
Advances in Multi-Engine ASP Solving

Marco Maratea1, Luca Pulina2, and Francesco Ricca3

1 DIBRIS, Univ. degli Studi di Genova, Viale F. Causa 15, 16145 Genova, Italy
marco@dist.unige.it

2 POLCOMING, Univ. degli Studi di Sassari, Viale Mancini 5, 07100 Sassari, Italy
lpulina@uniss.it

3 Dip. di Matematica ed Informatica, Univ. della Calabria, Via P. Bucci, 87030
Rende, Italy, ricca@mat.unical.it

Abstract. Algorithm selection techniques are known to improve the
performance of systems for several knowledge representation and rea-
soning frameworks. This holds also in the case of Answer Set Program-
ming (ASP), which is a rule-based programming paradigm with roots
in logic programming and non-monotonic reasoning. Indeed, the multi-
engine approach to ASP solving implemented in me-asp was particularly
effective on the instances of the third ASP competition. In this paper we
report about the advances we made on me-asp in order to deal with
the new standard language ASPCore 2.0, which substantially extends
the previous version of the standard language. An experimental anal-
ysis conducted on the Fifth ASP Competition benchmarks and solvers
confirms the effectiveness of our approach also in comparison to rival
systems.

1 Introduction

Algorithm selection [36] techniques are known to improve the performance of
solvers for several knowledge representation and reasoning frameworks [24, 31,
34, 35, 37, 38, 40]. It is well-established in the scientific literature that the usage
of these techniques is very useful to deal with empirically hard problems, in
which there is rarely an overall best algorithm, while it is often the case that dif-
ferent algorithms perform well on different domains. In order to take advantage
of this behavior, these systems are able to select automatically the “best” algo-
rithm/solver on the basis of the characteristics of the instance in input (called
features). Algorithm selection techniques proved to be particularly effective [5,
25, 26, 31, 38] in the case of solvers for Answer Set Programming (ASP) [22, 23],
which is declarative programming paradigm based on logic programming and
non-monotonic reasoning.

The application of algorithm selection techniques to ASP solving was ig-
nited by the release of the portfolio solver claspfolio ver. 1 [20]. This solver
ported to ASP the satzilla [40] approach for SAT. Indeed, the main selection
technique of claspfolio was based on regression, which tries to estimate solv-
ing time to choose the “best” configuration/heuristic of the ASP solver clasp.

Later, in [30, 29], it was introduced the first multi-engine solver for ASP, called
me-asp [31]. me-asp ports to ASP an approach applied before to QBF [35].
In particular, me-asp exploits inductive techniques based on classification, i.e.,
membership to a class, to choose, on a per instance basis, a solver among a
selection of black-box heterogeneous ASP solvers that participated to the third
ASP Competition [13] and DLV [28], being able to combine the strengths of its
component engines. Other proposals [25, 38] employ parameters tuning and/or
design a solvers schedule. claspfolio ver. 2 [26] is a framework that includes
and can combine several techniques implemented in other ASP solvers based on
algorithm selection techniques.

Among all approaches, the one implemented in me-asp seems to be very
effective in ASP, given it outperforms the other solvers on a broad set of bench-
marks encoded in the standard language ASPCore 1.0 [12]. The input language
of me-asp was, however, limited to ASPCore 1.0, which is the very basic lan-
guage of the System track of the third ASP Competition [12]. The next editions
of this event [2, 10] were based on a substantially extended language, called
ASPCore 2.0 [9], supporting more expressive language features such as aggre-
gates [14], weak constraints [8] and choice rules [39]. Supporting these additional
constructs require a substantial update of the system, including the design of
proper (syntactic) features for classification and an update of the engines, and
of the consequent inductive model.

