Automated Planning Techniques for Robot
Manipulation Tasks Involving
Articulated Objects

Alessio Capitanelli', Marco Maratea! ™) Fulvio Mastrogiovanni®,

and Mauro Vallati?

! DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Genoa, Italy
{alessio.capitanelli,marco.maratea,fulvio.mastrogiovanni}@unige.it
2 University of Huddershield, Huddersfield, West Yorkshire HD1 3DH, UK
M.Vallati@hud.ac.uk

Abstract. The goal-oriented manipulation of articulated objects plays
an important role in real-world robot tasks. Current approaches typically
pose a number of simplifying assumptions to reason upon how to obtain
an articulated object’s goal configuration, and exploit ad hoc algorithms.
The consequence is two-fold: firstly, it is difficult to generalise obtained
solutions (in terms of actions a robot can execute) to different target
object’s configurations and, in a broad sense, to different object’s physi-
cal characteristics; secondly, the representation and the reasoning layers
are tightly coupled and inter-dependent.

In this paper we investigate the use of automated planning techniques
for dealing with articulated objects manipulation tasks. Such techniques
allow for a clear separation between knowledge and reasoning, as advo-
cated in Knowledge Engineering. We introduce two PDDL formulations
of the task, which rely on conceptually different representations of the
orientation of the objects. Experiments involving several planners and
increasing size objects demonstrate the effectiveness of the proposed
models, and confirm its exploitability when embedded in a real-world
robot software architecture.

1 Introduction

The manipulation of non rigid objects, including articulated or flexible objects,
such as strings, ropes or cables, is one of the most complex tasks in Robotics
[11,20]. Apart from issues related to grasping and dexterity, and differently from
rigid objects, the configuration of an articulated or flexible object (i.e., the set
of relative poses of its constituent parts) varies due to the relative position of
its constituent parts with respect to each other. This induces a representation
problem for such objects, which, on the one hand, is tightly connected with
robot perception capabilities and their accuracy, and on the other hand impacts
on processes reasoning about configuration changes and the associated robot
manipulation actions.

© Springer International Publishing AG 2017
F. Esposito et al. (Eds.): AT*IA 2017, LNAI 10640, pp. 483-497, 2017.
https://doi.org/10.1007/978-3-319-70169-1_36



484 A. Capitanelli et al.

In the literature about the manipulation of non rigid objects, this problem
did not receive sufficient attention, nor a principled formalisation is available.
Indeed, it is possible to find examples in which robots exhibit the capability of
manipulating ropes [25], tying or untying knots [19] and operating on mobile
parts of the environment, such as handles of different shapes [5], home furni-
ture [12] or valves in search and rescue settings [17]. However, in all these cases,
manipulation actions are directly grounded on perceptual cues, such as the pecu-
liar geometry of the object to deal with [1], assumed to be easy to identify in a
robust way, or based on a priori known or learned information about the object
to manipulate, e.g., its stiffness or other physical features [6,7]. As a result, every
time either the element that has to be manipulated or the manipulator changes,
a new reasoner has to be developed from scratch.

A structured approach to perception, representation and reasoning, as well
as execution, seems beneficial: on the one hand, we can decouple perception
and representation issues, thus not being tied to specific perception approaches
or ad hoc solutions; on the other hand, domain knowledge and reasoning logic
can be separated, with the advantages of an increased maintainability, and the
possibility to interchange reasoners and models in a modular way.

In this paper, we investigate the use of automated planning techniques for
manipulation tasks involving articulated objects. Such techniques assume an
abstract model of the object to manipulate, a clear separation between knowl-
edge representation and reasoning, and the use of standard languages, such as
PDDL [16], and widely available domain-independent planners. Language stan-
dard and planners’ efficiency have been fostered by the International Planning
Competition series (see, e.g., [22]). Our contribution is at the problem formal-
isation and modelling levels. It should be noted that the representation of an
articulated object can be modelled using two alternative approaches, which differ
on how link orientations are expressed: relative, with respect to each other (e.g.,
any link with respect to the previous one, assuming an ordering among links), or
absolute, with respect to an external, possibly robot-centered, reference frame.
In this context, it is evident that we are not trying to generate joint trajecto-
ries to achieve a desired object configuration, but rather determine a series of
model-defined actions towards such goal. Roboticists are familiar with numeri-
cal methods and motion control strategies for articulated structures, what the
planner should provide is a series of intermediate reference joint states to be fed
to those lower level systems.

