
On the relation between Answer Set and SAT
procedures

(or, betweenCMODELS and SMODELS)

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (Italy)

{enrico,marco}@dist.unige.it

Abstract. Answer Set Programming (ASP) is a declarative paradigm for solv-
ing search problems. State-of-the-art systems for ASP includeSMODELS, DLV ,
CMODELS, andASSAT.
In this paper, our goal is to study the computational properties of such systems
both from a theoretical and an experimental point of view. From the theoretical
point of view, we start our analysis withCMODELS andSMODELS. We show that
though these two systems are apparently different, they are equivalent on a sig-
nificant class of programs, called tight. By equivalent, we mean that they explore
search trees with the same branching nodes, (assuming, of course, a same branch-
ing heuristic). Given our result and that theCMODELS search engine is based on
the Davis Logemann Loveland procedure (DLL) for propositional satisfiability
(SAT), we are able to establish that many of the properties holding forDLL also
hold for CMODELS and thus forSMODELS. On the other hand, we also show that
there exist classes of non-tight programs which are exponentially hard forCMOD-
ELS, but “easy” forSMODELS. We also discuss how our results extend to other
systems.
From the experimental point of view, we analyze which combinations of reason-
ing strategies work best on which problems. In particular, we extendedCMOD-
ELS in order to obtain a unique platform with a variety of reasoning strategies,
and conducted an extensive experimental analysis on “small” randomly generated
and on “large” non randomly generated programs. Considering these programs,
our results show that the reasoning strategies that work best on the small prob-
lems are completely different from the ones that are best on the large ones. These
results point out, e.g., that we can hardly expect to develop one solver with the
best performances on all the categories of problems. As a consequence,(i) de-
velopers should focus on specific classes of benchmarks, and(ii) benchmarking
should take into account whether solvers have been designed for specific classes
of programs.

1 Introduction

Answer Set Programming (ASP) is a declarative paradigm for solving search problems.
State-of-the-art systems for ASP includeSMODELS, DLV , CMODELS, andASSAT.1 Our

1 See http://www.tcs.hut.fi/Software/smodels , http://www.dbai.
tuwien.ac.at/proj/dlv , http://assat.cs.ust.hk , http://www.cs.
utexas.edu/users/tag/cmodels.html , respectively.

goal is to study the computational properties of such systems both from a theoretical
and an experimental point of view.

From the theoretical point of view, we start our analysis withCMODELSandSMOD-
ELS. Given a programΠ, while SMODELS (and alsoDLV) is a native procedure which
directly operate onΠ, CMODELS (andASSAT) computes a set of clauses correspond-
ing to the Clark’s completion ofΠ, and then invoke a propositional satisfiability (SAT)
solver based on Davis Logemann Loveland procedure (DLL). We show that though
CMODELS andSMODELS are apparently different, they are equivalent on a significant
class of programs, called tight. By equivalent, we mean that they explore search trees
with the same branching nodes, (assuming, of course, a same branching heuristic).
Given our equivalence result and thatCMODELS search engine is based onDLL , we
are able to establish that many of the properties holding forDLL also hold forCMOD-
ELS and thus, when considering tight programs, also forSMODELS. For instance we
show that:

1. There exist classes of tight formulas which are exponentially hard both forCMOD-
ELS andSMODELS.

2. There exist classes of non tight programs which are exponentially hard forCMOD-
ELS but very easy (i.e., solved without search) bySMODELS.

3. In SMODELS, deciding the “best” literal to branch on, is both NP-hard and co-NP
hard and in PSPACE for tight programs.

These are just a few of the many results(i) that are already known forDLL , (ii) that can
be easily shown to hold forCMODELS, and(iii) that –thanks to our equivalence result–
can be easily shown to hold also forSMODELS.

From the experimental point of view, we analyze which combinations of reasoning
strategies work best on which problems. In particular,

– we extendedCMODELS in order to obtain a unique platform with various “look-
ahead” strategies (used while descending the search tree); “look-back” strategies
(used for recovering from a failure in the search tree); and “heuristic” (used for
selecting the next literal to branch on), and

– we considered various combinations of strategies, and conducted an extensive ex-
perimental analysis, on a wide variety of tight and non tight programs.

Our experimental results show that:

1. On “small” (i.e., with a few hundreds variables), randomly generated problems,
look-ahead solvers (featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back –essentially backtracking– and a heuristic based on the
information gleaned during the look-ahead phase) are best.

2. On “large” (i.e., with tens of thousands variables) problems,“look-back” solvers
(featuring a simple but efficient look-ahead –essentially unit-propagation with 2
literal watching–, a rather sophisticated look-back based on “learning” and a con-
stant time heuristic based on the information gleaned during the look-back phase),
are best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead (resp. look-back)
solver does not lead to better performances if the resulting solver is run on the small
(resp. large) problems that we considered.

Using the terminology in [1], our comparison is “fair” because all the reasoning strate-
gies are realized on a common platform (thus, our experimental evaluation is not bi-
ased by the differences due to the quality of the implementation) and is “significant”
because our solver implements current state-of-the-art look-ahead/look-back strategies
and heuristics.

