
Operating Room Scheduling via Answer Set
Programming

Carmine Dodaro1, Giuseppe Galatà2, Marco Maratea1, and Ivan Porro2

1 DIBRIS, University of Genova, Genova, Italy
{dodaro,marco}@dibris.unige.it,

2 SurgiQ srl, Genova, Italy
{name.surname}@surgiq.com

Abstract. The Operating Room Scheduling (ORS) problem is the task of assign-
ing patients to operating rooms, taking in account different specialties, the surgery
and operating room shift durations and different priorities. Given that Answer Set
Programming (ASP) has been recently employed for solving real-life scheduling
and planning problems, in this paper we first present an off-line solution based on
ASP for solving the ORS problem. Then, we present techniques for re-scheduling
on-line in case the off-line schedule can not be fully applied. Results of an ex-
perimental analysis conducted on benchmarks with realistic sizes and parameters
show that ASP is a suitable solving methodology also for the ORS problem.

1 Introduction

The Operating Room Scheduling (ORS) [1, 5, 18, 20] problem is the task of assigning
patients to operating rooms, taking in account different specialties, surgery durations,
and operating room shift durations. Given that patients may have priorities, the solution
has to find an accommodation for the patients with highest priorities, and then to the
other with lower priorities if space is still available. A proper solution to the ORS prob-
lem is crucial for improving the whole quality of the health-care and the satisfaction
of patients. Indeed, modern hospitals are often characterized by long surgical waiting
lists, which is caused by inefficiencies in operating room planning, leading to an obvi-
ous dissatisfaction of patients.

Complex combinatorial problems, possibly involving optimizations, such as the
ORS problem, are usually the target applications of knowledge representation and rea-
soning formalisms such as Answer Set Programming (ASP). Indeed, its simple but
rich syntax [9], which includes optimization statements as well as powerful database-
inspired constructs such as aggregates, and its intuitive semantics, combined with the
readability of specifications (always appreciated by users) and availability of efficient
solvers (see, e.g., [3, 17, 19]), make ASP an ideal candidate for addressing such prob-
lems. Indeed, ASP has been already successfully used for solving hard combinatorial
and application problems in several research areas, including Artificial Intelligence [6,
12], Bioinformatics [14], Hydroinformatics [16], and also employed in industrial appli-
cations (see, e.g., [2, 11]).

In this paper we first present an off-line solution schedule based on ASP for solv-
ing the ORS problem, where problem’s specifications are modularly expressed as ASP

rules, and ASP solvers are used to solve the resulting ASP program. Then, we also
present techniques for re-scheduling on-line in case the off-line solution can not be
fully applied given, e.g., some patients could not be operated in their assigned slot
and have to be reallocated; in this case, the aim is of minimizing the changes needed
to accommodate the new situation. Again, the re-scheduling is specified by modularly
adding ASP rules to (part of) the original ASP program. We have finally run a wide
experimental analysis on ORS benchmarks with realistic sizes and parameters inspired
from data of a hospital in the north-east of Italy. Additionally, we have also performed
a scalability analysis on the performance of the employed ASP solver and encoding for
the scheduling problem w.r.t. schedule length. Overall, results show that ASP is a suit-
able solving methodology also for ORS, given that a high efficiency, defined in terms
of room’s occupation, can be achieved in short timings in line with the need of the
application.

2 Background on ASP

Answer Set Programming (ASP) [7] is a programming paradigm developed in the field
of nonmonotonic reasoning and logic programming. In this section we overview the lan-
guage of ASP. More detailed descriptions and a more formal account of ASP, including
the features of the language employed in this paper, can be found in [7, 9]. Hereafter,
we assume the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings starting
with uppercase letter and constants are non-negative integers or strings starting with
lowercase letters. A term is either a variable or a constant. A standard atom is an ex-
pression p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn are terms. An
atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants. A ground set is a set of pairs
of the form 〈consts : conj〉, where consts is a list of constants and conj is a con-
junction of ground standard atoms. A symbolic set is a set specified syntactically as
{Terms1 : Conj1; · · · ;Termst : Conjt}, where t > 0, and for all i ∈ [1, t], each
Termsi is a list of terms such that |Termsi| = k > 0, and each Conji is a conjunction
of standard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set
term {X : a(X, c), p(X);Y : b(Y,m)} stands for the union of two sets: the first one
contains the X-values making the conjunction a(X, c), p(X) true, and the second one
contains the Y -values making the conjunction b(Y,m) true. An aggregate function is
of the form f(S), where S is a set term, and f is an aggregate function symbol. Basi-
cally, aggregate functions map multisets of constants to a constant. The most common
functions implemented in ASP systems are the following:

• #count, number of terms;
• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺∈ {<, ≤, >,≥} is a comparison operator, and T is a term called guard. An aggregate
atom f(S) ≺ T is ground if T is a constant and S is a ground set. An atom is either a
standard atom or an aggregate atom. A rule r has the following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are standard
atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation not a. The
disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction b1, . . . , bk, not bk+1,
. . . , not bm is its body. Rules with empty body are called facts. Rules with empty head
are called constraints. A variable that appears uniquely in set terms of a rule r is said
to be local in r, otherwise it is a global variable of r. An ASP program is a set of safe
rules. A rule r is safe if both the following conditions hold: (i) for each global variable
X of r there is a positive standard atom ` in the body of r such that X appears in `;
(ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears in
Conj .

A weak constraint [8] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω. (Intuitively, [w@l] is read “as weight
w at level l”, where weight is the “cost” of violating the condition in the body of w,
whereas levels can be specified for defining a priority among preference criteria). An
ASP program with weak constraints is Π = 〈P,W 〉, where P is a program and W is a
set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground if no
variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand
base BP of P are defined as usual. The ground instantiation GP of P is the set of all
the ground instances of rules of P that can be obtained by substituting variables with
constants from UP .

An interpretation I for P is a subset I ofBP . A ground literal ` (resp., not `) is true
w.r.t. I if ` ∈ I (resp., ` 6∈ I), and false (resp., true) otherwise. An aggregate atom is
true w.r.t. I if the evaluation of its aggregate function (i.e., the result of the application
of f on the multiset S) with respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I
whenever all conjuncts of the body of r are true w.r.t. I .

A model is an interpretation that satisfies all the rules of a program. Given a ground
program GP and an interpretation I , the reduct [15] of GP w.r.t. I is the subset GIP of
GP obtained by deleting from GP the rules in which a body literal is false w.r.t. I . An
interpretation I for P is an answer set (or stable model) for P if I is a minimal model
(under subset inclusion) of GIP (i.e., I is a minimal model for GIP) [15].

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π extends
from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the instantiation of
Π; a constraint ω ∈ GW is violated by an interpretation I if all the literals in ω are true
w.r.t. I . An optimum answer setO forΠ is an answer set ofGP that minimizes the sum
of the weights of the violated weak constraints in GW in a prioritized way.

3 Problem Description

Most modern hospitals are characterized by a very long surgical waiting list, often wors-
ened, if not altogether caused, by inefficiencies in operating room planning. In this pa-
per, the elements of the waiting list are called registrations. Each registration links a
particular surgical procedure, with a predicted duration, to a patient.

The overall goal of the ORS problem is to assign the maximum number of reg-
istrations to the operating rooms (ORs). As first requirement, the assignments must
guarantee that the sum of the predicted duration of surgeries assigned to a particular
OR shift does not exceed the length of the shift itself, this is referred in the following
as surgery requirement. Moreover, registrations are not all equal: they can be related to
different pathologies and they can be in the waiting list for different periods of time.
These two factors can be unified in a singular concept: priority. Registrations are clas-
sified according to three different priority categories, namely P1, P2 and P3. The first
one gathers either very urgent registrations or the ones that have been in the waiting list
for a long period of time; we require that these registrations are all assigned to an OR.
Then, the registrations of the other two categories are assigned to the top of the ORs
capacity, prioritizing the P2 over the P3 ones (minimization).

However, in hospital units it is frequent that one planned assignment of ORs cannot
be fulfilled due to complications or conflicts that may occur either during the surgery
or before. In particular, surgeries may last longer than expected or some patients may
delete the registration. Therefore, in such cases it is required to compute a new sched-
ule which reallocates the ORs and, at the same time, minimizes the differences with
a previous computed schedule. This problem is usually referred to as rescheduling. It
is important to emphasize here that such situations are usually independent from the
quality of the original schedule, indeed they are often due to unpredictable events.

