
Evaluation of disjunctive programs in WASP

Mario Alviano1[0000−0002−2052−2063], Giovanni Amendola1[0000−0002−2111−9671],
Carmine Dodaro2[0000−0002−5617−5286], Nicola Leone1[0000−0002−9742−1252],

Marco Maratea2[0000−0002−9034−2527], and Francesco Ricca1[0000−0001−8218−3178]

1 DEMACS, University of Calabria, Rende, Italy,
{alviano,amendola,leone,ricca}@mat.unical.it,

2 DIBRIS, University of Genoa, Genoa, Italy
{dodaro,marco}@dibris.unige.it

Abstract. Answer Set Programming (ASP) is a well-established declarative pro-
gramming language based on logic. The success of ASP is mainly due to the
availability of efficient ASP solvers, therefore their development is still an im-
portant research topic. In this paper we report the recent improvements of the
well-known ASP solver WASP. The new version of WASP includes several im-
provements of the main solving strategies and advanced reasoning techniques
for computing paracoherent answer sets. Indeed, WASP is the first ASP solver
handling paracoherent reasoning under two mainstream semantics, namely semi-
stable and semi-equilibrium. However, semi-equilibrium semantics may require
the introduction of several disjunctive rules, which are usually considered as a
source of inefficiency for modern solvers. Such a drawback is addressed in WASP

by implementing ad-hoc techniques to efficiently handle disjunctive logic pro-
grams. These techniques are presented and evaluated in this paper.

Keywords: answer set programming, answer set computation, disjunctive logic
programs

1 Introduction

Answer set programming (ASP) [17] is a declarative formalism for knowledge repre-
sentation and reasoning based on the stable model semantics [27]. The success of ASP
is witnessed by the increasing number of academic and industrial applications [1, 11,
14, 20, 28], and it is mainly due to the combination of its high knowledge-modeling
power with robust solving technology [5, 23]. For this reason, the development of new
efficient solvers and solving techniques is still an important research topic.

In this paper we present the progress in the development of the ASP solver WASP [4,
5]. Among the features recently included in WASP, advanced reasoning techniques for
computing paracoherent answer sets [9] are of particular interest, as in fact WASP is
the first solver that is able to compute paracoherent answer sets according to two main-
stream semantics, namely semi-stable and semi-equilibrium [10, 12, 13]. In this con-
text, it is important to emphasize that the evaluation of ASP programs under the semi-
equilibrium semantics may lead to a deterioration of the performance of the solver
due to a significant amount of disjunctive rules introduced by the implemented algo-
rithm [8].

2 Mario Alviano et al.

Disjunctive rules are a common source of inefficiency for many ASP solvers based
on the Clark’s completion [18], such as CMODELS [29], LP2SAT [30], and CLASP [23].
In particular, in the disjunctive case, such solvers apply a rewriting technique, called
shift [16], that causes a quadratic blow-up of the input program. This drawback is ad-
dressed in WASP by applying a linear rewriting technique that extends Clark’s com-
pletion to the disjunctive case [3] (see Section 3.1). Moreover, disjunctive rules might
increase the computational complexity of several reasoning tasks because the evalua-
tion of disjunctive logic programs may require to perform an additional co-NP-complete
task, usually referred to as answer set checking (or stability checking).

Answer set checking is usually carried out by checking the unsatisfiability of a
propositional formula, which can be constructed according to different strategies. The
first of such strategies was implemented in the ASP solver DLV and is based on the
reduct of the input program with respect to the answer set candidate to be checked [32].
Albeit the construction of such a formula can be done in polynomial time, in practice
its creation is often more expensive than the unsatisfiability check. Moreover, the tra-
ditional reduct-based approach cannot reuse any information from previous checks and
requires to build a new formula each time the stability check is required. An alternative
strategy was implemented in the ASP solver CLASP, where a characterization of answer
sets based on unfounded sets is used to obtain a formula that can be reused for all sta-
bility checks [24]. However, the formula built using this strategy is quadratic in the size
of the program, while the reduct-based approach produces linear formulas.

The main contribution of this paper is to show how to improve the efficiency of
the mainstream strategies for handling disjunctive logic programs under stable model
semantics. In particular, we describe how the reduct-based approach can be modified in
order to use the same formula in all answer set checks (Section 3.2), and we propose a
slight, yet effective, modification of the unfounded-based approach so to make it linear
(Section 3.3); the new algorithms are integrated in the solver WASP. After that, we
empirically assess the impact of the new features on several benchmarks, showing that
WASP can efficiently handle disjunctive ASP programs (Section 4).