As discussed in more details in the conclusions, our experimental results have some
important consequences both for developers and also for people interested in bench-
marking ASP systems. For instance, our results say that we can hardly expect to develop
one solver with the best performances on all the categories of problems. As a conse-
quence,(i) developers should focus on specific classes of benchmarks (e.g., on ran-
domly generated programs), and(ii) benchmarking should take into account whether
solvers have been designed for specific classes of programs: indeed, it hardly makes
sense to run a solver designed for random (resp. large, real-world) programs on large,
real-world (resp. random) programs.

The paper is structured as follows. In Section 2 we give the basic definitions. Sec-
tions 3 and 4 are devoted to the definition of the algorithms ofCMODELSandSMODELS

respectively, and that are used in our formal analysis of their computational properties
(done in Section 5). Section 6 is dedicated to the experimental analysis of different
look-ahead/look-back strategies and heuristics. We end the paper in Section 7 with the
conclusions.

2 Basic definitions

Let P be a set of atoms. Ifp is a an atom,p is thenegation of p, andp is p. We will
also use the logical symbols⊥ and> (standing for FALSE and TRUE respectively), and
assume that⊥ = > and> = ⊥. Atoms, their negations, and the symbols⊥, > form
the set ofliterals. If S is a set of literals, we defineS = {l : l ∈ S}.

A rule is an expression of the form

p0 ← p1, . . . , pm, pm+1, . . . , pn (1)

wherep0 ∈ P ∪{⊥}, and{p1, . . . , pn} ⊆ P (0 ≤ m ≤ n). If r is a rule (1),head(r) =
p0 is thehead of r, andbody(r) = {p1, . . . , pm, pm+1, . . . , pn} is thebody of r. A
(logic) program is a finite set of rules.

Consider a programΠ, and letX be a set of atoms. In order to give the definition
of an answer set we consider first the special case in which the body of each rule inΠ
contains only atoms (i.e., for each rule (1) inΠ,m = n). Under these assumptions, we
say that

– X is closed underΠ if for every rule (1) inΠ, p0 ∈ X whenever{p1, . . . , pm} ⊆
X, and that

– X is ananswer set for Π if X is the smallest set closed underΠ.

Now we consider the case in whichΠ is an arbitrary program. Thereduct ΠX of
Π relative toX is the set of rules

p0 ← p1, . . . , pm

for all rules (1) inΠ such thatX ∩ {pm+1, . . . , pn} = ∅. X is ananswer set for Π if
X is an answer set forΠX .

In the following, we say that a programΠ is tight if there exists a functionλ from
atoms to ordinals such that, for every rule (1) inΠ whose head is not⊥, λ(p0) > λ(pi)
for eachi = 1, . . . ,m.

3 CMODELS

function CMODELS(Π) return DLL -REC(lp2sat(Π),∅,Π);

function DLL -REC(Γ ,S,Π)
1 〈Γ, S〉 := unit-propagate(Γ, S);
2 if (∅ ∈ Γ) return FALSE;
3 if (Γ = ∅) return test(S,Π);
4 l := ChooseLiteral(S);
5 return DLL -REC(s-assign(l, Γ)), S ∪ {l}, Π) or
6 DLL -REC(s-assign(l, Γ)), S ∪ {l}, Π);

function unit-propagate(Γ ,S)
7 if ({l} ∈ Γ) return unit-propagate(s-assign(l, Γ), S ∪ {l});
8 return 〈Γ, S〉;

Fig. 1.The algorithm ofCMODELS.

CMODELS reduces the problem of answer set computation to the satisfiability prob-
lem of propositional formulas via Clark’s completion, and uses a SAT solver as search
engine. Formally, aclause is a finite set of literals different from⊥,>, and a(proposi-
tional) formula is a finite set of clauses. Anassignment is a set of literals. An assignment
S satisfies a formulaΓ if S is consistent and for each clauseC in Γ , C ∩ S 6= ∅. If S
satisfiesΓ then we also say thatS is amodel of Γ and thatΓ is satisfiable.

There are various versions ofCMODELS (see the web page ofCMODELS). Here we
consider the one proposed in [2] (called ASP-SAT in that paper), and it is represented
in Figure 1, in which

– Π is the input program;Γ is a set of clauses;S is an assignment;p and l are an
atom and a literal respectively.

– lp2sat(Π) is the set of clauses –corresponding to the Clark’s completion ofΠ–
formally defined below.

– s-assign(l, Γ) returns the formula obtained fromΓ by (i) deleting the clausesC ∈
Γ with l ∈ C, and(ii) deletingl from the other clauses inΓ .

– test(S,Π) returns TRUE if S ∩ P is an answer set ofΠ, and FALSE otherwise.
– ChooseLiteral(S) returns a literal not assigned byS. We say that aliteral l is

assigned by an assignment S if {l, l} ∩ S 6= ∅. For simplicity, we assume that
ChooseLiteral(S) returns the first –according to a fixed total orderρ on P ∪ P–
literal in P ∪ P which is unassigned byS.