The ORS problem can be split into two subproblems: (i) computation of an initial
schedule for a given planning period (usually one week in hospitals, which is thus our
target), and (ii) the rescheduling, i.e., the generation of an altered schedule based on
complications or conflicts that require changes in the initial schedule.

The implementation described in Section 4 supports both the generation of an op-
timized initial schedule of the surgeries and its alteration and rearrangement in case of
needed rescheduling, where the case of canceled registrations is considered.

4 ASP Encoding

In this section the scheduling and rescheduling problems are described in the Answer
Set Programming language, in particular following the ASP-CORE-2 input language
specification [9], in two separate sub-sections.

4.1 OR scheduling

Data Model. The input data is specified by means of the predicates described in this
paragraph. The predicates representing the facts of our encoding are the following:

• Instances of registration(R,P,SU,SP) represent the registrations, characterized by
an id (R), a priority score (P), a surgery duration (SU) and the id of the specialty
(SP) it belongs to.

• Instances of mss(O,S,SP,D) link each operating room (O) to a shift (S) for each spe-
cialty and planning day (D) as established by the hospital Master Surgical Schedule
(MSS), i.e., a cyclic timetable constructed to define the specific assignment of OR
shifts to specialties. Note that every value of the variable S represents an unique
period of time, called shift, and that each day contains two shifts in our choice of
MSS. Thus, S = 1 denotes the Monday (D = 1) AM shift, S = 2 the Monday
(D = 1) PM one, S = 3 the Tuesday (D = 2) AM one and so on.

• The OR shifts are represented by the instances of the predicate duration(N,O,S),
where N is the shift duration.

• Assignments are stored in the instances of x(R,P,O,S,D), representing that the reg-
istration R with priority P is assigned to the operating room O during the shift S
and the day D.

Encoding. Here we describe the ASP rules used for solving the ORS problem. The en-
coding is based on the well-known Guess&Check programming methodology. In par-
ticular, the following rule guesses an assignment for the registrations to an operating
room in a given day and shift among the ones permitted by the MSS for the particular
specialty the registration belongs to.

x(R,P,O, S,D) ∨ nx(R,P,O, S,D) :– registration(R,P, , SP),

mss(O,S, SP,D).
(1)

Note that nx(R,P,O, S,D) is a fresh atom representing that a registration is not as-
signed to an operating room in a specific day. The same registration should not be
assigned more than once, in different operating rooms or shifts. This is assured by the
constraints:

:– x(R,P,O, S1,), x(R,P,O, S2,), S1 ! = S2.

:– x(R,P,O1, S,), x(R,P,O2, S,), O1 ! = O2.

:– x(R,P,O1, S1,), x(R,P,O2, S2,), O1 ! = O2, S1 ! = S2.

(2)

Note that in our setting there is no requirement that every registration must actually be
assigned.

Surgery requirement. With this constraint, we impose that the total length of surgery
durations assigned to a shift is less than or equal to the shift duration.

surgery(R,SU,O, S) :– x(R, ,O, S,), registration(R, , SU, , ,).

:–x(, , O, S,),#sum{SU,R : surgery(R,SU,O, S)} > N, duration(N,O, S).
(3)

Minimization. Registrations are characterized by the three priority levels P1, P2 and P3.
We want to be sure that every registration having priority 1 is assigned, then we assign
as much as possible of the others, giving precedence to registrations having priority 2

over those having priority 3. This procedure is accomplished through constraint (4) for
the priority 1 and the weak constraints (5) and (6) for priority 2 and 3, respectively.

:– N = totRegsP1 −#count{R : x(R, 1, , ,)}, N > 0. (4)

:∼ N = totRegsP2 −#count{R : x(R, 2, , ,)}. [N@3] (5)

:∼ N = totRegsP3 −#count{R : x(R, 3, , ,)}. [N@2] (6)

totRegsP1, totRegsP2 and totRegsP3 are constants representing the total number of reg-
istrations having priority 1, 2 and 3, respectively.

Minimizing the number of unassigned registrations could cause an implicit pref-
erence towards the assignments of the registrations with shorter surgery durations. To
avoid this effect, one can consider to minimize the idle time, however this is in general
slower from a computational point of view and unnecessary, since the shorter surgeries
preference is already mitigated by our three-tiered priority system.