In this paper we report about the advances we made on me-asp in order to
deal with the new standard language ASPCore 2.0. An experimental analysis,
conducted on all domains of the fifth ASP Competition and considering the
solvers that entered the Single Processor category of the competition, confirms
the effectiveness of our approach. In particular, our results show that

• the new features allow to properly classify benchmarks encoded in ASP-
Core 2.0;

• me-asp performs better than its component engines, and is able to outper-
form alternative solutions at the state of the art, implemented in claspfolio
ver. 2.2, on the benchmarks of the fifth ASP Competition [10].

The paper is structured as follows. Section 2 introduces needed preliminaries
on ASP and classification. Section 3 reviews the key ingredients of a multi-engine
approach and explains the choices made in the new version of me-asp. Section 4
then presents the results, and the paper ends in Section 5 with some conclusions.

2 Preliminaries

In this section we recall some preliminary notions concerning Answer Set Pro-
gramming and machine learning techniques for algorithm selection.

2.1 Answer Set Programming

In this section we recall Answer Set Programming syntax and semantics. We
refer in particular to the syntax and semantics of the ASPCore 2.0 [9] standard

2

specification that has been employed in ASP competitions [2, 10] from 2013. More
detailed descriptions and a more formal account of ASP can be found in [8, 17,
21, 23], whereas a nice introduction to ASP can be found in [6]. Hereafter, we
assume the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
A ground set is a set of pairs of the form 〈consts :conj〉, where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
k > 0, and each Conji is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, c), p(X);Y :b(Y,m)}
stands for the union of two sets: The first one contains the X-values making the
conjunction a(X, c), p(X) true, and the second one contains the Y -values making
the conjunction b(Y,m) true. An aggregate function is of the form f(S), where
S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are: #min and #max (undefined for the empty set)
computing minimum and maximum, respectively; #count counting the number
of terms; and #sum the computes the sum of integers. An aggregate atom is of
the form f(S) ≺ T , where f(S) is an aggregate function, ≺ ∈ {<, ≤, >,≥} is a
comparison operator, and T is a term called guard. An aggregate atom f(S) ≺ T
is ground if T is a constant and S is a ground set. A rule r has the following
form:

a1 | . . . | an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules. A rule r is safe if both the
following conditions hold: (i) for each global variable X of r there is a positive
standard atom ` in the body of r such that X appears in `; (ii) local variables
of r appearing in a symbolic set {Terms :Conj} also appear in Conj.

The ASPCore 2.0 language used in competitions also includes choice rules,
weak constraints and queries. Choice rules [39] are of the form:

{a : l1, . . . , lk} ≥ u :– b1, . . . , bk, not bk+1, . . . , not bm.

3

where a is a an atom and l1, . . . , lk are literals for k ≥ 0, u is a term, and the
body is defined as for standard rules. Intuitively, a choice rule means that, if the
body of the rule is true, an arbitrary subset of atoms of at least u elements in
the head must be chosen as true. According to the standard specification [9] we
interpret choice rules as a syntactic shortcut for a disjunctive program simulating
this behavior.4

A weak constraint [8] is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm.[w@l, t1, · · · , tk]

where w and l are the weight and level of ω, and t1, · · · , tk are distinguishing
terms. (Intuitively, [w@l, t] is read “as weight w at level l for substitution t”,
for more details on distinguishing terms see [9]). An ASP program with weak
constraints is Π = 〈P,W 〉, where P is a program and W is a set of weak
constraints. A standard atom, a literal, a rule, a program or a weak constraint
is ground if no variables appear in it.

A query on an ASP program is of the form q?, where q is a positive ground
atom.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Her-
brand base BP of P are defined as usual (see e.g.,[6]). The ground instantiation
GP of P is the set of all the ground instances of rules of P that can be obtained
by substituting variables with constants from UP .

An interpretation I for P is a subset I of BP . A ground literal ` (resp.,
not `) is true w.r.t. I if ` ∈ I (resp., ` 6∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all the rules of a program. Given a
ground program GP and an interpretation I, the reduct [16] of GP w.r.t. I is the
subset GIP of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model [23])
for P if I is a minimal model (under subset inclusion) of GIP (i.e., I is a minimal
model for GIP) [16].