From a robotics perspective, a relative representation is very sensitive to per-
ception issues: small perception errors in link orientations can lead to dramati-
cally huge errors in the estimate of the object’s configuration, since it is necessary
to compute forward all the robot-centred orientations to support manipulation
actions: this seems to suggest that an absolute representation would be prefer-
able, but also the efficiency of planners on the related formulations must be
taken into account.

In this respect, starting from the relative and absolute representations of link
orientations, we propose two planning models: the first, which we refer to as basic,



Automated Planning Techniques 485

assumes pairwise relative link orientations and primary features of PDDL; the
second, which is termed conditional, treats orientations as absolute and employs
also conditional statements. Experiments have been performed using an architec-
ture integrating a modified ROSPlan framework [4] on a dual-arm robot manip-
ulator. They show that our approach (i) efficiently solves tasks with a realistic
size, in terms of number of links constituting the object and the resolution of
their orientations, and (i) scales in a satisfactory way with increasingly more
complex problems, which is of particular relevance since it provides a challenging
benchmark for the planning community, and can be seen as an important step
toward the manipulation of flexible objects.

The paper is structured as follows. Section 2 provides the reader with needed
preliminaries about our scenario and automated planning, whereas Sect. 3 intro-
duces the problem statement. Then, Sect. 4 presents the two models, whose eval-
uation with automated planners is shown in Sect. 5. Conclusions follow.

2 Background

In this section we provide the necessary background on the reference scenario,
and on automated planning.

2.1 The Reference Scenario

The tabletop scenario we consider involves a Baxter dual-arm robot manipulator
from Rethink Robotics (see Fig.1). Each arm has 7 degrees of freedom and is
equipped with a standard gripper. An RGB-D device located on the Baxter’s
head and pointing downward is used to perceive the robot’s frontal workspace.
The workspace is constituted by a table, on which articulated objects can be
manipulated by rotating its constituting parts. Given our reference scenario, the
granularity of rotations can not be small. We employ wooden objects, which have
been purposely hand crafted to minimise perceptual errors: the first has three
40 cm long links (and two loose joints), whereas the second has seven 20 ¢cm long
links (and six stiff joint). On the second object we fixed a QR tag to each link,
in order to quickly determine its orientation.

A software architecture has been developed, based on the well known ROS
framework and integrating ROSPlan, which allows sensory-based knowledge rep-
resentation, action planning and execution via a number of nested control loops.
A point cloud or link poses (determined using QR tags) are obtained either con-
tinuously or on demand from the RGB-D device. Perception data are processed
in order to obtain a model-based representation of the scene [3], for instance the
configuration of an articulated object, which is maintained within an OWL-based
ontology [13]. The ontology is updated whenever a new perception is available.
In order to obtain a new object’s goal configuration, the information within
the ontology can be accessed by a planner, which can extract information to
build the initial state of the planning problem. Since the planner is treated as a



486 A. Capitanelli et al.

Fig. 1. The reference robotic framework.

ROS service, any suitable planner can be used as long as it adheres to a well-
defined communication interface. If a plan is found, each manipulation action
therein is executed. After each execution a new perception is obtained, whereas
the scene representation in the ontology is updated, and compared with the
expected effects of the action: if they are compatible, the execution continues,
otherwise re-planning occurs. The execution continues until the final state of the
plan is reached, or aborted as per designer’s instructions.

2.2 Automated Planning

Automated planning, and specifically classical planning, deals with finding a
(partially or totally ordered) sequence of actions, which modify a static, deter-
ministic and fully observable environment from an initial state to a desired goal
state [9].

In classical planning, the environment is represented as an appropriate set P
of |P| First Order Logic predicates, p1, ... ,P|p|, Whereas states si1,...,5|g| are
defined as appropriate sets of ground predicates p, ..., pp|-

An operator o = (name(o),pre(o),eff_(o),eff+(0)) is defined such that
name(o) = o-name(z1,...,TK), where o_name is a unique operator name and
x1,...,Tx are its K arguments, pre(o) is the set of predicates P,,.. representing
the operator’s preconditions, whereas eff~ (o) and eff' (o) are, respectively,
the sets of predicates P.y;- and P,y s+ representing the operator’s negative and
positive effects. As a consequence, actions ay,...,a|4| are ground instances of
planning operators. An action a = (pre(a),ef [~ (a), efft (a)) is applicable in a
state s if and only if pre(a) C s. If allowed, the application of a in s results in a
new state such that (s \ eff™(a)) Ueff(a).