We assume that parameters are passed to a procedure by value, as in [3].
CMODELS(Π) simply invokesDLL -REC(lp2sat(Π),∅,Π). It is easy to see thatDLL -

REC(Γ ,S,Π) is a variation of the standardDLL procedure. In particular, at line 3, instead
of just returning TRUE as in the standardDLL (meaning that the input set of clauses
is satisfiable), it invokestest(S,Π) (see [2] for more details): such a modification is
needed only if the input programΠ is non tight. Indeed, ifΠ is tight we are guaranteed
that any model oflp2sat(Π) corresponds to an answer set ofΠ [4], and thus SAT
solvers can be used as black-box (as it is the case for some versions ofCMODELS).

In order to precisely definelp2sat(Π) we need the following definitions. Ifp0 is an
atom, thetranslation of Π relative to p0, denoted withlp2sat(Π, p0), consists of

1. for each ruler ∈ Π of the form (1) and whose head isp0, the clauses:

{p0, nr},
{nr, p1, . . . , pm, pm+1, . . . , pn},

{nr, p1}, . . . , {nr, pm}, {nr, pm+1}, . . . , {nr, pn},

wherenr is a newly introduced atom, and
2. the clause{p0, nr1 , . . . , nrq} wherenr1 , . . . , nrq (q ≥ 0) are the new symbols

introduced in the previous step.

Thetranslation of Π relative to ⊥, denoted withlp2sat(Π,⊥), consists of a clause

{p1, . . . , pm, pm+1, . . . , pn},

one for each rule inΠ of the form (1) with head⊥. Finally, thetranslation ofΠ, denoted
with lp2sat(Π), is∪p∈P∪{⊥}lp2sat(Π, p).

Proposition 1. Let CMODELS be the procedure in Figure 1. For each programΠ,
CMODELS(Π) returnsTRUE if Π has an answer set, andFALSE otherwise.

A few remarks are in order:

1. As we said, there are various versions ofCMODELS. However, if the input program
Π is tight, all the versions are equivalent at the algorithmic level. In other words,
the presentation ofCMODELS in Figure 1 can be considered as representative for
all the various versions ofCMODELS, in the case of tight programs.

2. Figure 1 is indeed a simple presentation ofCMODELS. CMODELS incorporates,
e.g., a pre-processing for the simplification of the input program. Analogously,
DLL -REC is based on the standard simple recursive presentation ofDLL : actual
SAT solvers (including the ones used byCMODELS) feature far more sophisticated
look-ahead/look-back strategies and heuristics.

3. Given a programΠ, its translationlp2sat(Π) to SAT is exactly the one used by
CMODELS (see [5]).

Considering other ASP systems,ASSAT also computes a setΓ of clauses corresponding
to the Clark’s completion of the input programΠ, and then invokes a SAT solver on
Γ . Assuming thatΓ is computed aslp2sat(Π), ASSAT and CMODELS have different
behavior only ifΠ is non tight.2.
2 Unfortunately, forASSAT the way a programΠ is converted into a set of clauses is not specified

(see [6])

4 SMODELS

function SMODELS(Π) return SMODELS-REC(Π, {>});

function SMODELS-REC(Π,S)
1 〈Π,S〉 := expand(Π,S);
2 if ({l, l} ⊆ S) return FALSE;
3 if ({p : p ∈ P, {p, p} ∩ S 6= ∅} = P) return TRUE;
4 p := ChooseLiteral(S);
5 return SMODELS-REC(p-elim(p,Π)), S ∪ {p}) or
6 SMODELS-REC(p-elim(p,Π)), S ∪ {p});

function expand(Π,S)
7 S′ := S;
8 S := AtLeast(Π,S);
9 Π := p-elim(S,Π);

10 S := S ∪ {p : p ∈ P, p 6∈ AtMost(Π∅, S)};
11 Π := p-elim(S,Π);
12 if (S 6= S′) return expand(Π,S);
13 return 〈Π,S〉;

function AtLeast(Π,S)
14 if (r ∈ Π and body(r) ⊆ S and head(r) 6∈ S)

return AtLeast(p-elim(head(r), Π), S ∪ {head(r)});
15 if ({p, p} ∩ S = ∅ and 6 ∃r ∈ Π : head(r) = p)

return AtLeast(p-elim(p,Π), S ∪ {p});
16 if (r ∈ Π and head(r) ∈ S and body(r) 6⊆ S and 6 ∃r′ ∈ Π, r′ 6= r : head(r′) = head(r))

return AtLeast(p-elim(body(r), Π), S ∪ body(r));
17 if (r ∈ Π and head(r) ∈ S and body(r) \ S = {l})

return AtLeast(p-elim(l,Π)), S ∪ {l});
18 return S;

function AtMost(Π,S)
19 if (r ∈ Π and body(r) ⊆ S and head(r) 6∈ S)

return AtMost(Π,S ∪ {head(r)});
20 return S;

Fig. 2.The algorithm ofSMODELS.

Given a programΠ, SMODELSsearches for answer sets by extending an assignment
S till eitherS becomes inconsistent (in which case backtracking occurs) or each atom is
assigned byS (in which caseS ∩ P is an answer set). A simple, recursive presentation
of SMODELS is given in Figure 2, where

– Π is a program;S is an assignment;p is an atom;r is a rule; andl is a literal.