4.2 Rescheduling

In the rescheduling problem, we start from an already-defined schedule that for some
reasons could not be followed to the end and must be partially scheduled again. In
particular, we took into account the case where some patients could not be operated in
their assigned slot and must be reallocated in one of the slots in the remaining part of
the original planning period.

Data Model. The predicates representing the facts of our encoding are the following:

• The old planning is encoded through facts represented by instances of the predicate
x(R,P,O,S,D).
• MSS, registrations and shifts are described by the same predicates as in the previous

section.
• The new assignments are described using a novel predicate y.

Encoding. The new encoding includes only rules (1), (2) and (3) from the previous
encoding, where atoms over the predicate x and nx are replaced with y and ny, respec-
tively. Additionally, a constraint must be added to ensure that for every single registra-
tion in the old schedule (x predicate) there is an assignment in the new one (y predicate):

:– not y(R,P, , ,), x(R,P, , ,). (7)

The main objective of the scheduling was to assign the largest possible number of
registrations to the OR shifts. On the contrary, in the rescheduling problem the objective
is to reassign all the previously allocated registrations and the reallocated ones with the
least possible disruption to the old schedule. In order to do so, we compute and mini-
mize the difference in days between the new and old assignments for each registration.
This means that the rules (4), (5) and (6) are replaced by:

difference(DF , R) :– y(R, , , ,D), x(R, , , ,OldD), DF = |D −OldD |.
:∼ T = #sum{DF , R : difference(DF , R)}. [T@1]

(8)

5 Experimental Results

In this section we report about the results of an empirical analysis of the scheduling and
rescheduling problems. For the initial scheduling problem, data have been randomly
generated but having parameters and sizes inspired by real data, then a part of the results
of the planning has been used as input for the rescheduling (as we will detail later).
Both experiments were run on a Intel Core i7-7500U CPU @ 2.70GHz with 7.6 GB of
physical RAM. The ASP system used was CLINGO [17], version 5.5.2.

5.1 ORS

The test case we have assembled for the initial planning is based on the requirements
of a typical middle sized hospital, with five surgical specialties to be managed. To test
scalability, other than the 5-days planning period, which is the one that is widely used
in Italian hospital units, seven benchmarks of different dimension were created. Each
benchmark was tested 10 times with different randomly generated input. The character-
istics of the tests are the following:

• 7 different benchmarks, comprising a planning period of respectively 15, 10, 7, 5,
3, 2 and 1 work days;

• 10 operating rooms unevenly distributed among the specialties;
• 5 hours long morning and afternoon shifts for each operating room, summing up to

a total of respectively 1500, 1000, 700, 500, 300, 200 and 100 hours of OR available
time for the 7 benchmarks;

• for each benchmark, we generated 1050, 700, 490, 350, 210, 140 and 70 registra-
tions, respectively, from which the scheduler will draw the assignments. Registra-
tions are characterized by a surgery duration, a specialty and a priority. In this way,
we simulate the common situation where a hospital manager takes the beginning
of an ordered, w.r.t. priorities, waiting list and tries to assign as many elements as
possible to each OR.

The surgery durations have been generated assuming a normal distribution, while the
priorities have been generated from a quasi-uniform distribution of three possible values
(with weights respectively of 0.30, 0.33 and 0.37 for registrations having priority 1, 2
and 3, respectively). The parameters of the test have been summed up in Table 1. In

Table 1. Parameters for the random generation of the scheduler input.

Specialty
Registrations

ORs
Avg. Surgery

Duration (min)
Coefficient
of Variation15-day 10-day 7-day 5-day 3-day 2-day 1-day

1 240 160 112 80 48 32 16 3 124 48%
2 210 140 98 70 42 28 14 2 99 18%
3 210 140 98 70 42 28 14 2 134 19%
4 180 120 84 60 36 24 12 1 95 21%
5 210 140 98 70 42 28 14 2 105 29%

Total 1050 700 490 350 210 140 70 10

particular, for each specialty (1 to 5), we reported the number of registrations generated
for each benchmark (15-, 10-, 7-, 5-, 3-, 2- and 1-day), the number of ORs assigned to
the specialty, the average duration of surgeries, and the coefficient of variation (defined
as the standard deviation over the mean), respectively.