A planning domain D is specified via sets of predicates Pp and operators
Op, such that D = (Pp,Op). A planning problem P is specified via a planning

domain D, an initial state s; and set of goal atoms P (both made up of ground



Automated Planning Techniques 487

predicates), such that P = (D, Si, P). A solution plan S is a sequence of I actions
ai,...,ar such that, starting from the initial state s;, a consecutive application
of the actions in the plan results in a final state sy that satisfies the goal P.

3 Problem Statement

In general terms, the problem we consider in this paper can be stated as follows:
given an articulated object, determine a solution plan that modifies the initial
object’s configuration to a specified goal configuration, where the solution plan
is made up of a number of manipulation actions to be executed by a robot. In
order to better specify the boundaries of the problem we consider, let us pose
the following assumptions:

1. We consider articulated objects as simplified models for fully flexible objects.
These can be modelled as articulated objects with a huge number of links
and joints. This assumption is widely accepted [25].

2. We do not consider the effects of gravity on the object being manipulated,
nor those of any external force but manipulation actions. For this reason,
the object is considered as laying on a horizontal plane (large enough to
accommodate it). As a consequence, we consider articulated objects which
lay strictly on the plane.

3. We assume sensing and representation to be decoupled, the latter assuming
perfect sensing. On the basis of the features extracted from sensing data, this
leads to different problem formulations.

4. The object can be easily manipulated by standard Baxter’s grippers. The
specific object we use has been purposely manufactured to that aim, and
therefore we do not consider issues related to grasping or dexterity.

More formally, an articulated object a is defined as an ordered set L of
|L| links and an ordered set J of |J| joints, such that @ = (£,J). Each link
l is characterised by a length A; and an orientation 6; on the plane, whose
meaning depends on the considered planning model, namely basic or conditional.
Therefore, a configuration C,, is a |L,|-ple such that (9;1, .. .,91‘“), ie., the
orientations of all the links. Obviously enough, since £ and J are ordered sets,
links and joints are pairwise correlated, such that a link [; is bounded upstream
by ji and downstream by ji41, apart from [z,.

Configurations change as a consequence of manipulation actions. In our case,
we only consider rotations of a given link [; around the corresponding joints j; or
Jit1.- If we refer to d as the granularity associated with variations in orientations,
then a manipulation action a operating on a link [; can either increase or decrease
its orientation #; by J, with respect to an axis perpendicular to the horizontal
plane. In doing so, and given the stiffness of «, the robot needs the use of two
grippers: the first is used to keep the upstream (resp. downstream) [;_; (resp.
li4+1) link still, which is a non modelled action in the solution plan (nonetheless
executed by the robot when needed), whereas the second is used to rotate I
around j; (resp. ji41).



488 A. Capitanelli et al.

Fig. 2. An example of rotation: I3 rotates around js of an angle § while I is kept still,
which induces l4 to rotate.

An example can be found in Fig. 2, where a 4-link, 4-joint articulated object
is shown. The initial state s; corresponds to link poses in black, whereas in the
final state sy links I3 and I, must be rotated by d, i.e., [3 must rotate around js.
The expected sequence of manipulation actions includes: grasping and keeping
lo still, grasping [3, rotating I3 counter clockwise around j3 of about ¢, releasing
l3 and releasing lo. However, the first action, which is a necessary prerequisite for
the rotation to occur, need not to be explicitly modelled, but can be delegated
to the robot action execution system.

4 Proposed Formulations

In order to tackle the problem introduced above, and to evaluate the two pos-
sible semantics associated with link orientations, we designed two PDDL for-
mulations, which exploit different sets of language features. The basic formu-
lation employs the :STRIPS subset of PDDL, extended with equalities and
negative-preconditions, whereas the conditional version requires also the use
of conditional-effects. Notably, the precision limits of most manipulators
requires the granularity discretisation of angular movements, hence there is no
practical necessity for continuous or hybrid planning models. Therefore, PDDL
provides an appropriate level of abstraction.