– p-elim(S,Π) returns the program obtained fromΠ by eliminating the rulesr ∈ Π
such that for some literall ∈ S, l ∈ body(r). For simplicity, whenS is a singleton
{l}, we writep-elim(l,Π) for p-elim({l},Π).

– ChooseLiteral(S) is the same function used byCMODELS at line 4 in Figure 1.
Thus, our presentation ofCMODELS and SMODELS incorporates the assumption
that the two systems use the same heuristic.

The computation ofSMODELS-REC(Π,S) proceeds as follows (in the following,
we say that a set of atomsX extends an assignment S if S ∩ P ⊆ X andS ∩X = ∅):

– Line 1: The programΠ is simplified and the assignmentS is extended by the
routineexpand(Π,S), explained below.

– Line 2: if S is inconsistent, no answer set extendingS exists, and FALSE is returned,
– Line 3: if each atomp ∈ P is assigned, then(i) S ∩P is an answer set of the initial

program, and(ii) TRUE is returned.
– Lines 4-6:if none of the above applies, an atomp is selected (line 4), an answer set

extendingS ∪ {p} (line 5) orS ∪ {p} (line 6) is searched.

expand(Π,S) extends the assignmentS generated so far by recursively invoking
AtLeast(line 8) and thenAtMost (line 10) till it is no longer possible to extendS
(lines 12- 13).AtLeastencodes the following facts:

– Line 14: if there exists a ruler whose body is a subset ofS, then every answer set
extendingS includes the head ofr.

– Line 15: if an unassigned atomp is not the head of any rule, then every answer set
extendingS does not includep.

– Line 16: if there is only one rule with headp, andp ∈ S, then each answer set
extendingS, also extendsS ∪ body(r).

– Line 17: if there is a rule with headp and whose body contains only one literall
which is not inS, then ifp is in S, then every answer set extendingS also extends
S ∪ {l}.

When no further simplification is possible,(i) the setS is returned byAtLeast(Π,S)
(line 18);(ii) the programΠ is simplified accordingly (line 9); and(iii) AtMostis in-
voked withΠ∅ –the reduct ofΠ relative to the empty set– andS as arguments (line 10).
AtMostincrementally adds to (the local copy of)S the heads of the rules inΠ∅ whose
body is a subset ofS (line 19). IfS′ is the set returned byAtMost(Π∅, S) (i.e., if S′ is
the set returned at line 20), if an atomp does not belong toS′ thenp can be safely added
to the current assignmentS (line 10) (see [7] for more details). To get an intuition of
why this is the case, assume for simplicity that the head of each rule inΠ is not⊥:

1. Π∅ has a unique answer set, and
2. any answer set ofΠ which extendsS has to be a subset ofS union the answer set

of Π∅.

Proposition 2. Let SMODELS be the procedure in Figure 2. For each programΠ,
SMODELS(Π) returnsTRUE if Π has an answer set, andFALSE otherwise.

The above presentation ofSMODELS is a recursive reformulation of the descrip-
tion of SMODELS provided in [7], pag. 17. As forCMODELS, the actual implementa-
tion of SMODELSfeatures more complex look-ahead/look-back strategies and heuristic.
SMODELShas been extended with clause learning in [8], andSMODELS-CC is the name
given to the resulting system.

5 Relating CMODELS and SMODELS

Consider a programΠ. Our goal is to prove that the computations ofCMODELS and
SMODELS are tightly related ifΠ is tight, and that this is not necessarily the case oth-
erwise. To this end, we will compare the search trees ofCMODELS andSMODELS on
Π, i.e., the search trees ofSMODELS-REC(Π, {>}) and DLL -REC(lp2sat(Π), ∅,Π)
respectively. In doing this, the first problem is that the translationlp2sat introduces
additional atoms not inP . In the following we assume that bothSMODELS-REC and
DLL -REC operate in the signature of the input program and formula respectively. How-
ever, we still assume thatChooseLiteral(S) returns the first literal inP ∪ P which is
unassigned byS: notice that once all the atoms inP are assigned, also the atoms intro-
duced bylp2satwill be assigned byunit-propagatein DLL -REC.

Given this, one possibility for achieving our goal would be to consider the search
trees corresponding to the assignments generated by the two procedures, and try to
prove that they are the same. However, this is not the case:

– lp2satintroduces additional atoms not inP and also these atoms get assigned, and
– The order followed byexpandandunit-propagateto assign literals may differ.

However, if we do not take into account the above differences, we have that the two
procedures generate the “same” search tree. In order to formally state this result we
introduce the following definitions.

We say that a set of literalsS is a branching node of SMODELS(Π) (resp.of
CMODELS(Π)) if there is a call toSMODELS-REC(Π ′, S) (resp.DLL -REC(Γ ′, S,Π)),
following the invocation ofSMODELS(Π) (resp.CMODELS(Π)). If proc is SMODELS(Π)
or CMODELS(Π), we define

Branches(proc) = {S ∩ (P ∪ P) : S is a branching node ofproc}.

Finally, we say thatSMODELS(Π) andCMODELS(Π) areequivalent if

Branches(SMODELS(Π)) = Branches(CMODELS(Π)).