Results of the experiment are reported in Table 2, as the average of 10 runs for
each benchmark. Table 2 reports, for each benchmark, the average number of assigned
registrations (shown as assigned/generated ratio). The efficiency column shows the per-
centage of the total OR time occupied by the assigned registrations. A time limit of 20
seconds was given in view of a practical use of the program: on the target 5-days plan-
ning length, an efficiency of the 95% was reached. As a general observation, we report
that with all the considered benchmarks, except with the one having planning length of
15-day, we obtained an efficiency greater than or equal to 90%. The 1-day test managed
to converge after 10 seconds.

A detailed analysis of the performance is reported in Table 3 for the target 5-day
planning period. In particular, for each of the 10 runs executed, Table 3 reports the
number of the assigned registrations out of the generated ones for each priority, and
a measure of the total time occupied by the assigned registrations as a percentage of
the total OR time available. In this case, it is possible to observe that the efficiency is
always greater or equal than 95%, but for an instance having efficiency of 92%.

Table 2. Averages of the results for the 15, 10, 7, 5, 3, 2 and 1-day benchmarks.

Benchmark Priority 1 Priority 2 Priority 3 Total Efficiency
15 days 319 / 319 169 / 342 42 / 389 530 / 1050 66%
10 days 210 / 210 201 / 229 81 / 261 492 / 700 90%
7 days 147 / 147 152 / 166 55 / 177 353 / 490 92%
5 days 106 / 106 102 / 113 50 / 130 258 / 350 95%
3 days 62 / 62 62 / 67 35 / 81 159 / 210 94%
2 days 42 / 42 40 / 46 22 / 52 104 / 140 95%
1 day 21 / 21 20 / 23 12 / 26 53 / 70 96%

Table 3. Scheduling results for the 5-day benchmark.

Assigned Registrations
OR time

Efficiency
Priority 1 Priority 2 Priority 3 Total

103 out of 103 104 out of 121 61 out of 126 268 out of 350 96%
114 out of 114 90 out of 94 54 out of 142 258 out of 350 95%
102 out of 102 116 out of 116 43 out of 123 261 out of 350 95%
112 out of 112 90 out of 102 50 out of 136 252 out of 350 95%
103 out of 103 95 out of 107 35 out of 140 233 out of 350 92%

99 out of 99 99 out of 122 66 out of 129 264 out of 350 95%
101 out of 101 108 out of 110 44 out of 139 253 out of 350 95%
114 out of 114 115 out of 124 41 out of 112 270 out of 350 96%
114 out of 114 114 out of 129 34 out of 107 262 out of 350 96%

98 out of 98 91 out of 108 73 out of 144 262 out of 350 95%

Fig. 1. Example of scheduling with 350 registrations for 5 days, and time scale (bottom-right).

Finally, in 5 plots of Figure 1 we (partially) present the results achieved on one in-
stance (i.e., the first instance of Table 3) with 350 registrations for 5 days. Each colored
block in the respective plots corresponds to a registration assigned to one of the 10 op-
erating rooms. The remaining space up to the 300 minutes limit represent the idle time
of the OR. Only the data about the morning assignments are showed; the ones for the
afternoon are similar (qualitatively). The bottom-right plot shows, instead, the evolution
of the solution quality when 600 seconds are granted to the same instance.

5.2 Rescheduling

The rescheduling is applied to a previously planned schedule in the case this could not
be carried on to the end. Once planned, a specialty schedule does not normally influence
the other specialties, thus it makes sense to re-schedule one specialty at a time.

To test the rescheduler we have defined three different scenarios. Considering the
target planning schedule of 5-day, we assumed that in the second day a number of
surgeries in specialty 1 had to be postponed to the next day. This number was set to 1
(scenario A), 3 (scenario B) or 6 (scenario C), respectively. Thus, we have to re-schedule
the three remaining days of the planning.

In order to be able to insert the postponed registrations, we have to make sure that
the starting schedule leaves enough available OR time by removing the necessary reg-
istrations from the old schedule, beginning from the last day of the period and from
the registrations in the priority 3 category. The three tests performed had the following
characteristics: (i) in all scenarios the postponed registrations have been generated with
an average surgery duration of 100 minutes, (ii) the number of registrations present in
the old schedule is 43, (iii) 0, 1 and 4 priority 3 old schedule registrations had to be
removed from the last planning day in scenarios A, B and C, respectively.