On the one hand, in the basic formulation, given a link [;, its orientation
0, must be considered as being relative, for instance, to the orientation of
the upstream link [;_;. From a planning perspective, each manipulation action
changing 6; does not affect any other upstream or downstream link orienta-
tions, since all of them are relative to each other, and therefore the planning
process is computationally less demanding. However, since manipulation actions
are expected to be based on link orientations grounded with respect to a robot-
centred reference frame, i.e., absolute in terms of pairwise link orientations, a
conversion must be performed, which may be greatly affected by perceptual
noise, therefore leading to inaccurate or even inconsistent representations. On
the other hand, in the conditional formulation, 6; is considered as absolute, and
therefore it can be associated directly with robot actions. Unfortunately, this



Automated Planning Techniques 489

means that each manipulation action changing 6; does affect numerically all
other upstream or downstream link orientations, depending on which side of the
object is kept still, in the representation, which must be kept track of using
conditional effects in the planning domain.

It is noteworthy that the use of advanced PDDL features, such as conditional
effects, may allow for a more accurate representation of the domain but, at the
same time, it may reduce the number of planners able to reason on the model.

4.1 Basic Formulation

As described in Sect. 3, an articulated object « is represented using two ordered
sets of joints and links. We use a connected predicate to describe the sequence
of links in terms of binary relationships involving a joint j;11 and a link [,
which induces a pairwise connection between two links, namely [; itself and
li+1, since they share the same joint j;11. We assume that each joint j; is
associated with an angle 0;, which ranges between 0 and 359 deg, through
the predicate angle-joint. Obviously enough, in such a range it holds that
0; = 0i11 — 0;. As we anticipated, this formulation assumes that link orien-
tations are expressed as pairwise relative to each other. This means that the
robot perception system is expected to provide the representation layer with
the set of joint angles 61,...,6|; as primitive information, whereas the set of
link orientations 61, ...,0z| is not directly observable, but must be computed
applying forward kinematics formulas to the object’s configuration C,. As we
discussed already, if noise affects the perception of joint angles, as it typically
does, the reconstruction of the object’s configuration may differ from the real
one, and it worsens with link lengths. This position significantly simplifies the
planning model’s complexity: from a planner’s perspective, the modification of
any link orientations does not impact on other relative joint angles, and therefore
manipulation actions can be unfolded in any order the planner deems fit.

Angles are specified using constants, which are then ordered using the
angle-before predicate. The difference between constant values is the gran-
ularity § of the resolution associated to modelled orientations. For example, d45
and d90 are used as constants representing, respectively, a 45 and a 90 deg angle.
Then, a predicate (angle-before d45 d90) is used to encode the fact that d45
is the granularity step preceding d90, i.e., in this case § = 45 deg.

The domain model includes two planning operators, namely increase-angle
(shown in Fig.3) and decrease-angle. Intuitively, the former can be used to
increase the angle of a selected joint of a d step, while the latter is used to decrease
the joint’s angle, by operating on the two connected links. As an example, if
0 = 45 deg and a joint angle f; = 135 deg, increase-angle would produce
0; = 180 deg, whereas decrease-angle 6; = 90 deg. In the operator’s definition,
?1linkl and ?1ink2 represent any two links [; and {;41, ?joint is the joint jj 1
between them, whereas 7al and 7a2 are the current and the obtained joint
angles, respectively. If ?joint connected two different links ?1ink1 and ?1ink?2,
the angle 7al of such joint would be increased of a § step and become 7a2. A
similar description could be provided for decrease-angle.



490 A. Capitanelli et al.

(:action increase-angle
:parameters (?linkl ?1ink2 - link
?joint - joint ?al ?a2 - angle)
:precondition (and
(connected ?joint ?1inkl1)
(connected ?joint ?1ink2)
(not (= ?1linkl ?1ink2))
(angle-joint ?al ?joint)
(angle-before 7al 2a2))
:effect (and
(not (angle-joint ?al ?joint))
(angle—-joint ?a2 ?joint)))

Fig. 3. The basic formulation of increase-angle.

