.53

35 schur.4-43 736+ 1.4 2.07 0.82 0.88
36 schur.4-44 753+ 5.97 5.62 92.63 43.01
37 schur.4-45 770 229.04 417.34 244.35 116.51
38 15puz.18 5945+ 0.98 2.9 9.85 9.24
39 15puz.19 6258+ 1.35 2.93 11.65 10.76
40 15puz.20 6571 1.28 10.22 64.54 82.68
41 pige.9.10 210 1.26 4.33 1259.84 32.06
42 pige.10.11 253 12.41 55.46 TIME 339.06
43 pige.51.50 5252+ 1.63 221.33 6.85 7.26

Table: (25)-(34) are BMC; (35)-(37) are schur numbers; (38)-(40) are 15
puzzle; (41)-(43) are pigeons problems.
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Possible enhancements

1. Design/Implement “better” look-ahead techniques (like dlv),
I to “bound” the number of failed-literals

2. Design/Implement heuristic suited for random benchmarks
I based on “backbones”, but this point “calls” . . .
I . . . for the research issue of generating random logic programs

3. Refine VSIDS heuristic
I initialization and variables scoring
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Main results

I the SAT-based approach used by Cmodels2 is competitive
w.r.t. rival systems, at least on non-disjunctive case and when
looking for one answer set

I ASP and SAT procedures have been demonstrated to be
“equivalent” on tight programs; this lead to establish new,
previously unknown results for smodels that can be extended
to assat and smodels-cc with the extents we have seen.
Extending the results to dlv is work in progress

I a deep experimental investigation, motivated by the previous
theoretical result, has shown how SAT techniques can be
beneficial for ASP solvers, and has shed light on future
directions for develop ASP systems

Marco Maratea SAT, SAT-based ASP and their relation.



What am I doing @mat.unical?

1. Look-back (VSIDS-like) heuristic for DLV. Preliminary results

2. Extending the relation between smodels/Cmodels to dlv.

(Expected) Results (to be proved . . . )
I dlv, smodels and Cmodels are equivalent on tight

programs
I dlv and smodels are equivalent on non-tight programs
I dlv and smodels are not equivalent on non-tight programs if

deprived of well-founded/atmost procedures.
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