2 Preliminaries

2.1 Propositional logic

Syntax. Let A be a fixed, countable set of (propositional) atoms. A literal ` is either
an atom p, or its negation ¬p. For a negative literal ¬p, ¬¬p := p. A clause is a set
of literals representing a disjunction, and a propositional formula ϕ is a set of clauses
representing a conjunction, i.e., only formulas in conjunctive normal form (CNF) are
considered here. For a formula ϕ, size(ϕ) :=

∑
c∈ϕ |c|, and At(ϕ) is the set of atoms

appearing in ϕ. For n ≥ 0, and `0, . . . , `n being literals, formula `0 ↔ `1 ∧ · · · ∧ `n is
a compact representation of the following clauses: {`0} ∪ {¬`i | i ∈ [1..n]}; {¬`0, `i},
for all i ∈ [1..n]. Similarly, `0 ↔ `1 ∨ · · · ∨ `n is a compact representation of the
following clauses: {`0,¬`i}, for all i ∈ [1..n]; {¬`0} ∪ {`i | i ∈ [1..n]}.

Semantics. An interpretation I is a set of atoms in A. Intuitively, atoms in I are true,
and those inA\I are false. Relation |= is defined as follows: for p ∈ A, I |= p if p ∈ I ,

Evaluation of disjunctive programs in WASP 3

and I |= ¬p if p /∈ I; for a clause c, I |= c if I |= ` for some ` ∈ c; for a formula ϕ,
I |= ϕ if I |= c for all c ∈ ϕ. If I |= ϕ then I is a model of ϕ, I satisfies ϕ, and ϕ is
true w.r.t. I . If I 6|= ϕ then I is not a model of ϕ, I violates ϕ, and ϕ is false w.r.t. I .
Similarly for literals, and clauses. A formula ϕ is satisfiable if there is an interpretation
I such that I |= ϕ; otherwise, ϕ is unsatisfiable.

2.2 Answer set programming

A literal ` is either an atom p, or its negation ∼p, where ∼ denotes negation as failure.
Let ` denote the complement of `, i.e., p := ∼p, and ∼p := p, for all p ∈ A. This
notation is extended to sets of literals, i.e., for a set S of literals, S := {` | ` ∈ S}.

A disjunctive logic program Π is a finite set of rules of the following form:

a1 | · · · | an ← b1, · · · , bk,∼bk+1, · · · ,∼bm (1)

where n ≥ 1, m ≥ k ≥ 0, and a1, . . . , an, b1, . . . , bm are atoms in A. For a rule
r of the form (1), set {a1, . . . , an} is called head of r, and denoted H(r); while
{b1, . . . , bk,∼bk+1, . . . ,∼bm} is named body of r, and denoted B(r); sets {b1, . . . , bk}
and {bk+1, . . . , bm} of positive and negative literals in B(r) are denoted B+(r) and
B−(r), respectively. Given an atom p, heads(Π, p) := {r | r ∈ Π, p ∈ H(r)}. For a
rule r of the form (1), size(r) := n+m. For a program Π , size(Π) :=

∑
r∈Π size(r)

and At(Π) denotes the set of atoms appearing in Π .

Semantics. An interpretation I is a set of atoms inA. Relation |= is extended as follows:
for a negative literal ∼a, I |= ∼a if I 6|= a; for a rule r, I |= B(r) if I |= ` for all literals
` ∈ B(r), I 6|= B(r) if I 6|= ` for a literal ` ∈ B(r), I |= r if H(r) ∩ I 6= ∅ whenever
I |= B(r); for a program Π , I |= Π if I |= r for all r ∈ Π . An interpretation I is a
model of Π if I |= Π . An interpretation I is supported in Π if for all p ∈ I there is a
rule r ∈ Π such that I |= B(r) and H(r) ∩ I = {p}. The definition of answer set is
based on a notion of program reduct [27]: Let Π be a disjunctive logic program, and I
an interpretation. The reduct ofΠ with respect to I , denotedΠI , is obtained fromΠ by
deleting each rule r such that I 6|= B(r), and removing negative literals and false head
atoms in the remaining rules. A supported model I of Π is an answer set if there is no
J ⊂ I such that J |= ΠI . Let AS (Π) denote the set of answer sets of Π . Program Π
is coherent if AS (Π) 6= ∅; otherwise, it is incoherent.

3 Answer set computation

In this section, we review the main techniques employed by WASP for the computation
of an answer set. In particular, WASP first encodes the input program Π as a proposi-
tional formula by applying the (Clark’s) completion (see Section 3.1), whose models
are all supported models of Π [18, 33]. After that, WASP searches for an answer set by
implementing a variant of the CDCL backtracking algorithm on the completion of Π
as described in [5].

The backtracking algorithm is based on the pattern choose-propagate-learn. In a
nutshell, the algorithm builds an answer set step-by-step starting from an empty set

4 Mario Alviano et al.

of literals A. At each step, a literal, called branching literal, is added to A (choice),
and the deterministic consequences of this choice are propagated, that is, other literals
are added to A. Propagation is carried out by applying several inference rules, called
propagators. In case the propagation leads to a conflict, i.e., an atom and its negation are
both in A, the algorithm learns a new clause, undoes the choices leading to the conflict,
and restores the consistency ofA. This process is repeated until the incoherence ofΠ is
proven or I := A∩atoms(Π) is a (supported) model ofΠ . In the latter case, a stability
check on I is possibly performed (more specifically, if Π is non head-cycle-free [24]);
if the stability check is successful, I is an answer set and the algorithm terminates,
otherwise a conflict is raised and a new clause is learned. The stability check amounts
to checking the satisfiability of a formula ϕ, built starting from Π and I . Actually, in
WASP the formula ϕ can be created according to two strategies, referred to as reduct-
based (Section 3.2) and unfounded-based (Section 3.3).