A problem is defined by specifying initial and final states. The former includes
the topology of the articulated object in terms of connected predicates, and its
initial configuration using angle-joint predicates; the latter describes its goal
configuration using relevant angle-joint predicates.

Fig. 4. Without end point joints, the basic formulation cannot discriminate among
these four configurations.

It is noteworthy that, as shown in Fig. 2, we add one seemingly unnecessary
joint to the configuration, as one of the end points of the link chain. As a matter
of fact, from a representation perspective, the use of relative angles leads to
issues in discriminating between some configurations of the articulated object.
Let us consider, for instance, the case of an articulated object made up of 3 links,
namely /1, ls and I3, which are connected by two joints, namely jo (connecting
I; and l3) and j3 (connecting Iy and l3). Then, let us set both joint angles to 90
deg. If jo and j3 were treated as relative, in the planning process it would be
impossible to distinguish between configurations Cr, C-, C, and C in Fig. 4.
In order to deal with this drawback, the end point joint j; and a related “hidden”
link ly (not shown in the Figure) can be added to one of the articulated object’s
extremes. This hidden link defines an ad hoc reference frame that allows for



Automated Planning Techniques 491

discriminating among configurations characterised by the same shape, but with
different orientations. Such hidden links must be added to problem definitions.

4.2 Conditional Formulation

The conditional formulation differs from the basic one in that joint angles 8;
originate from link orientations expressed with respect to a unique, typically
robot-centred, reference frame, and as such are absolute. Therefore, the set of
link orientations 61, ...,60,r| is assumed to be directly observable by the robot
perception system. However, if a manipulation action is planned, which modifies
a given joint angle 6;, not only the related link orientations 6; or 6,11 (depending
on whether the upstream or downstream link is kept still) must be updated, but
it is necessary to propagate such changes to all the upstream or downstream link
orientations. As a consequence, such a representation increases the complexity
of the planning tasks but is more robust to perception errors: in fact, perceiving
independent link orientations induces an wupper bound on the error associated
with their inner angle.

(:action increase-angle
:parameters (?linkl ?1ink2 - link
?joint - joint ?al ?a2 - angle)
:precondition (and
(connected ?joint 21inkl)
(connected ?joint 21ink2)
(not (= ?1linkl ?1ink2))
(angle—joint ?al ?joint)
(angle-before 2al 2a2))
ceffect (and
(not (angle—-joint ?7al ?joint))
(angle—joint ?a2 ?joint)
(forall (?3s - joint 2a3 ?a4 - angle)
(when (and
(affected ?3js ?1linkl ?joint)
(not (= ?7js ?joint))
(angle—joint ?a3 ?js)
(angle-before ?a3 2a4d) )
(and
(not (angle—joint 2a3 ?js))
(angle—joint ?7a4 ?3s)))))

Fig. 5. The conditional version of increase-angle.

The connected, angle-joint and angle-before predicates are the same
as in the basic formulation, subject to the different semantics associated with



492 A. Capitanelli et al.

joint angles. Also in the conditional formulation two planning operators are
used, namely increase-angle (shown in Fig.5) and decrease-angle. How-
ever, with respect to the basic formulation, the effects of the operator differ. In
particular, the model assumes that we can represent which joints are affected
when a link is rotated around one of its associated joints. This is done using
the affected predicate, i.e., a ternary predicate (affected 7jointl ?linkl
7joint2), where ?1ink1 is the link that is rotated, ?joint2 is the joint around
which ?link1 rotates, and 7jointl is a joint affected by this rotation. So, if
7jointl were affected, its angle would be changed as well in the conditional
statement and, as such, it would affect other joints via its corresponding link.

With reference to increase-angle, as in the previous case, the joint angle
7joint, located between ?1linkl and ?1ink2, is increased by J, according to
the angle-before predicate. If rotating ?1ink2 around ?joint affects 7js, the
latter is updated and affects in cascade all other joints upstream or downstream.

In terms of problem definitions, it is necessary to include the list of appro-
priately defined affected predicates.

5 Experimental Evaluation

The aim of this experimental evaluation is to assess the computational per-
formance of the basic and conditional models, and in particular whether the
proposed planning-based approach can be effective in a real-world robot soft-
ware architecture. First we discuss the experimental settings, then we show how
the two planning models scale with increasingly difficult problems (in terms of
the number of joints in the articulated object and the granularity ¢ associated
with link orientations).