Theorem 3. LetCMODELSandSMODELSbe the procedures in Figures 1 and 2 respec-
tively. For each tight programΠ, CMODELS(Π) andSMODELS(Π) are equivalent.

The idea underlying the proof is that the atoms inP assigned byexpandin SMODELS-
REC correspond exactly to those assigned byunit-propagatein DLL -REC, and vice-
versa. Indeed, for such result to hold, it is essential thatlp2sat() is defined as in Sec-
tion 3.

Theorem 3 states a strong relation betweenSMODELS and CMODELS, and, ulti-
mately, betweenSMODELSandDLL : to a certain extent,SMODELS() andDLL (lp2sat())
are the same procedure on tight programs. Further, the results hold independently from
the specific heuristic used bySMODELS-REC andDLL -REC, as long as they are guaran-
teed to return the same literal at every point of the two search trees. Because of this, sim-
ilar results would hold if we enhanceSMODELS-RECandDLL -RECwith more powerful
look-ahead techniques based onexpandandunit-propagaterespectively. For instance,
SMODELShas been enhanced with the following check, performed before each branch:
for every unassigned literall in the program, check whether assigningl would “fail”,
i.e., if expand(p-elim(l,Π), S∪{l}) returns (as second argument) an inconsistent set of
literals. If this is the case, we can safely assignl before branching. However, ifl fails,
then also branching onl would fail, and the tree generated bySMODELS-REC extended
with such “failed literal” strategy corresponds to the tree generated bySMODELS-REC

with a specific heuristic. Using the same heuristic inDLL -REC (i.e., using a similar
“failed literal” strategy based onunit-propagate) would lead to an equivalent search
tree.

The established correspondence betweenCMODELSandSMODELSgives us the pos-
sibility to derive lower/upper bounds and average case results forCMODELSandSMOD-
ELS. Here there are a few.

First, observe that the search tree explored byCMODELSandSMODELSwhen run on
a programΠ, critically depends on the specific heuristic used, i.e., in our terminology
and with reference to Figures 1 and 2, by the fixed total orderingρ on the setP ∪
P used byChooseLiteral(S). In order to highlight the dependency fromρ, we now
write Branchesρ(SMODELS(Π)) (resp.Branchesρ(CMODELS(Π))) to indicate the set
of branching nodes ofSMODELS(resp.CMODELS) when run on a programΠ, assuming
thatρ is the total order on the setP ∪ P used byChooseLiteral(S). We are now ready
to define thecomplexity of SMODELSon a program Π as the smallest number in

{|Branchesρ(SMODELS(Π))| : ρ is a total order onP ∪ P}.

Analogously, thecomplexity of CMODELS on a program Π is the smallest number in

{|Branchesρ(CMODELS(Π))| : ρ is a total order onP ∪ P}.

Intuitively, the complexity ofSMODELS(resp.CMODELS) onΠ is the minimum number
of branching nodes thatSMODELS(resp.CMODELS) has to explore for solvingΠ.

Consider the formulaPHPmn (n ≥ 0,m ≥ 0) consisting of the clauses

{pi,1, pi,2, . . . , pi,n} (i ≤ m),
{pi,k, pj,k} (i, j ≤ m, k ≤ n, i 6= j).

The formulasPHPmn are from [9] and encode the pigeonhole principle. Ifn < m,
PHPmn are unsatisfiable and it is well known that any procedure based on resolution
(like DLL) has an exponential behavior. Here we state a similar result forCMODELSand
SMODELS. First, ifC is a clause{l1, . . . , ll} (l ≥ 0) we definesat2tlp(C) to be the rule
⊥ ← l1, . . . , ll. Then, ifΓ is a formula, thetranslation of Γ , denoted withsat2tlp(Γ),
is∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p← p′, p′ ← p}, where, for each atomp ∈ P , p′ is a new
atom associated top. For eachn, sat2tlp(PHPnn−1) is tight and has no answer sets.

Corollary 4. The complexity ofSMODELSand CMODELS on sat2tlp(PHPnn−1) is ex-
ponential inn.

The above result can be easily proved forCMODELS starting from [9]. ForSMOD-
ELS, it relies on the fact thatsat2tlp(PHPnn−1) is tight, and thus on such programs
SMODELS and CMODELS are equivalent. The pigeonhole formulas give us the op-
portunity to define a class of formulas which are exponentially hard forCMODELS

but easy forSMODELS. For each formulaΓ , definesat2nlp(Γ) to be the program
∪C∈Γ sat2tlp(C) ∪ ∪p∈P {p← p}.

Corollary 5. The complexity ofSMODELS and CMODELS on sat2nlp(PHPnn−1) is 0
and exponential inn respectively.

In this case,sat2nlp(PHPnn−1) is non tight, andSMODELScan determine the non exis-
tence of answer sets without branching mainly thanks to the procedureAtMost.3 To see
why this is the case, notice that, ifΠ = sat2nlp(PHPnn−1), then

– AtLeast(Π, {>}) returns{>},
– Π∅ consists of the rules

⊥ ←; ⊥ ← pi,k, pj,k (i, j ≤ n, k ≤ n−1, i 6= j); pi,k ← pi,k (i ≤ n, k ≤ n−1)

and thusAtMost(Π∅, {>}) returns{⊥,>}.
– At line 10 in Figure 2, the setS is set toS′ = P ∪ {>}, thus causing one more

recursive call toexpand.
– If Π ′ = p-assign(S′,Π), AtLeast(Π ′, S′) returns the setS′ ∪ {⊥} = P ∪ {⊥,>},

and this is also the set returned byexpand.
– At line 2 in Figure 2,SMODELSreturns FALSE, without performing any branch.