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π
extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint Ω ∈ GW is violated by an interpretation I if all
the literals in Ω are true w.r.t. I. An optimum answer set O for Π is an answer
set of GP that minimizes the sum of the weights of the violated weak constraints
in GW as a prioritized way.

4 Roughly, choice rules can be seen as a shortcut for a | na ← b1, . . . , bn, e1, . . . , em.,
← b1, . . . , bn, not #count{a : a, e1, . . . , em} ≥ k. where na is an fresh auxiliary atom
that is projected out of the answer.

4

The semantics of queries is given in terms of cautious reasoning. Given a
program P and a query q?, the query is true if q is true in all answer sets of P ,
and is false otherwise.

2.2 Classification for Algorithm Selection

In this work we rely on a per-instance selection algorithm that chooses the best
(or a good) algorithm among a pool of available. The selection in our case is of an
ASP solver and is made using a set of features, i.e., numeric values that represent
particular characteristics of a given instance, of a ground ASP program.

In order to make such a selection in an automatic way, we model the prob-
lem using multinomial classification algorithms, i.e., machine learning techniques
that allow automatic classification of a set of instances, given some instance fea-
tures. In more detail, in multinomial classification we are given a set of patterns,
i.e., input vectors X = {x1, . . . xk} with xi ∈ Rn, and a corresponding set of
labels, i.e., output values Y ∈ {1, . . . ,m}, where Y is composed of values repre-
senting the m classes of the multinomial classification problem. In our modeling,
the m classes are m ASP solvers. We think of the labels as generated by some
unknown function f : Rn → {1, . . . ,m} applied to the patterns, i.e., f(xi) = yi
for i ∈ {1, . . . , k} and yi ∈ {1, . . . ,m}. Given a set of patterns X and a corre-
sponding set of labels Y , the task of a multinomial classifier c is to extrapolate
f given X and Y , i.e., construct c from X and Y so that when we are given
some x? ∈ X we should ensure that c(x?) is equal to f(x?). This task is called
training, and the pair (X,Y) is called the training set.

3 Multi-Engine Answer Sets Computation

The key idea at the basis of the application of automated algorithm selection
algorithms can be summarized as follows: There is rarely a best solver to solve
a given combinatorial problem, while it is often the case that different solvers
perform well on different instances. Thus, a method that is able to select a good
algorithm among a pool of available ones can perform much better than a static
choice. In our framework a number of features of the input are measured, and
multinomial classification algorithms are used to learn a selection strategy. More
in details, the design of a multi-engine ASP solver involves the following steps:

1. Design of cheap-to-compute (syntactic) features that are significant for clas-
sifying the instances.

2. Fair design of training and test sets.
3. Selection of solvers that are representative of the state of the art.
4. Induction of a robust selection strategy by applying a classification algo-

rithm.

In this section we report the choices we made in the design of the new version
me-asp, by instantiating the ingredients we outlined above.

5

3.1 Features

The design of features is a crucial step of the development: indeed, features must
be able to characterize the instances, but also should be cheap to compute, in the
sense that they can be extracted very efficiently. Indeed, the overhead introduced
by feature computation must be negligible.

The features of ground programs we selected for characterizing our instances
are a super-set of those employed in the earlier version of me-asp for dealing
with ASPCore 1.0. The new set includes features for taking into account the new
language constructs of ASPCore 2.0, e.g., number of choice rules, aggregates and
weak constraints.

The new features of me-asp are divided into four groups (such a categoriza-
tion is borrowed from [33]):

• Problem size features: number of rules r, number of atoms a, ratios r/a,

(r/a)
2
, (r/a)3 and ratios reciprocal a/r, (a/r)

2
and (a/r)

3
;

• Balance features: fraction of unary, binary and ternary rules;
• “Proximity to horn” features: fraction of horn rules;
• ASP specific features: number of true and disjunctive facts, fraction of

normal rules and constraints c, number of choice rules, number of aggregates
and number of weak constraints.