Settings. We selected 4 planners, based on their performance in the agile track
of the 2014 International Planning Competition: Madagascar (Mp) [18], Probe,
SIW [15], and Yahsp3 [23]. We also included Lpg [8] due to its widespread
use in real-world planning applications. Both Yahsp3 and Lpg do not support
conditional effects.

Experiments have been performed on a workstation equipped with 2.5 Ghz
Intel Core 2 Quad processors, 4 GB of RAM and the Linux operating system.

Synthetic problem instances have been randomly generated parameterised
on the number of joints j* (the same as the number of links) and the num-
ber of allowed orientations g* (which induces certain granularity values), which
both affect the problem’s size. Once j* and ¢g* are defined, a configuration C* is
determined by normally sampling, for each link, among the finite set of possible
orientations induced by g*. The cutoff time has been set to 300 CPU-time sec-
onds. Generated plans have been validated using the well-known VAL tool [10],
in order to check their correctness with respect to the planning models, and also
to verify the presence of flaws.

Computational Performance. In a first series of tests we analyse the sensitiv-
ity of planning models with respect to increasing values for j*. It is noteworthy



Automated Planning Techniques 493

that in the literature there is hardly evidence of objects manipulated by robots
made up of more than four or five joints at best. However, it seems reasonable
to model flexible objects as articulated objects with a huge number of links. In
that case, the higher the number of links, the better the approximation given by
the model. We generated problem instances in which j* ranges between 3 to 20,
fixing g* = 90 deg. As such, only four orientations are possible. For each value
of j*, three instances have been generated and the results averaged.

Unsurprisingly, the basic model is faster than the conditional model. When
using the basic model, j* has no significant impact on a planner running time.
In all cases, valid plans have been found in less than 1 CPU-time second. This
is due to the fact that, in the basic model, each rotation is independent, and the
final state can be quickly reached by focusing on one joint at a time. Instead, the
conditional model requires the planner to consider the impact a rotation has on
other links. Moreover, the size of the conditional problem model exponentially
increases with j*, due to the presence of affected predicates that need to be
specified.

Average Runtime

100 S
i 10 : T e
o
] i
[} i
& 1 e
P i
D
ny
O
0.1
—
Mp
""""" . Probe -
SIW
0.01 :
4 6 8 10 12 14 16

Number of Joints

Fig. 6. Average CPU-time seconds needed by Mp, Probe, and SIW to solve instances
with j* from 4 to 16 using the conditional model.

Figure 6 shows, for the three planners able to cope with conditional effects,
how the average runtime is affected by j*. SIW is the most negatively affected,
while Mp and Probe share a similar trend. According to the Wilcoxon test [24],
the performance of SIW is statistically significantly worse than those of Mp and
Probe. Furthermore, Probe has statistically better performance than Mp. None
of the planner solved, within the 300 CPU-time seconds cutoff, any instance with
j* greater than 15.

When assessing the quality of plans generated using the basic model, empir-
ical evidence indicates that Mp, Probe and SIW generate plans of similar length



494 A. Capitanelli et al.

(approx. 10 actions). Yahsp3 and Lpg find plans consistently worse than those
found by the above mentioned planners: on average, LPG (Yasp3) finds plans
that are 85% (25%) longer than those found by Mp, Probe and SIW. Instead,
when using the conditional model, SIW typically provides the shortest plans on
average, followed by Probe (17% longer) and Mp (50% longer). Interestingly,
when comparing the quality of plans generated by the same planner, on the two
considered models, we can identify two different behaviours. Mp and Probe seem
to suffer the way conditional effects propagate rotations: plans generated with
the conditional model are significantly longer. An in-depth analysis suggests that
such planners use many actions to fix joint angles affected by previous manipu-
lation actions. On the contrary, SIW seems to exploit the additional information
leveraged by conditional effects, and this is reflected by shorter plans.