3.1 Completion

In the following, we briefly recall the Clark’s completion [18] and we describe the
completion implemented by WASP. First, consider programs without disjunction, i.e.,
where for each rule of the form (1), n is equal to 1. In particular, given a program Π
without disjunction, the completion of Π , denoted Comp(Π), is the set of clauses:

ar1 ↔ b1 ∧ · · · ∧ bk ∧ ¬bk+1 ∧ · · · ∧ ¬bm (2)

for all r ∈ Π of the form (1) with n = 1, where ar1 is a fresh atom (true if and only if r
is a support of a1), together with

a↔
∨

r∈heads(Π,a)

ar (3)

for all a ∈ At(Π). Note that the construction of the completion is linear in size.
In order to apply completion to programs in general, a transformation known as

shift [16] is first applied to the input program Π , so to obtain a program Shift(Π) with
the same supported models. Formally, for a programΠ , Shift(Π) is defined as follows.
For all rules r ∈ Π of the form (1) and for all ai ∈ H(r), Shift(Π) contains a rule r′,
such that H(r′) := {ai} and B(r′) := B(r) ∪ (H(r) \ {ai}). The strength of the shift
is to preserve supported models, however the construction is not linear, but quadratic
in size. This weakness is circumvented in WASP by directly extending completion to
the disjunctive case [3]. In particular, auxiliary atoms ari will be used with the same
meaning of the disjunction-free case, i.e., rule r of the form (1) supports atom ai, for
i ∈ [1..n]. However, since n may be greater than 1, other atoms occurring in the head
of r have to be taken into account. Additional auxiliary atoms will be thus used, and in
particular: sri , true if and only if rule r may support ai, for i ∈ [1..n]; dri , true if and
only if the disjunction ai ∨ · · · ∨ an is true, for i ∈ [2..n].

Evaluation of disjunctive programs in WASP 5

The completion of a program Π , denoted Comp∨(Π), is the set of clauses:

dri ↔ ai ∨ dri+1 ∀i ∈ [2..n− 1] (4)
drn ↔ an if n ≥ 2 (5)

sr1 ↔ b1 ∧ · · · ∧ bk ∧ ¬bk+1 ∧ · · · ∧ ¬bm (6)
sri ↔ sri−1 ∧ ¬ai−1 ∀i ∈ [2..n] (7)
ari ↔ sri ∧ ¬dri+1 ∀i ∈ [1..n− 1] (8)

arn ↔ srn (9)

for all r ∈ Π of the form (1), together with (3) for all a ∈ At(Π). Note that (5) defines
drn as an alias of an. Similarly, (9) defines srn as an alias of arn. It turns out that drn and
srn could be simplified in the above construction, but they are left to ease the reading.
Note that for n = 1 the above equations essentially give (2): only (6) and (9) are used
in this case, and (6) is precisely (2) if sr1 is replaced by its alias ar1.

Finally, we mention that WASP supports a disjunctive propagator, which is used to
compactly represent clauses from (4) to (9), as detailed in [3]. The disjunctive propaga-
tor usually reduces the memory footprint and the solving time of WASP.

3.2 Reduct-based stability check

Let Π be a program, and I be an interpretation. Let C(Π, I) be the propositional for-
mula {C(r, I) | r ∈ ΠI}, where for each rule r, C(r, I) is the following clause:

(H(r) ∩ I) ∪ {¬b | b ∈ B+(r)}.

Intuitively, the clauses C(Π, I) encode the program reduct ΠI . Let c⊂(I) denote the
clause {¬a | a ∈ I}, enforcing at least one atom in I to be assigned false. Formula
redbas(Π, I) is thus C(Π, I) ∪ {c⊂(I)}.

The following mapping between stability and satisfiability checks is established.

Proposition 1 (Theorem 4.2 of [32]). Let Π be a program, and I be an interpretation.
I ∈ AS (Π) if and only if redbas(Π, I) is unsatisfiable.

Note that both C(Π, I), and c⊂(I) depend on I . Therefore, sensibly different proposi-
tional formulas have to be built for each stability check, and in general exponentially
many checks may be performed while searching for an answer set of the input program.
The following example should better clarify this aspect.