This final choice of features, together with some of their combinations (e.g.,
c/r), amounts to a total of 58 features.

3.2 Dataset

In order to train the classifiers, we have to select a pool of instances for training
purpose, called the training set. The training set must be broad enough to get a
robust model; on the other hand, for reporting a fair analysis, we test the system
on instances belonging to benchmarks not “covered” by the training set.

The benchmarks considered for the experiments correspond to the suite of the
fifth ASP Competition – see [10] for details about the last event. This is a large
and heterogeneous suite of hard benchmarks encoded in ASPCore 2.0, which
was already employed for evaluating the performance of state-of-the-art ASP
solvers. That suite includes planning domains, temporal and spatial scheduling
problems, combinatorial puzzles, graph problems, and a number of application
domains, i.e., databases, information extraction and molecular biology field.5

The considered pool of benchmarks is composed of 26 domains which are
based on both complexity issues and language constructs of ASPCore 2.0. Start-
ing from a total amount of 8572 instances – with instance we refer to the com-
plete input program (i.e., encoding+facts) –, we pragmatically randomly split
the amount of instances in each domain, using 50% of the total amount for train-
ing purpose, and the remaining ones for testing. All the instances were subject
to feature selection after grounding them by using GrinGo (ver. 4) [18].

5 An exhaustive description of the benchmark problems can be found in [11].

6

3.3 Solvers Selection

The selection of solvers has the goal of collecting a pool of engines that are both
representative of the state-of-the-art solver (sota) and that have “orthogonal”
performance (i.e., cover as much as possible of the set of solved instances, with
minimal overlap on solved instances).

In order to find the set of training set labels, we have run ASP solvers that
entered the Single Processor category of the fifth ASP Competition. In detail, we
have run: clasp [15], several solvers based on translation6, i.e., lp2sat3+glucose,
lp2sat3+lingeling [27], lp2bv2+boolector [32], lp2graph [19], lp2maxsat+clasp
and lp2normal2+clasp [7], and some incarnations of the wasp solver [3, 4]
(ver. 1, ver. 1.5 and ver. 2, called wasp-1, wasp-1.5 and wasp-2, respectively).
In the following, we give more details for each solver. clasp is a native ASP
solver relying on conflict-driven nogood learning, and in this edition includes
also the capabilities of claspD, an extension of clasp that is able to deal with
disjunctive logic programs. The lp2sat3* family employs a translation strategy
to SAT and resorts to the SAT solvers glucose and lingeling for computing
the answer sets. The translation strategy mentioned includes the normalization
of aggregates as well as the encoding of level mappings for non-tight ground
programs: lp2bv2+boolector and lp2graph are variants that express the
latter in terms of bit-vector logic or acyclicity checking, respectively, supported
by a back-end SMT solver. lp2maxsat+clasp competes by translating to a
Max-SAT problem and solving with clasp. lp2normal2+clasp normalizes
aggregates and uses clasp.

wasp is a native ASP solver based on conflict-driven learning, extended with
techniques specifically designed for solving disjunctive logic programs. Unlike
wasp-1, which uses a prototype version of DLV [28] for grounding. wasp-2 relies
on GrinGo and adds techniques for program simplification and further deter-
ministic inferences. wasp-1.5, instead, combines the two solvers by switching
between them depending on whether a logic program is non-HCF or subject to
a query.