In a second series of tests we investigate how g* affects a plan’s feasibility
and size. Intuitively, a high value for ¢g* (e.g., 90 deg) implies a low number of
possible orientations (e.g., 4), thus a small number of manipulation actions must
be planned, and viceversa. We generated problem instances in which j* is set
to 5, 10, 15, or 20. For each size, we modelled the problem with three different
values for ¢g*, namely 90 deg, 60 deg and 30 deg, thus leading to 4, 6 and 12
possible orientations. For each value of 7% and g¢*, three instances have been
generated and the results averaged.

Average Runtime

100

g
< 10
o
0
9]
0
g
- 1
¥
D
[a9)
O
0.1
Probe-90
Probe-60 -ee
Probe-30
0.01
5 10 15 o

Number of Joints

Fig. 7. Average CPU-time seconds needed by Probe to solve instances with j* equal
to 5, 10, 15, or 20, and g* equal to 90, 60, and 30 deg, using the conditional model.

As expected, also in this case, the basic model allows all the planners to
generate solution plans. As in the previous case, all instances are solved in less
than 1 CPU-time second. When considering the conditional model, the observed
results show that Probe has the best scalability. SIW and Mp run out of time
also for small values of j*, when ¢g* = 30 deg. Figure7 presents the impact of



Automated Planning Techniques 495

the considered values for g* on the average runtime performance of Probe. It is
apparent that the granularity has a very strong impact on planning performance:
on instances with the same number of joints, the runtime can increase up to two
orders of magnitude for different granularities in link orientations.

Finally, we executed some of the plans obtained by Probe when considering
objects with j* of 3 and 7 and ¢g* = 90 deg, on the actual Baxter manipulator
shown in Fig.1, which was controlled using the ROSPlan framework [4]. All
plans were successfully executed by the robot, which was able to manipulate the
object in order to provide the required goal configuration.

6 Conclusion

This paper presented the use of automated planning to plan for robot manipu-
lation of articulated objects, which is one of the most complex tasks in robotics.
We introduced two PDDL models, based either on relative or absolute repre-
sentation of links orientation. The former model requires the robotic framework
to be able to provide an accurate perception of the position of the articulated
object, while the latter is more robust to perception errors, at the price of a
higher complexity.

Our experimental analysis, which involved four state-of-the-art planning
engines and objects of different sizes, performed on synthetically generated prob-
lem instances and by using the ROSPlan framework for controlling a Baxter
manipulator, shows that: (i) both models allow to generate plans that are exe-
cutable by a typical robotics manipulator; (i7) both the models allows considered
planners to efficiently solve tasks with a realistic size; and (7i7) the basic model
can be fruitfully exploited when very large objects are considered, as an approx-
imation of flexible objects. We also observed that the conditional model can be
exploited as a challenging benchmarks for testing the capabilities of planning
engines: the number of conditional effects per grounded action can be extremely
large.

We see several avenues for future work. We plan to investigate how to extend
the proposed models in order to represent multi-dimensional joint movements.
We are also interested in testing the proposed approach using different manipula-
tors, and to test its feasibility for representing flexible —rather than articulated—
objects such as ropes. Finally, we also envisage to study knowledge process-
ing mechanisms to possibly improving the flexibility of control processes (see,
e.g., [2,14,21]).

References

1. Berenson, D.: Manipulation of deformable objects without modelling and simulat-
ing deformation. In: Proceedings of the 2013 IEEE-RSJ International Conference
on Intelligent Robots and Systems (IROS 2015), Tokyo, Japan, November 2013



496

2.

10.

11.

12.

13.

14.

15.

16.

17.

A. Capitanelli et al.

Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture
for a reconfigurable manufacturing system. In: Coles, A.J.,; Coles, A., Edelkamp,
S., Magazzeni, D., Sanner, S. (eds.) Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS 2016, pp. 358-366.
AAALT Press (2016)

. Buoncompagni, L., Mastrogiovanni, F.: A software architecture for object percep-

tion and semantic representation. In: Proceedings of the Second Italian Workshop
on Artificial Intelligence and Robotics (AIRO 2015), Ferrara, Italy, September 2015
Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palom-
eras, N., Hurtés, N., Carreras, M.: ROSPlan: planning in the robot operating sys-
tem. In: Proceedings of the Twenty-Fifth International Conference on Automated
Planning and Scheduling, ICAPS, pp. 333-341 (2015)