Example 1. Consider the following program Π1:

a | b← c a← b,∼e b← a,∼e c | d← e | f ← a← ∼b

and the answer set candidate to check is I1 := {a, b, c, f}. Then, C(Π1, I1) is composed
by {a, b,¬c}, {a,¬b}, {b,¬a}, {c}, and {f}; while c⊂(I1) := {¬a,¬b,¬c,¬f}. For-
mula redbas(Π1, I1) is unsatisfiable, thus I1 is an answer set. Consider again the pro-
gram Π1 and suppose that the answer set candidate to check is I2 = {a, b, d, f}. In
this case, C(Π1, I2) is composed by {a,¬b}, {b,¬a}, {d}, and {f}; while c⊂(I2) =

6 Mario Alviano et al.

{¬a,¬b,¬d,¬f}. Formula redbas(Π1, I2) is satisfiable, thus I2 is not an answer set.
Note that the two formulas redbas(Π1, I1), and redbas(Π1, I2) have in common sev-
eral clauses, i.e., {a,¬b}, {b,¬a}, {f}. However, at each check the formula is rebuilt
without taking into account this information. �

In order to overcome the main weakness of the basic stability check, the proposi-
tional formula redbas(Π, I) is replaced by a refined formula redadv (Π, I) such that
each of its clauses depends on either Π , or I , but not both. Actually, many clauses of
the new formula will only depend on Π , which will allow to reuse them in subsequent
stability checks. As will be clarified soon, these clauses compactly encode all possible
reducts for the input program Π , so that the specific reduct ΠI for the interpretation I
to be checked can be selected by properly adding to redadv (Π, I) a set of unit clauses,
i.e., clauses consisting of a single literal.

Formally, for a rule r, let C(r) denote the following clause:

H(r) ∪ {¬b | b ∈ B+(r)} ∪ {b′ | b ∈ B−(r)}

where each b′ is a fresh atom, i.e., an atom not occurring in Π . These fresh atoms
are required because the interpretation of negative literals in program reducts is fixed
by definition: their falsity implies the deletion of r, and their truth imply their own
elimination. For a program Π , let C(Π) be the propositional formula {C(r) | r ∈ Π}.

For an interpretation I , define fix (I) to be the following set of clauses:

{{¬a} | a ∈ A \ I} ∪ {{b′} | b ∈ I} ∪ {{¬b′} | b ∈ A \ I}.

Intuitively, fix (I) fixes the interpretation of false as well as fresh atoms. Finally, formula
redadv (Π, I) is defined as C(Π) ∪ fix (I) ∪ {c⊂(I)}.

It is important to observe that simplifying C(Π) by means of the unary clauses in
fix (I) would result in the formula C(Π, I). The analogous of Proposition 1 can thus be
established for the advanced stability check.

Theorem 1. Let Π be a program, and I be an interpretation. I ∈ AS (Π) if and only
if redadv (Π, I) is unsatisfiable.

Example 2. Consider the program Π1 of Example 1. Suppose that the answer set can-
didate to check is I1 := {a, b, c, f}. Then, C(Π1) comprises the clauses {a, b,¬c},
{a,¬b, e′}, {b,¬a, e′}, {c, d}, {f, e}, and {a, b′}. The set of clauses fix (I1) comprises
{¬d}, {¬e}, {¬e′} and {b′}; while c⊂(I1) := {¬a,¬b,¬c,¬f}. Note that fix (I1)
should also contain the unit clauses {a′}, {c′}, {¬d′}, {f ′} which however are not nec-
essary since such atoms do not appear in any other clause. The formula redadv (Π1, I1)
is then unsatisfiable, thus I1 is an answer set. Consider again the program Π1. Suppose
that the answer set candidate to check is I2 = {a, b, d, f}. Note that, C(Π1) is not
dependent on the interpretation thus it can be reused also in this check. Then, fix (I2)
is composed by {¬c}, {¬e}, {¬e′}, and {b′}; while c⊂(I2) = {¬a,¬b,¬d,¬f}. The
formula redadv (Π1, I2) is satisfiable, thus I2 is not an answer set. �

Evaluation of disjunctive programs in WASP 7

3.3 Unfounded-based stability check

Let Π be a program, and I be an interpretation. A set X of atoms is an unfounded set
for Π with respect to I if for each r ∈ Π with H(r) ∩ X 6= ∅ then I 6|= B(r), or
B+(r) ∩X 6= ∅, or (H(r) \X) ∩ I 6= ∅. Note that, I is an answer set of Π iff I |= Π
and no unfounded set X is such that X ∩ I 6= ∅. In the following, for a rule r we define
¬B(r) := {¬q | q ∈ B+(r)} ∪ {q | q ∈ B−(r)}.

Given a program Π and an interpretation I , the stability of I can be checked by
encoding the unfounded conditions. In more detail, for each atom p ∈ A two auxiliary
atoms are used, namely up and hp, where atom up is true iff p is unfounded and atom
hp is true iff p is true and founded. Then, U(r, p) denotes the following clause:

{¬up} ∪ ¬B(r) ∪ {uq | q ∈ B+(r)} ∪ {hq | q ∈ H(r) \ {p}}

and U(Π) is the formula {U(r, p) | r ∈ Π, p ∈ H(r)}. Moreover, let H(p) be the
clauses hp ↔ p ∧ ¬up, H(Π) be the formula {H(p) | p ∈ At(Π)} and c(Π) be the
clause {up | p ∈ At(Π)}. For an interpretation I , define fix ′(I) to be the formula:

{¬up | p 6∈ I} ∪ {¬p | p 6∈ I} ∪ {p | p ∈ I}

Finally, formula unf qdt(Π, I) is defined as U(Π) ∪H(Π) ∪ {c(Π)} ∪ fix ′(I).