In order to choose the engines of me-asp, we computed the total amount
of training instances solved by the state-of-the-art solver (SOTA) i.e., given an
instance, the oracle that always fares the best among all the solvers. Looking
at the results of the Fifth ASP Competition, we can see that only four solver
can deal with the whole set of instances, namely clasp, lp2normal2+clasp,
wasp1, and wasp1.5. Starting from these results, we look for the minimum
number of solvers such that the total amount of instances solved by the pool
is the closest to the SOTA solver on the training instances. The result of this
procedure allow us to choose as me-asp engines three solvers, namely clasp,
lp2normal2+clasp, and wasp1. Thus, each pattern of the training set is
labeled with the solver having the best CPU time on the given instance.

6 We have not considered lp2mip2 given that we did not receive the license of cplex
on time.

7

Solver Solved Time

me-asp 2378 70144.99

clasp 2253 63385.74

lp2normal2+clasp 2198 94560.98

claspfolio 1841 75044.14

wasp1.5 1532 52478.95

wasp2 1407 46939.06

lp2maxsat+clasp 1387 82500.12

lp2graph 1344 72633.53

lp2sat3+lingeling 1334 90644.33

wasp1 1313 87193.62

lp2sat3+glucose 1305 73893.54

lp2bv2+boolector 1011 57498.48

Table 1. Results of the evaluated solvers. The first column contains the solver names,
and it is followed by two columns, reporting the number of solved instances within the
time limit (column “Solved”), and the sum of their CPU times in seconds (“Time”).

3.4 Classification Algorithm and Training

Concerning the choice of a multinomial classifier, we considered a classifier able to
deal with numerical features and multinomial class labels (the solvers). Accord-
ing to the study reported in the original paper on multi-engine ASP solving [29,
31], we selected k-Nearest-neighbor, nn in the following. nn is a classifier yield-
ing the label of the training instance which is closer to the given test instance,
whereby closeness is evaluated using some proximity measure, e.g., Euclidean
distance, and training instances are stored in order to have fast look-up, see,
e.g., [1]. The nn implementation used in me-asp is built on top built of the
ANN library (www.cs.umd.edu/ mount/ANN). In order to test the generaliza-
tion performance, we use a technique known as stratified 10-times 10-fold cross
validation to estimate the generalization in terms of accuracy, i.e., the total
amount of correct predictions with respect to the total amount of patterns.
Given a training set (X,Y), we partition X in subsets Xi with i ∈ {1, . . . 10}
such that X =

⋃10
i=1Xi and Xi ∩ Xj = ∅ whenever i 6= j; we then train c(i)

on the patterns X(i) = X \ Xi and corresponding labels Y(i). We repeat the
process 10 times, to yield 10 different c and we obtain the global accuracy esti-
mate. To tune the parameter k of nn, we repeated the process described above
for k ∈ [1, 10], k ∈ N. As a result of cross-validation and parameter tuning, we
choose k = 1, for which we obtained an accuracy greater than 87%.

4 Experiments

We assessed the performance of me-asp on the test set, that as described in the
previous section contains the half of the instances of the fifth ASP competition
that were not comprised in the training set used for generating the inductive

8

model of me-asp. All the experiments run on a cluster of Intel Xeon E31245
PCs at 3.30 GHz equipped with 64 bit Ubuntu 12.04, granting 600 seconds of
CPU time and 2GB of memory to each solver.

In Table 1 we report the performance of me-asp compared to the one ob-
tained by the solvers described in Section 3.3. We involved in the analysis also
claspfolio ver. 2.2 7 for a direct comparison with approaches of algorithm
selection.

As a general comment we note that me-asp is the solver that solves in abso-
lute terms more instances than any other alternative considered in our analysis,
which represents the state of the art in ASP solving.