Indeed, the above results can be easily generalized to any formulaΓ which is known
to be exponentially hard forDLL : sat2tlp(Γ) will be exponentially hard for bothSMOD-
ELS andCMODELS, whilesat2nlp(Γ) will be exponentially hard forCMODELSbut easy
for SMODELS. We mention one more of such results, because it involves a class of pro-
grams that have been frequently used in the literature as a benchmark for ASP systems.

Define a formulaΓ to be ak-cnf if each clause inΓ consists ofk literals. The
random family of k-cnf formulas is ak-cnf whose clauses have been randomly selected
with uniform distribution among all the clausesC of k literals and such that, for each
two distinct literalsl andl′ in C, l 6= l′.

Corollary 6. Consider a randomk-cnf formulaΓ with n atoms andm clauses. With
probability tending to one asn tends to infinity, the complexity ofSMODELSandCMOD-
ELS on sat2tlp(Γ) is exponential inn if the density d = m/n is d ≥ 0.7× 2k.

3 In the real implementation ofCMODELS, rules likep ← p will be removed during the pre-
processing, and thus the implementation ofCMODELS concludes thatsat2nlp(PHPnn−1) does
not have answer sets without a single branch. However, instead ofp ← p, we could have
considered, e.g., the two rulesp← p′, p′ ← p, (wherep′ is a newly introduced atom associated
to p) and the result in the corollary would still hold.

As in the case of Corollary 4, this result is easy to show forCMODELSstarting from [10],
and then it follows forSMODELS from Theorem 3. Programs corresponding to random
k-cnf formulas have been used, e.g., in [11, 12, 8]. Also notice that since the results
in [9] and [10] hold for any proof system based on resolution, enhancingSMODELSand
CMODELS with “learning” look-back strategies does not lower the exponential com-
plexity of the procedures. Thus, the above corollaries also hold forSMODELS-CC, and
all the different versions ofCMODELS. (assuming thatCMODELSuse a procedure based
on DLL as search engine, as it is indeed the case in practice).

Other results that have been proven forDLL can now easily be shown to hold also
for SMODELS. Define a literall asoptimal for a program Π if there exists a minimal
search tree ofSMODELS(Π) whose root is labeled withl. The following result echoes
the one in [13] forDLL .

Corollary 7. In SMODELS, deciding the optimal literal to branch on, is both NP-hard
and co-NP hard, and in PSPACE for tight programs.

There are many other results in the SAT literature studying the proof-complexity
of DLL and/or resolution that are applicable also toSMODELS and CMODELS. See,
e.g., [14] for a study on the average complexity of coloring randomly generated graphs
with DLL , and [15], which derives exponential lower bounds on the running time of
DLL on random3-SAT formulas also for densities significantly below the satisfiability
thresholdd ≈ 4.23. The first result applies also toSMODELSandCMODELS when run
on a programΠ being the standard tight formulation of a graph coloring problem:4

lp2sat(Π) corresponds to the SAT formulation considered in [14]. Analogously for the
second result.

6 On the relation between AS and SAT solvers

Given the results established in the previous Section, we can expect that the combi-
nations of reasoning strategies that work best in SAT, should also work best in ASP,
at least when considering tight programs. We show that this is indeed the case, also on
non tight programs. We now report about an extensive experimental comparison that we
have conducted on a wide variety of programs, and using the combinations of reason-
ing strategies that, along the years, proved to be more effective in SAT. Indeed, current
state-of-the-art SAT solvers can be divided in two main categories:

– “look-ahead” solvers, featuring a rather sophisticated look-ahead based on “failed
literal”, a simple look-back (essentially backtracking) and a heuristic based on the
information gleaned during the look-ahead phase. These solvers are best for dealing
with “small but relatively difficult” instances, typically randomk-cnf formulas. A
solver in this category isSATZ [16].

– “look-back” solvers, featuring a simple but efficient look-ahead (essentially unit-
propagation with 2 literal watching), a rather sophisticated look-back based on “1-
UIP learning” and a constant time heuristic based on the information gleaned during

4 See, e.g., the formulation in http://www.tcs.hut.fi/˜ini/papers/
niemela-iclp04-tutorial.ps.gz .

the look-back phase. These solvers are best for dealing with “large but relatively
easy” instances, typically encoding real-world problems. A solver in this category
is ZCHAFF [17].

The terminology “small but relatively difficult” and “large but relatively easy” refer to
the number of variables and are used to convey the basic intuitions about the instances.
To get a more precise idea, consider that in the SAT2003 competition, instances in
the random and industrial categories had, on average, 442 and 42703 atoms respec-
tively [18]. Given this, the reasoning strategies that we considered are:

– Look-ahead:fast unit-propagation based on 2 literal watching (denoted with “u”);
and unit-propagation+failed literal (denoted with “f”).