Proposition 2 (Theorem 3 of [24]). Let Π be a program, and I be an interpretation.
I ∈ AS (Π) if and only if unf qdt(Π, I) is unsatisfiable.

Example 3. Consider the programΠ1 in Example 1. Suppose that the answer set candi-
date to check is I1 := {a, b, c, f}. Then, U(Π1) is {¬ua,¬c, uc, hb}, {¬ub,¬c, uc, ha},
{¬ua,¬b, ub, e}, {¬ub,¬a, ua, e}, {¬uc, hd}, {¬ud, hc}, {¬ue, hf}, {¬uf , he}, and
{¬ua, b}. Moreover, for p ∈ {a, b, c, d, e, f}, H(p) comprises {¬hp, p}, {¬hp,¬up},
{hp,¬p, up}; while c(Π1) is the clause {ua, ub, uc, ud, ue, uf}. The clauses in fix ′(I1)
are {¬ud}, {¬ue}, {¬d}, {¬e}, {a}, {b}, {c}, and {f}. The formula unf qdt(Π1, I1)
is then unsatisfiable, thus I1 is an answer set. Consider again the program Π1. Sup-
pose that the answer set candidate to check is I2 = {a, b, d, f}. Interestingly, U(Π1),
H(Π1), and c(Π1) are not dependent on the interpretation thus they can be reused also
in this check. Then, fix ′(I2) is composed by {¬uc}, {¬ue}, {¬c}, {¬e}, {a}, {b}, {d},
and {f}. The formula unf qdt(Π1, I2) is satisfiable, thus I2 is not an answer set. �

A weakness of unf qdt(Π, I) is that its size is not always linear with respect to the
size of Π , as formalized next.

Proposition 3. In the worst case, for a rule r of a program Π , size({U(r, p) | p ∈
H(r)}) is quadratic with respect to size(r).

Proof. Let r be of the form (1). Hence, |{U(r, p) | p ∈ H(r)}| = n, and each U(r, p)
has size n+m+ k. Hence, size({U(r, p) | p ∈ H(r)}) = n · (n+m+ k). ut

In order to circumvent this weakness, in the following we propose a modification
of the formula U(Π). In particular, U ′(r, p) denotes the clause {¬up, aux r} and U ′(r)
denotes the clause {¬aux r} ∪ ¬B(r) ∪ {uq | q ∈ B+(r)} ∪ {hq | q ∈ H(r)}, where
aux r is a fresh atom not appearing elsewhere in the formula, and U ′(Π) is the formula
{U ′(r, p) | r ∈ Π, p ∈ H(r)} ∪ {U ′(r) | r ∈ Π}. Finally, formula unf lin(Π, I) is
defined as U ′(Π) ∪H(Π) ∪ {c(Π)} ∪ fix ′(I).

8 Mario Alviano et al.

Theorem 2. Let Π be a program, and I be an interpretation. I ∈ AS (Π) if and only
if unf lin(Π, I) is unsatisfiable.

Proof. We know that I ∈ AS (Π) iff unf qdt(Π, I) is unsatisfiable (Theorem 3 of [24]).
Hence, to prove our claim we can show that unf lin(Π, I) is satisfiable iff unf qdt(Π, I)
is satisfiable. For an interpretationM , let ext(M) be (M∩At(unf qdt(Π, I)))∪{aux r |
r ∈ Π,M |= U ′(r) \ {¬aux r}}. We shall show the following properties:

(i) if M |= unf qdt(Π, I), then ext(M) |= unf lin(Π, I);
(ii) if M |= unf lin(Π, I), then M ∩At(unf qdt(Π, I)) |= unf qdt(Π, I).

Proof of (i). Let M |= unf qdt(Π). We have to show that ext(M) |= U ′(Π) (since the
other clauses in unf lin(Π, I) also belong to unf qdt(Π, I)). Recall that U ′(Π) contains
clause U ′(r) for each r ∈ Π , and clause U ′(r, p) for each atom p ∈ H(r). Let us
first consider a clause U ′(r). If ext(M) |= ¬aux r, then ext(M) |= U ′(r) trivially.
Otherwise, if ext(M) |= aux r, thenM |= U ′(r)\{¬aux r} by construction of ext(M);
hence, ext(M) |= U ′(r). Let us now consider a clause U ′(r, p). If ext(M) |= aux r,
then ext(M) |= U ′(r, p) trivially. Otherwise, if ext(M) |= ¬aux r then M 6|= U ′(r) \
{¬aux r} by construction of ext(M); hence, M 6|= U(r, p) \ {¬up} (because U(r, p) \
{¬up} ⊂ U ′(r) \ {¬aux r}), and therefore M |= ¬up (because M |= U(r, p) by
assumption). We can thus conclude that ext(M) |= U ′(r, p).