The results are summarized in Table 4, where we report the scenario, the number of
registrations that were inserted in each scenario (Postponed Registrations), the number
of registrations coming from the old schedule (Old Registrations), and the total dis-
placement, calculated as described in (8), showing the sum of all day displacements the
old registrations were subject to in the resulting new schedule.

Table 4. Results for the three rescheduling scenarios.

Scenario
Postponed

Registrations
Old

Registrations

Total
Displacements

(Days)
A 1 43 3
B 3 42 4
C 6 39 6

6 Application of our ASP solution

Our ASP solution presented in this paper is part of a more general real-life applica-
tion that we are developing. The application can be accessed through a web-interface
where the parameters of the problem can be specified. Moreover, the interface allows
the user to interact with the ASP encoding by offering web forms for adding the so
called “customizable constraints”, that express user requirements and preferences. We
have identified five different constraints that combined together cover most user needs,
and are detailed in the following paragraph. Finally, note that such customizable con-
straints can be used for both scheduling and rescheduling.

Customizable constraints. The customizable constraints are not strictly required for
the working of the program but allow the user to tweak as they prefer the final results.
Each of these constraints can be activated at runtime for multiple registrations and can
involve different selection of days, ORs, and shifts.

Given a set of n registrations, defined by the user through the app interface and
characterized by the ids ri i = 1, .., n, the first imposes that the set can be assigned only
in a chosen period, defined as all the operating room shifts between the initial (i) and the
final (f) days, where i and f are parameters provided by the user. For each registration
we impose:

:– x(ri , , , S,), S < i .

:– x(ri , , , S,), S > f .
(9)

The second constraint can be used to forbid a specific shift s to the chosen registrations:

:– x(ri , , , s,). (10)

The third and fourth customizable constraints regard forbidding or enforcing the use of
a specific OR o for a set of registrations, respectively:

:– x(ri , , o, ,), registration(ri , , ,),mss(o, , ,).

:– not x(ri , , o, ,), registration(ri , , ,),mss(o, , ,).
(11)

The last constraint can be used if the user wants to assign a set of registrations as tempo-
rally close as possible to a specific OR shift, without actually enforcing it. This can be
accomplished by defining a predicate (distance(N,R)) that computes the distance (N)
between the assigned (S) and suggested (represented by the parameter prefS) shifts and
tries to minimize it:

distance(N, ri) :– x(ri , , , S,), N = |S − prefS |.
:∼ T = #sum{N,R : distance(N,R)}. [T@4]

(12)

All these constraints can be applied to different sets of registrations at the same time,
using different user provided parameters.

7 Related Work

We are not aware of any previous attempt to solve the ORS problem using ASP algo-
rithms, however an extensive literature approaching this problem with different tech-
niques has been developed.

Aringhieri et al. [5] addressed the joint OR planning (MSS) and scheduling prob-
lem, described as the allocation of OR time blocks to specialties together with the sub-
sets of patients to be scheduled within each time block over a one week planning hori-
zon. They developed a 0-1 linear programming formulation of the problem and used a
two level meta-heuristic to solve it. Its effectiveness was demonstrated through exten-
sive numerical experiments carried out on a large set of instances based on real data. In

[18], the same authors introduced a hybrid two-phase optimization algorithm which ex-
ploits the potentiality of neighborhood search techniques combined with Monte Carlo
simulation, in order to solve the joint advance and allocation scheduling problem tak-
ing into account the inherent uncertainty of surgery durations. Abedini et al. [1] de-
veloped a bin packing model with a multi-step approach and a priority-type-duration
(PTD) rule. The model maximizes utilization and minimizes the idle time, which con-
sequently affects the cost at the planning phase and was programmed using MATLAB.
Molina-Pariente et al. [20] tackled the problem of assigning an intervention date and
an operating room to a set of surgeries on the waiting list, minimizing access time for
patients with diverse clinical priority values. The algorithms used to allocate surgeries
were various bin packing (BP) operators. They adapted existing heuristics to the prob-
lem and compared them to their own heuristics using a test bed based on the literature.
The tests were performed with the software Gurobi.

The rescheduling problem was addressed by Shu et al. [22], using an extension
of the Longest Processing Time (LPT) algorithm, which was used to solve the atomic
job shop scheduling problem. Zhang et al. [23] addressed the problem of OR planning
with different demands from both elective patients and non-elective ones, with priori-
ties in accordance with urgency levels and waiting times. This problem is formulated
as a penalty stochastic shortest-path Markov Decision Process (MDP) with dead ends
(fSSPDE), and solved using MATLAB by the method of asynchronous value iteration.