Dang, H., Allen, P.: Robot learning of everyday object manipulations via human
demonstrations. In: Proceedings of the 2010 IEEE-RSJ International Conference
on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, October 2010
Elbrechter, C., Haschke, R., Ritter, H.: Folding paper with anthropomorphic
robot hands using real-time physics-based modeling. In: Proceedings of the 2012
IEEE-RAS International Conference on Humanoid Robotics (HUMANOIDS 2012),
Osaka, Japan, October 2012

Frank, B., Schmedding, R., Stachniss, C., Teschner, M., Burgard, W.: Learning
the elasticity parameters of deformable objects with a manipulation robot. In:
Proceedings of the 2010 IEEE-RSJ International Conference on Intelligent Robots
and Systems (IROS 2010), Taipei, Taiwan, October 2010

Gerevini, A.E., Saetti, A., Serina, I.: Planning through stochastic local search and
temporal action graphs in LPG. J. Artif. Intell. Res. 20, 239-290 (2003)

Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice.
Morgan Kaufmann Publishers, Burlington (2004)

Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 294-301 (2004)

Jimenez, P.: Survey on model-based manipulation planning of deformable objects.
Robot. Comput.-Integr. Manuf. 28(2), 154-163 (2012)

Knapper, R., Layton, T., Romanishin, J., Rus, D.: Ikeabot: an autonomous multi-
robot coordinated furniture assembly system. In: Proceedings of the 2013 IEEE
International Conference on Robotics and Automation (ICRA 2013), Karlsruhe,
Germany, May 2013

Krotzsch, M., Simancik, F., Horrocks, I.. A description logic primer.
arXiv:1201.4089v3 (2013)

Lemaignan, S., Ros, R., M&senlechner, L., Alami, R., Beetz, M.: Oro, a knowledge
management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3548-3553. IEEE
(2010

Lipov)etzky7 N., Ramirez, M., Muise, C., Geffner, H.: Width and inference based
planners: SIW, BFS(f), and PROBE. In: Proceedings of the 8th International Plan-
ning Competition (IPC 2014) (2014)

McDermott, D.: The 1998 Al planning systems competition. Al Mag. 21(2), 35-55
(2000)

Newman, W., Chong, Z.H., Du, C., Hung, R., Lee, K.H., Ma, L., Ng, T.,
Swetenham, C., Tjoeng, K., Wang, W.: Autonomous valve turning with an Atlas
humanoid robot. In: Proceedings of the 2014 IEEE-RAS International Conference
on Humanoid Robotics (HUMANOIDS 2014), Madrid, Spain, November 2014


http://arxiv.org/abs/1201.4089v3

18.

19.

20.

21.

22.

23.

24.

25.

Automated Planning Techniques 497

Rintanen, J.: Madagascar: scalable planning with SAT. In: Proceedings of the 8th
International Planning Competition (IPC 2014) (2014)

Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through
the use of non-rigid registration. In: Inaba, M., Corke, P. (eds.) Robotics
Research. STAR, vol. 114, pp. 339-354. Springer, Cham (2016). doi:10.1007/
978-3-319-28872-7_20

Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas,
D., Kragic, D.: Dual arm manipulation: a survey. Robot. Auton. Syst. 60(10),
1340-1353 (2012)

Tenorth, M., Beetz, M.: Representations for robot knowledge in the KnowRob
framework. Artif. Intell. 247, 151-169 (2017)

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T., Roberts, M., Sanner, S.: The
2014 international planning competition: progress and trends. AT Mag. 36(3), 90—
98 (2015)

Vidal, V.: YAHSP3 and YAHSP3-MT in the 8th international planning competi-
tion. In: Proceedings of the 8th International Planning Competition (IPC 2014)
(2014)

Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80-83
(1945)

Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope
by a manipulator. Int. J. Adv. Rob. Syst. 10, 1-12 (2013)


http://dx.doi.org/10.1007/978-3-319-28872-7_20
http://dx.doi.org/10.1007/978-3-319-28872-7_20

	Automated Planning Techniques for Robot Manipulation Tasks Involving Articulated Objects
	1 Introduction
	2 Background
	2.1 The Reference Scenario
	2.2 Automated Planning

	3 Problem Statement
	4 Proposed Formulations
	4.1 Basic Formulation
	4.2 Conditional Formulation

	5 Experimental Evaluation
	6 Conclusion
	References