Proof of (ii). LetM |= unf lin(Π) andM ′ beM ∩At(unf qdt(Π, I)). We have to show
thatM ′ |= U(Π) (since the other clauses in unf qdt(Π, I) also belong to unf lin(Π, I)).
Recall that U(Π) contains clause U(r, p) for each rule r ∈ Π and for each atom p ∈
H(r). If M |= ¬up then M ′ |= U(r, p) trivially. Otherwise, if M |= up, then M |=
auxr (because M |= U ′(r, p)) and M |= ¬hp (because M |= H(p)). Hence, M ′ |=
U ′(r)\{¬auxr, hp}, and since U ′(r)\{¬auxr, hp} = U(r, p)\{¬up}we can conclude
that M ′ |= U(r, p). ut

Example 4. Let r be the rule a | b ← c of program Π1 in Example 3. Then, U ′(r) is
{¬auxr,¬c, uc, ha, hb}, while U ′(r, a) is {¬ua, auxr} and U ′(r, b) is {¬ub, auxr}. �

Proposition 4. In the worst case, for a rule r of a program Π , size({U ′(r, p) | p ∈
H(r)} ∪ {U ′(r)}) is linear with respect to size(r).

Proof. Let r be of the form (1). Then, size({U ′(r, p) | p ∈ H(r)}) = 2 · n, while
size({U ′(r) | r ∈ Π}) = 1+m+ k+ n. Thus, size({U ′(r, p) | p ∈ H(r)} ∪ {U ′(r) |
r ∈ Π}) = 3 · n+m+ k + 1. ut

4 Experiments

The impact of the techniques described in this paper on the performance of WASP was
assessed empirically on three benchmarks: (i) instances from the latest ASP Compe-
tition [25] containing cyclic disjunctive rules; (ii) a synthetic benchmark containing
disjunctive rules with increasing size of heads; and (iii) computation of paracoherent
answer sets of programs from [8]. For (i) and (ii), WASP was executed with the reduct-
based and unfounded-based strategies for answer set checking, referred to as WASPRED

Evaluation of disjunctive programs in WASP 9

and WASPUNF, respectively; and compared with CLASP [22, 23] version 3.3.3. For (iii),
WASP was also compared with CLASP version 3.3.3. Since the latter does not support
paracoherent reasoning, we used the preprocessor of WASP for the computation of the
externally extended supported program as described in [10]. Then, this program is ex-
tended by adding weak constraints as in the algorithm WEAK, described in [9], in such
a way that each optimal answer set of the new program is guaranteed to be a paraco-
herent answer set. For both solvers, we used a similar algorithm based on unsatisfiable
cores [6, 22] for computing an optimal answer set. In all cases, the completion was
enabled using the strategy auto that applies the syntactic rewriting Comp∨ for rules
whose head size is at most 4, and the propagator for rules with larger heads. The ex-
periment was run on an Intel CPU 2.4 GHz with 16 GB of RAM. Time and memory
were limited to 1200 seconds and 15 GB, respectively. All instances were grounded by
GRINGO 4.5.4 [21], whose execution time and memory consumption are accounted in
our analysis. Benchmarks can be found at https://doi.org/10.5281/zenodo.2605076.

Concerning benchmark (i), the tested encodings are Complex Optimization Of An-
swer Sets, Minimal Diagnosis, and Random Disjunctive Programs [15]. Results are
provided in Table 1, where the number of solved instances is reported for each solver.
WASPRED solves 47 instances, whereas the performance achieved by WASPUNF is slightly
worse, with 43 solved instances. CLASP is the best performing solver on this bench-
mark: it solves 54 instances in the allotted time; its advantage is due to the good perfor-
mance on Random Disjunctive Programs, where it solves 6 instances more than WASP.

The advantage of the linear rewriting techniques for handling disjunctive rules does
not emerge on the instances of benchmark (i), whose head sizes are at most 2. Hence, in
order to assess the scalability of the proposed techniques, we considered the synthetic
benchmark (ii). The idea is to have a prototypical family of programs that allows to link
the efficiency of a solver with the size of disjunctive heads. Specifically, we generated
programs of the following form varying the constant n: {a1 | · · · | an ← }∪ {ai+1 ←
ai | i ∈ [1..n−1]}∪{a1 ← an}. The results of our experiment are reported on Figure 1.
We observe that CLASP scales worse than both WASPRED and WASPUNF, and cannot solve
the instance with n = 10000 in the allotted time. On the contrary, we verified that WASP
scales linearly also for larger values of n: WASPRED and WASPUNF solve the instance
with n = 100000 in 60 and 90 seconds, respectively. We report that the advantage of
the linear rewriting techniques is also visible in terms of memory usage. Indeed, the
memory footprint of CLASP is 2450 MB for n = 10000, while WASPRED and WASPUNF

use 40 and 49 MB, respectively. Actually, CLASP exceeds the allotted memory with
n ≥ 30000, while WASPRED and WASPUNF use 318 and 402 MB when n = 100000,
respectively.