Finally, in the introduction we have already reported that ASP has been already
successfully used for solving hard combinatorial and application problems in several
research areas. ASP encodings were proposed for scheduling problems other than ORS,
as examples Incremental Scheduling Problem [10], where the goal is to assign jobs to
devices such that their executions do not overlap one another; Team Building Prob-
lem [21], where the goal is to allocate the available personnel of a seaport for serving
the incoming ships; and Nurse Scheduling Problem [4, 13], where the goal is to create
a scheduling for nurses working in hospital units.

8 Conclusions

In this paper we presented an ASP encoding to provide a solution to the ORS prob-
lem, where specifications of the problem are modularly expressed as ASP rules. Then,
we also presented techniques for re-scheduling on-line in case the off-line solution can
not be fully applied given, e.g., canceled registrations. In this case, the goal is to min-
imize the changes needed to accommodate the new situation. Again, the re-scheduling
is specified by modularly adding ASP rules to (part of) the original ASP program. Fi-
nally, we presented the results of an experimental analysis on ORS benchmarks with
realistic sizes and parameters showing that our scheduling solution obtains around 95%
of efficiency after few seconds of computation on planning length of 5 days usually
used in Italian hospitals. Our solution also enjoys good scalability property, having an
efficiency over or equal to 90% for planning periods up to 10 days, i.e., double w.r.t. the
target period. Also our rescheduling solution reached positive results.
All benchmarks and encodings employed in this work can be found at: http://www.
star.dist.unige.it/˜marco/AIIA2018/material.zip.

References
1. Abedini, A., Ye, H., Li, W.: Operating Room Planning under Surgery Type and Priority

Constraints. Procedia Manufacturing 5, 15–25 (2016)
2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set

programming. Fundam. Inform. 147(1), 1–25 (2016)
3. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core shrinking.

TPLP 16(5-6), 533–551 (2016)
4. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming encoding for

nurse scheduling. In: AI*IA. LNCS, vol. 10640, pp. 468–482. Springer (2017)
5. Aringhieri, R., Landa, P., Soriano, P., Tnfani, E., Testi, A.: A two level metaheuristic for the

operating room scheduling and assignment problem. Computers & Operations Research 54,
21–34 (2015)

6. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: A case study in
answer set planning. In: LPNMR. LNCS, vol. 2173, pp. 439–442. Springer (2001)

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

8. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

9. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format (2013), https://www.mat.
unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

10. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the Fifth Answer Set
Programming Competition. Artif. Intell. 231, 151–181 (2016)

11. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Combining
answer set programming and domain heuristics for solving hard industrial problems (appli-
cation paper). TPLP 16(5-6), 653–669 (2016)

12. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry: A solution
based on ASP. In: RR. LNCS, vol. 9209, pp. 77–92. Springer (2015)

13. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: LPNMR.
LNCS, vol. 10377, pp. 301–307. Springer (2017)

14. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP 15(1), 35–78
(2015)

15. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artif. Intell. 175(1), 278–298 (2011)

16. Gavanelli, M., Nonato, M., Peano, A.: An ASP approach for the valves positioning optimiza-
tion in a water distribution system. J. Log. Comput. 25(6), 1351–1369 (2015)

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52,
pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

18. Landa, P., Aringhieri, R., Soriano, P., Tnfani, E., Testi, A.: A hybrid optimization algorithm
for surgeries scheduling. Operations Research for Health Care 8, 103–114 (2016)

19. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming.
TPLP 14(6), 841–868 (2014)

20. Molina-Pariente, J.M., Hans, E.W., Framinan, J.M., Gomez-Cia, T.: New heuristics for plan-
ning operating rooms. Computers & Industrial Engineering 90, 429–443 (2015)

21. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the gioia-tauro seaport. TPLP 12(3), 361–381 (2012)

22. Shu, A.C., Subbaraj, I., Phan, L.: Operating Room Rescheduler (2015)
23. Zhang, J., Dridi, M., El Moudni, A.: A stochastic shortest-path MDP model with dead ends

for operating rooms planning. pp. 1–6 (Sep 2017)