– Look-back:basic backtracking (denoted with “b”); and backtracking+1-UIP learn-
ing from [17] (denoted with “l”).

– Heuristic: VSIDS from [17] (denoted with “v”); unit (given an unassigned atom
p, while doing failed literal onp we count the numberu(p) of unit-propagation
caused, and then we select the atom with maximum1024u(p)×u(p)+u(p)+u(p).
This heuristic is denoted with “u”).

The above search strategies and heuristics are not novel: they have been already
presented and implemented in the literature. For example, failed literal is already incor-
porated inSMODELS, and the heuristic ofSMODELS-CC is similar to VSIDS. However,
here, for the first time, all these techniques are implemented, combined and analyzed in
a common platform.

We considered 4 combinations of reasoning strategies:ulv, flv, flu andfbu, where
the first, second and third letter denote the look-ahead, look-back and heuristic respec-
tively, used in the combination.ulv is a standard look-back, “ZCHAFF”-like, solver,
similar to SMODELS-CC andCMODELS2. fbu is a look-ahead, “SATZ”-like, solver.flv
andflu have both a powerful look-ahead and look-back but different heuristic. As we
already anticipated, we can expect thatulv (resp.fbu) has good performances on “large
but relatively easy” (resp. “small but relatively difficult”) programs. By comparingflv
with ulv (resp.flu with fbu) we will see under which conditions a more powerful look-
ahead (resp. look-back) leads to better performances. Also notice that the 4 combina-
tions of reasoning strategies that we consider, are the only meaningful. Indeed, the “v”
heuristic requires learning, while the “u” heuristic requires that failed literal is enabled.

All the tests were run on a Pentium IV PC, with 2.8GHz processor, 1024MB RAM,
running Linux. The timeout has been set to 600 seconds of CPU time for random prob-
lems, and to 3600 seconds for real-world problems. In order to have our results not
biased by the differences due to the quality of the implementation, we implemented
all the reasoning strategies inCMODELS ver. 2 [2].CMODELS ver. 2, besides being the
solver that we knew best, had the following features:

– Its front-end isLPARSE [7], a widely used grounder for logic programs.
– Its back-end solver already incorporates lazy data structures for fast unit-propagation

as well as some state-of-the-art strategies and heuristics evaluated in the paper; and
– Can be also run on non-tight programs.

PB #VAR ulv flv flu fbu

1 4 300 0.41 0.52 0.85 0.66
2 4.5 300 TIME TIME 81.92 22.53
3 5 300 448.21 485.36 8.27 4.72

4 bw*d9 9956 1.02 5.84 2.69 2.75
5 bw*e9 12260 0.98 1.91 1.92 1.93
6 bw*e10 13482 1.29 7.51 5.03 4.95

7 p1000 14955 0.48 37.86 15.41 15.23
8 p3000 44961 8.86 369.27 144.12142.83
9 p6000 89951 99.50 TIME 583.55578.98

10 4 300 265.43 218.48 41.97 31.05
11 5 300 TIME TIME 136.67 99.75
12 6 300 TIME TIME 107.34 65.83

13 np60c 10742 2.83 1611.32 44.12 44.12
14 np70c 14632 4.69 TIME 97.44 97.89
15 np80c 19122 6.91 TIME 192.29196.32

Table 1.Performances on tight (1-9) and non-tight (10-15) problems. For each row, the best result
is in bold, and the results within a factor of 2 from the best, are underlined.

There is no other publicly available AS system having the above features, and that we
know of. In particular,SMODELSdoes not contain lazy data structures, and adding them
to SMODELSwould basically boil down to re-implement the entire solver. Though our
analysis has been conducted usingCMODELS ver. 2, thanks to the equivalence result
established in Theorem 3, analogous results are to be expected for any system based on
SMODELSand implementing the techniques that we consider.

Table 1 shows the results on “small” randomly generated programs (lines 1-3, 10-
12), and “large” non random programs (lines 4-6, 7-9, 13-15). More in details,

1. Benchmarks (1-3) are tight programs being the translation of randomly generated
3-SAT instances with a ratio of clauses to atoms as in the column “PB”. They have
been used in [11, 12, 8].

2. Benchmarks (4-6) and (7-9) are tight programs encoding blocks world planning
problems and 4-colorability graph problems, respectively. These benchmarks are
publicly available athttp://www.tcs.hut.fi/Software/smodels/tests/ .

3. Benchmarks (10-12) are non tight programs, randomly generated according to the
methodology proposed in [19]. As before, the number in the column “PB” is the
ratio of clauses to atoms.

4. Benchmarks (13-15) are non tight programs encoding Hamiltonian Circuit prob-
lems on complete graphs. The encoding is from [20].

For the randomly generated programs, for each ratio, we generated 10 instances and
show the median results. In each row,#VAR represents the number of atoms in the
instance.

The first observation is that we get the results that we expected, (except for the
results on the first row, where the positive results ofulv are due to the relative simplic-

ity of the problems): on “small but relatively difficult” programsfbu is best, while on
“large but relatively easy” programsulv is best. The second observation is that adding
failed literal (resp. learning) toulv (resp.fbu) does not improve performances when
considering the “large” (resp. “small”) programs.