In detail, comparing me-asp with its engines, we can see that it solves 125
instances more than clasp, 155 instances more than lp2normal2+clasp, and
1065 instances more than wasp1. This outlines that me-asp is consistently bet-
ter than the component engines, thus confirming that our algorithm selection
strategy is effective. This proves empirically that the features of me-asp are able
to characterize the input programs, and also that the inductive model learned
during training is effective in suggesting a good solver for solving a given in-
stance. Indeed, me-asp run the best solver 80% of the times, while it makes a
suboptimal choice 17% of the times, i.e., it does not predict the best engine, but
it runs a solver able to deal the input instance within the time limit. In fact, the
SOTA solver composed of the engines of me-asp is able to solve 2462 instances,
so me-asp is able to reach – in terms of solved instances – about 97% of the
SOTA solver performance. Regarding the average CPU time per instance, we
report that me-asp CPU time is about 5% more than the average CPU time per
instance of the SOTA solver (29.50 and 28.05, respectively). Finally, we report
that feature computation is basically negligible thanks to the selection of cheap-
to-compute features, and remains, in average, within the 0.6% of computation
time, i.e., 0.19 seconds in average.

Concerning the comparison with claspfolio, which is the only other system
in this comparison that is based on algorithm selection, and represents the state
of the art in algorithm selections for ASP, we note that claspfolio solves 537
instances less than me-asp.

Summing up, me-asp outperforms any solved that entered the fifth ASP com-
petition, as well as alternative solvers based on algorithm selection, performing
very efficiently on this benchmark set.

5 Conclusion

In this paper we presented an extension of the multi-engine ASP solving tech-
nique presented in [31] to deal with the with the broader set of language features
included in the standard language ASPCore 2.0. We implemented an extended

7 claspfolio has been run with its default setting, and with clasp ver. 3 as a back-
end solver. This improved version has been provided by Marius Lindauer, who is
thanked.

9

version of the me-asp solver, which is now able to process powerful constructs
such as choice rules, aggregates, and weak constraints.

An experimental analysis conducted on the fifth ASP Competition bench-
marks and solvers shows that the new version of me-asp is very efficient, indeed
it outperforms state-of-the-art systems in terms of number of solved instances.

References

1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine learn-
ing 6(1), 37–66 (1991)

2. Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G.,
Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C.,
Ricca, F., Schneider, P., Schwengerer, M., Spendier, L.K., Wallner, J.P., Xiao, G.:
The fourth answer set programming competition: Preliminary report. In: Cabalar,
P., Son, T.C. (eds.) Logic Programming and Nonmonotonic Reasoning, 12th In-
ternational Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8148, pp. 42–53. Springer
(2013)

3. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP
solver based on constraint learning. In: Cabalar, P., Son, T. (eds.) Proceedings of
the Twelfth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2013). Lecture Notes in Computer Science, vol. 8148, pp.
54–66. Springer-Verlag (2013)

4. Alviano, M., Dodaro, C., Ricca, F.: Preliminary Report on WASP 2.0. In:
Konieczny, S., Tompits, H. (eds.) Proceedings of the 15th International Workshop
on Non-Monotonic Reasoning (NMR 2014). pp. 1–5. Vienna, Austria (2014)

5. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI
Communications – The European Journal on Artificial Intelligence 24(2), 147–164
(2011)

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Tempe, Arizona (2003)

7. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sort-
ing constructions. In: Cabalar, P., Son, T. (eds.) Proceedings of the Twelfth In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR 2013). Lecture Notes in Computer Science, vol. 8148, pp. 187–199. Springer-
Verlag (2013)

8. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

9. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: Asp-core-2 input language format (since 2013),
https://www.mat.unical.it/aspcomp2013/ASPStandardization

10. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth an-
swer set programming competition. ICLP 2014 Technical Communications - CoRR
abs/1405.3710 (2014), http://arxiv.org/abs/1405.3710

11. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The fifth answer set programming
system competition (since 2014), https://www.mat.unical.it/aspcomp2014/

12. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set program-
ming competition. TPLP 14(1), 117–135 (2014), http://dx.doi.org/10.1017/

S1471068412000105

10

13. Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S.,
Faber, W., Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S.,
Reale, K., Santoro, M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer
Set Programming Competition: Preliminary Report of the System Competition
Track. In: Proc. of LPNMR11. pp. 388–403. LNCS Springer, Vancouver, Canada
(2011)

14. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions
in Disjunctive Logic Programming: Semantics, Complexity, and Implementation
in DLV. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) 2003. pp. 847–852. Morgan Kaufmann Publishers, Acapulco,
Mexico (Aug 2003)

15. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang,
J. (eds.) Proceedings of the Eleventh International Conference on Principles of
Knowledge Representation and Reasoning (KR 2008). pp. 422–432. AAAI Press,
Sydney, Australia (2008)

16. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) Proceedings
of the 9th European Conference on Artificial Intelligence (JELIA 2004). Lecture
Notes in AI (LNAI), vol. 3229, pp. 200–212. Springer Verlag (Sep 2004)

17. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2011), special
Issue: John McCarthy’s Legacy

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. In: Theory and Practice of Logic Programming – Online-
Supplement: Proc. of 30th International Conference on Logic Programming (ICLP
2014). pp. 1–9. Cambridge University Press (2014)

19. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as sat modulo
acyclicity. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the
Twenty-first European Conference on Artificial Intelligence (ECAI 2014). Frontiers
in Artificial Intelligence and Applications, vol. 263, pp. 351–356. IOS Press (2014)

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: Preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) Proc. of the 11th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR). LNCS, vol. 6645, pp. 352–357.
Springer, Vancouver, Canada (2011)

21. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the
A-Prolog perspective . Artificial Intelligence 138(1–2), 3–38 (2002)

22. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Logic Programming: Proceedings Fifth Intl Conference and Symposium. pp.
1070–1080. MIT Press, Cambridge, Mass. (1988)

23. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

24. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–
62 (2001)

25. Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: Asp-based solver
scheduling. In: Technical Communications of the 28th International Conference on
Logic Programming (ICLP 2012). LIPIcs, vol. 17, pp. 176–187. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

26. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14(4-5), 569–585 (2014)

11

27. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. Journal of Applied Non-Classical Logics 16, 35–86 (2006)

28. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (Jul 2006)

29. Maratea, M., Pulina, L., Ricca, F.: Applying machine learning techniques to ASP
solving. In: Technical Communications of the 28th International Conference on
Logic Programming (ICLP 2012). LIPIcs, vol. 17, pp. 37–48. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

30. Maratea, M., Pulina, L., Ricca, F.: The multi-engine ASP solver ME-ASP. In:
Proceedings of Logics in Artificial Intelligence, JELIA 2012. LNCS, vol. 7519, pp.
484–487. Springer (2012)

31. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-
set programming. TPLP 14(6), 841–868 (2014), http://dx.doi.org/10.1017/

S1471068413000094

32. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-
vector logic. In: Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda,
M., Wolf, A. (eds.) Proceedings of the 19th International Conference on Appli-
cations of Declarative Programming and Knowledge Management (INAP 2011)
and 25th Workshop on Logic Programming (WLP 2011). Revised Selected Papers.
Lecture Notes in Computer Science, vol. 7773, pp. 105–116. Springer (2011)

33. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
Proc. of the 10th International Conference on Principles and Practice of Constraint
Programming (CP). pp. 438–452. Lecture Notes in Computer Science, Springer,
Toronto, Canada (2004)

34. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proc. of the
19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

35. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints 14(1), 80–116 (2009)

36. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

37. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. of the 22th AAAI
Conference on Artificial Intelligence. pp. 255–260. AAAI Press, Vancouver, Canada
(2007)

38. Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: An asp
practitioner’s guide. In: Technical Communications of the 28th International Con-
ference on Logic Programming (ICLP 2012). LIPIcs, vol. 17, pp. 164–175. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

39. Simons, P.: Extending and Implementing the Stable Model Semantics. Ph.D. thesis,
Helsinki University of Technology, Finland (2000)

40. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008)

12