Table 1. Results of benchmark (i) executed on the instances from the latest ASP competition.

Problem # CLASP WASPRED WASPUNF

Complex Optimization Of Answer Sets 20 20 19 16
Minimal Diagnosis 20 20 20 19
Random Disjunctive Programs 20 14 8 8

10 Mario Alviano et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

Value of n

E
xe

cu
tio

n
tim

e
(s

)

CLASP
WASPRED

WASPUNF

Fig. 1. Scalability analysis on the benchmark (ii).

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLASP
WASP

Fig. 2. Comparison of CLASP and WASP on benchmark (iii).

As for the benchmark (iii), we considered the Stable Roommates Problem as pre-
sented in [8], which is interesting since the semi-equilibrium transformation may pro-
duce long disjunctive rules. In our experiment, we considered different numbers of per-
sons (from 500 to 1500), and for each of them we randomly generated 5 instances.
Table 2 reports, for the different number of persons, the cumulative number, the mini-

Table 2. Sizes of disjunctive rules after the semi-equilibrium transformation on benchmark (iii).

#Persons #Disjunctive rules Min size Max size Avg size
500 5246 2 499 238
600 6252 2 599 288
700 7240 2 699 338
800 8244 2 799 388
900 9282 2 899 436

1000 10304 2 999 485
1100 11260 2 1099 537
1200 12438 2 1199 579
1300 13246 2 1299 638
1400 14244 2 1399 688
1500 15304 2 1499 735

Evaluation of disjunctive programs in WASP 11

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

CLASP

W
A

S
P

(a)

0 3072 6144 9216 1228815360
0

3072

6144

9216

12288

15360

CLASP

W
A

S
P

(b)

Fig. 3. Instance-wise comparison of solving time in seconds (a) and memory usage in MB (b) of
CLASP and WASP on benchmark (iii).

mum size, the maximum size, and the average size of disjunctions, respectively. Results
show that WASP solves all 55 instances, while CLASP solves 30 instances, and in gen-
eral WASP scales better than CLASP as shown in Figure 2. Actually, WASP is faster than
CLASP in all the tested instances as shown in the instance-wise comparison of the solv-
ing time reported in Figure 3 (a). Moreover, we observe that WASP uses less memory
than CLASP as illustrated in Figure 3 (b). Indeed, the latter exceeds the allotted memory
in all the instances with a number of persons greater than or equal to 1100, whereas
WASP uses on average 4205 MB on the instances with 1500 persons.

5 Related work

Answer set computation is performed by WASP applying the CDCL algorithm on the
(Clark’s) completion of the input program. Clark’s completion was introduced in the
solver ASSAT [33] and later on also adopted by CMODELS [29], LP2SAT [30] and
CLASP [22, 23], as well as by WASP 2 [5]. In case of disjunctive programs, such solvers
apply a technique called shift, which is quadratic in size. The completion employed
by the new version of WASP is instead linear and it can be applied as it is also by the
aforementioned solvers. Interestingly, the quadratic blow-up of the shift does not affect
DLV [7], GNT [31] and WASP 1 [4], which are not based on the Clark’s completion
but they employ custom data structures and algorithms to handle disjunction. However,
the (Clark’s) completion can lead to an exponential performance gain [26], and custom
data structures are in general harder to maintain and require complex optimizations to
achieve efficiency [5].

Concerning the stability checks, the reduct-based approach based on redbas was
introduced by DLV [32]. A major drawback of this approach consists of building a new
propositional formula at each stability check. This limitation is overcome in WASP by
using the formula redadv , which is built once and then reused in all stability checks. The
unfounded-based stability check based on the formula unf qdt was instead introduced
in [24] and implemented in CLASP. As observed in Section 3.3, the formula unf qdt

is in general quadratic in size. Such a drawback is addressed by WASP by applying the

12 Mario Alviano et al.

formula unf lin , which is instead linear in size. Interestingly, the formula unf qdt is more
compact than unf lin up to rules with disjunctive heads of size 3, since for a rule r with
|H(r)| ≤ 3, size({U(r, p) | p ∈ H(r)}) < size(U ′(r)∪{U ′(r, p) | p ∈ H(r)}). Thus,
one can also combine U and U ′ by selecting the best one according to the rule size.