We also considered other classes of programs, both non large and non randomly
generated. For these programs, the situation of which reasoning strategy is best is less
clear, and (as it can be expected) it varies from class to class.

7 Conclusions

We studied the relation existing betweenSMODELS and CMODELS, and, ultimately,
between AS and SAT solvers. From a theoretical point of view, we proved that the two
systems have the same behavior on tight programs. Given thatCMODELS is based on
DLL , our equivalence results allow to easily derive many other interesting properties
about the two procedures, and in particular aboutSMODELS. We also conducted an
extensive experimental analysis showing that the combination of reasoning strategies
that are best in SAT, are also best in ASP on randomly generated or on large real world
problems.

We believe that our paper is particularly important for ASP researchers who are
interested in formally establishing the computational behavior of systems, but also for
developers and, more in general, for people involved in benchmarking ASP systems. In
particular, for developers, our theoretical results should foster the design of systems in-
corporating reasoning strategies that provably allow to easily solve problems otherwise
exponential: in SAT, this led to the development, e.g., ofZAP [21]. Further our experi-
mental results suggest that developers (in order to advance the state-of-the-art) should
focus either on randomly generated problems (and thus develop a look-ahead solver) or
on real-world problems (and thus develop a look-back solver): this already happened in
SAT. Finally, the results in this paper are particularly important also to people interested
in benchmarking systems (see the recentASPARAGUS initiative [22]). Our theoretical
results tell us, e.g., that there exist classes of programs on whichSMODELS and/or
CMODELS (but alsoASSAT) arebound tobe exponential. Our conclusive experimen-
tal analysis points out that it hardly makes sense to run a solver likeSMODELS-CC [8]
on randomly generated programs, and, vice-versa, that it hardly makes sense to use
CMODELS with SATZ [16] as SAT solver on large problems coming from real-world
applications.

Finally, we believe that this paper is a major step in the direction of closing the gap
between SAT and ASP, as advocated by Miroslaw Truszczyński in his invited talk at the
last NMR workshop in Whistler, Canada.5

Acknowledgments

We would like to thank Nicola Leone, Vladimir Lifschitz and Mirek Truszczynski for
discussions related to the subject of this paper. This work has been partially supported
by MIUR.
5 Slides available athttp://cs.engr.uky.edu/˜mirek/stuff/nmr-inv.pdf .

References

1. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search heuristics and
optimization techniques in propositional satisfiability. InProc. IJCAR, 2001.

2. E. Giunchiglia, M. Maratea, and Y. Lierler. SAT-based answer set programming. InProc.
AAAI, 2004.

3. T. H. Cormen, C. E. Leiserson,R. L. Rivest and C. Stein Introduction to Algorithms. MIT
Press, 2001.

4. François Fages. Consistency of Clark’s completion and existence of stable models.Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

5. Yu. Babovich and V. Lifschitz. Computing Answer Sets Using Program Completion.
Available at http://www.cs.utexas.edu/users/tag/cmodels/cmodels-1.
ps , 2003.

6. F. Lin and Y. Zhao ASSAT: Computing answer sets of a logic program by SAT solvers. In
Proc. AAAI, 2002.

7. P. Simons. Extending and implementing the stable model semantics.PhD Thesis, 2000.
8. Jeffrey Ward and John S. Schlipf. Answer set programming with clause learning. InProc.

LPNMR, 2004.
9. Haken. The intractability of resolution.TCS, 39:297-308, 1985.
10. V. Chv́atal and E. Szemerédi. Many hard examples for resolution.J. ACM, 35(4):759–768,

1988.
11. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for ASP. InProc. IJCAI,

2001.
12. P. Simons, I. Niemelä, and S. Timo. Extending and implementing the stable model semantics.

Artificial Intelligence, 138(1–2):181–234, 2002.
13. Paolo Liberatore. On the complexity of choosing the branching literal in DPLL.Artificial

Intelligence, 116(1-2):315–326, 2000.
14. Ŕemi Monasson. On the analysis of backtrack procedures for the coloring of random graphs.

In Complex Networks, Lecture Notes in Physics, pages 232–251. Springer, 2004.
15. D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof complexity. InProc.

STOC, pages 337–346, 2001.
16. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems.

In Proc. IJCAI, 1997.
17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-

cient SAT Solver. InProc. DAC, 2001.
18. D. Le Berre and L. Simon. The essentials of the SAT’03 competition. InProc. SAT, 2003.
19. Fangzhen Lin and Yuting Zhao. ASP phase transition: A study on randomly generated pro-

grams. InProc. ICLP, 2003.
20. I. Niemel̈a Logic programs with stable model semantics as a constraint programming

paradigm. InAnnals of Mathematics and Artificial Intelligence, 25:241–273, 1999.
21. H. Dixon, M. Ginsberg, E. Luks, and A. Parkes. Generalizing Boolean satisfiability II: The-

ory. JAIR, 22:481–534, 2004.
22. P. Borchert, C. Anger, T. Schaub, and M. Truszczynski. Towards systematic benchmarking

in answer set programming: The dagstuhl initiative. InProc. LPNMR, 2004.