6 Conclusion and future work

In this paper we presented the techniques employed by WASP for evaluating disjunctive
logic programs. Results of our empirical analysis show that WASP can efficiently handle
disjunctive programs, even with long disjunctive rules. As future work, we plan to revise
strategy redadv because in principle it may introduce exponentially many clauses of the
form c⊂(I), even if we never observed such a drawback in our tests. Our idea is to
replace c⊂(I) with alternative implementations, among them a compact representation
via pseudo-Boolean constraints, introducing the notion of or-assumptions literals, or
driving the heuristic choices as in the algorithm opt [19]. Finally, we mention that WASP
is part of the system DLV2 [2] and is available at https://www.mat.unical.it/DLV2/wasp.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set ex-
pansion from the web via ASP. In: Technical Communications of ICLP. OASICS,
vol. 58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
https://doi.org/10.4230/OASIcs.ICLP.2017.1

2. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F., Veltri, P.,
Zangari, J.: The ASP system DLV2. In: LPNMR. LNCS, vol. 10377, pp. 215–221. Springer
(2017). https://doi.org/10.1007/978-3-319-61660-5 19

3. Alviano, M., Dodaro, C.: Completion of disjunctive logic programs. In: IJCAI. pp. 886–892.
IJCAI/AAAI Press (2016)

4. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver
based on constraint learning. In: LPNMR. LNCS, vol. 8148, pp. 54–66. Springer (2013).
https://doi.org/10.1007/978-3-642-40564-8 6

5. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR. LNCS,
vol. 9345, pp. 40–54. Springer (2015). https://doi.org/10.1007/978-3-319-23264-5 5

6. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model search:
algorithms and implementation. Journal of Logic and Computation. In press (2015).
https://doi.org/10.1093/logcom/exv061

7. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunc-
tive datalog system DLV. In: Datalog. LNCS, vol. 6702, pp. 282–301. Springer (2010).
https://doi.org/10.1007/978-3-642-24206-9 17

8. Amendola, G.: Solving the stable roommates problem using incoherent answer set programs.
In: RiCeRcA Workshop. CEUR Workshop Proceedings, vol. 2272. CEUR-WS.org (2018)

9. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation of paraco-
herent answer sets. In: AAAI. pp. 1034–1040. AAAI Press (2017)

10. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for efficient
computation of paracoherent answer sets. In: AAAI. pp. 1720–1727. AAAI Press (2018)

11. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set program-
ming to the conference paper assignment problem. In: AI*IA. LNCS, vol. 10037, pp. 164–
178. Springer (2016). https://doi.org/10.1007/978-3-319-49130-1 13

Evaluation of disjunctive programs in WASP 13

12. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium mod-
els for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016).
https://doi.org/10.1016/j.artint.2016.01.011

13. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: JELIA. LNCS,
vol. 8761, pp. 457–471. Springer (2014). https://doi.org/10.1007/978-3-319-11558-0 32

14. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games
via answer set programming. In: IJCAI. pp. 38–45. IJCAI/AAAI Press (2016)

15. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random boolean for-
mulas and disjunctive logic programs. In: IJCAI. pp. 532–538. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/75

16. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann.
Math. Artif. Intell. 12(1-2), 53–87 (1994). https://doi.org/10.1007/BF01530761

17. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

18. Clark, K.L.: Negation as failure. In: Symposium on Logic and Data Bases. pp. 293–322.
Advances in Data Base Theory, Plemum Press (1977)

19. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences.
Constraints 15(4), 485–515 (2010). https://doi.org/10.1007/s10601-010-9095-y

20. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Magazine
37(3), 53–68 (2016)

21. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo. TPLP
15(4-5), 449–463 (2015). https://doi.org/10.1017/S1471068415000150

22. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3.
In: LPNMR. LNCS, vol. 9345, pp. 368–383. Springer (2015). https://doi.org/10.1007/978-
3-319-23264-5 31

23. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187, 52–89 (2012). https://doi.org/10.1016/j.artint.2012.04.001

24. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solv-
ing. In: IJCAI. pp. 912–918. IJCAI/AAAI (2013)

25. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set pro-
gramming competition. In: LPNMR. LNCS, vol. 10377, pp. 3–9. Springer (2017).
https://doi.org/10.1007/978-3-319-61660-5 1

26. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM
Trans. Comput. Log. 14(2), 15:1–15:40 (2013). https://doi.org/10.1145/2480759.2480767

27. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/BF03037169

28. Gençay, E., Schüller, P., Erdem, E.: Applications of non-monotonic reasoning to automotive
product configuration using answer set programming. J. Intelligent Manufacturing 30(3),
1407–1422 (2019). https://doi.org/10.1007/s10845-017-1333-3

29. Giunchiglia, E., Lierler, Y., Maratea, M.: Sat-based answer set programming. In: AAAI. pp.
61–66. AAAI Press / The MIT Press (2004)

30. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS collection. KI
32(2-3), 183–184 (2018). https://doi.org/10.1007/s13218-018-0529-9

31. Janhunen, T., Niemelä, I.: GNT - A solver for disjunctive logic programs. In: LPNMR.
LNCS, vol. 2923, pp. 331–335. Springer (2004). https://doi.org/10.1007/978-3-540-24609-
1 29

32. Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems
by SAT checkers. Artif. Intell. 151(1-2), 177–212 (2003). https://doi.org/10.1016/S0004-
3702(03)00078-X

33. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif.
Intell. 157(1-2), 115–137 (2004). https://doi.org/10.1016/j.artint.2004.04.004

