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Abstract. The Disjunctive Temporal Problem (DTP), which involves Boolean
combination of difference constraints of the formx − y ≤ c, is an expressive
framework for constraints modeling and processing. When a DTP is unfeasible
we may want to select a feasible subset of its DTP constraints (i.e., disjunctions
of difference constraints), possibly subject to some degree of satisfaction: The
Max-DTP extends DTP by associating a preference, in the form of weight, to
each DTP constraint for its satisfaction, and the goal is to find an assignment to
its variables that maximizes the sum of weights of satisfied DTP constraints. In
this paper we first present an approach based on Boolean optimization solvers to
solve Max-DTPs. Then, we implement our ideas in TSAT++, an efficientDTP
solver, and evaluate its performance on randomly generated Max-DTPs, using
both different Boolean optimization solvers and two optimization techniques.

1 Introduction

The Disjunctive Temporal Problem (DTP), introduced in [8],is defined as the finite
conjunction of DTP constraints, each DTP constraint being afinite disjunction of dif-
ference constraints of the formx−y ≤ c, wherex andy are arithmetic variables ranging
over a domain of interpretation (the set of real numbersR or the set of integersZ), and
c is a numeric constant. The goal is to find an assignment to the variables of the prob-
lem that satisfies all DTP constraints. The DTP is recognizedto be a good compromise
between expressivity and efficiency, given that the arithmetic consistency of a set of
difference constraints can be checked in polynomial time, and has found applications
in many areas such as planning, scheduling, hardware and software verification, see,
e.g., [19, 5]. Along the years several systems that can solveDTPs have been developed,
e.g., SK [21], TSAT [2], CSPI [18], EPILITIS [23], TSAT++ [4], and MATHSAT [5].
Moreover, the competition of solvers for Satisfiability Modulo Theories (SMT-COMP)3

has two logics that include DTPs (called QFRDL and QFIDL, respectively).
When a DTP is unfeasible, i.e., unsatisfiable, we may want to select a feasible sub-

set of its DTP constraints, which can be possibly subject to some degree of satisfaction:
The maximum satisfiability problem on a DTP (i.e., Max-DTP) extends DTP by asso-
ciating a preference, in the form of cost, or weight, to each DTP constraint for taking
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into account what the reward for the DTP constraint’s satisfaction. The goal is to find an
assignment to the variables of the problem that maximizes the sum of the reward of sat-
isfied DTP constraints. The introduction of preferences in DTPs has been first presented
in [20], where complex preferences can be assigned to each difference constraint.

In this paper we present an approach which extends the lazy SAT-based approach
implemented in solvers for DTPs. The idea is to(i) abstract a Max-DTPP into a Con-
junctive Normal Form (CNF) formulaφ and an optimization functionf ; (ii) find a
solution forϕ underf with a Boolean optimization solver; and(iii) verify if the solu-
tion returned is consistent. Step(ii) can be implemented with a variety of approaches
and solvers, ranging from Max-SAT4 and Pseudo-Boolean (PB)5, to Answer Set Pro-
gramming (ASP) [12, 13]. Then, we implement our ideas by modifying the DTP solver
TSAT++, a well-known and efficient solver for solving DTPs, and call the resulting
system TSAT#. We finally evaluate its performance on randomly generated DTPs,
using a well-known generation method from [21] extended with randomly generated
weights. We focus our analysis on TSAT#, as representative of the solvers implement-
ing the lazy SAT-based approach to DTPs, and consider Max-SAT and PB solvers as
back-engines, as well as two optimization techniques that proved effective for solving
DTPs. Our preliminary results show that the Max-SAT solverAKMAXSAT performs
well on these benchmarks, and that the employed optimization techniques help to re-
ducing the search time.

2 Formal Background

Disjunctive Temporal Problems.Temporal constraints have been introduced in [8], as
an extension of the Simple Temporal Problem (STP), which consists of conjunction
of different constraints. LetV be a set of symbols, calledvariables. A difference con-
straint, or simplyconstraintis an expression of the formx − y ≤ c, wherex, y ∈ V,
andc is a numeric constant. ADTP formula, or simply formula, is a combination of
constraints via the unary connective “¬” for negation and then-ary connectives “∧”
and “∨” (n ≥ 0) for conjunction and disjunction, respectively. Aconstraint literal, or
simply literal, is either a constraint or its negation. Ifa is a constraint, thena abbrevi-
ates¬a and¬a stands fora. Let the setD (domain of interpretation) be either the set of
the real numbersR, or the set of integersZ. An assignmentis a total function mapping
variables toD. Let σ be an assignment andφ be a formula. Thenσ |= φ (σ satisfiesa
formulaφ) is defined as follows.

σ |= x − y ≤ c if and only if σ(x) − σ(y) ≤ c,
σ |= ¬φ if and only if it is not the case thatσ |= φ,
σ |= (∧n

i=1
φi) if and only if for eachi ∈ [1, n], σ |= φi, and

σ |= (∨n
i=1

φi) if and only if for somei ∈ [1, n], σ |= φi.

If σ |= φ thenσ will also be called amodelof φ. We also say that a formulaφ is
satisfiableif and only if there exists a model for it.

4 http://www.maxsat.udl.cat/.
5 See, e.g.,http://www.cril.univ-artois.fr/PB10/.
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A DTP is the problem of deciding whether a formula is satisfiable or not in the
given domain of interpretationD. Notice that the satisfiability of a formula depends on
D, e.g., the formulax − y > 0 ∧ x − y < 1 is satisfiable ifD is R but unsatisfiable if
D is Z. However, the problems of checking satisfiability inZ andR are closely related
and will be almost always treated uniformly. Therefore, from now on, we will drop
the distinction (and we will re-introduce it only when needed). The definition of DTP
we have made in this section extends the classical one [8] given that the DTP is orig-
inally introduced in CNF, i.e., a DTP is represented as a conjunctively intended set of
DTP constraints, each DTP constraint being a disjunctivelyintended set of difference
constraints. From now on, we consider the formula to be in CNF.

Maximum satisfiability for DTPs.Given an unsatisfiable DTPφ, we may want to find an
assignmentσ′ that maximizes the number of satisfied DTP constraints (called “Max-
DTP”), or maximizes the sum of the weights associated to eachsatisfied DTP con-
straints (called “Weighted-Max-DTP”), in case the DTP constraints are subject to some
degree of satisfaction. The name of the problems are borrowed from the terminology
used in the Max-SAT Evaluations and Competitions, see, e.g., [1]. In related works,
e.g., [7, 17] always Max-SMT (meaning, e.g., Max-DTP in casethe optimization is de-
fined on a DTP) is used, regardless of whether constraints are“weighted”, or not. In
the following, we will use the same terminology, for us meaning what we are going to
define. Formally, a Max-DTP is a pair〈φ,w〉 where(i) φ is an (unsatisfiable) DTP, and
(ii) w is a function that maps each DTP constraint to a positive integer number.

Our goal is to find an assignmentσ′ for φ that maximizes the sum of weights associ-
ated to satisfied DTP constraints, i.e., maximizes the following linear objective function

∑

d∈φ,σ′|=d

w(d)

whered is a DTP constraint.

3 Algorithm and Optimizations

Algorithm Our approach for solving DTPs extends the lazy SAT-based approach em-
ployed by TSAT++ [4] for solving formulas in Separation Logic [22], which involves
difference constraints. For convenience, here we restrictits algorithm to DTPs. Given a
Max-DTPP :=〈φ,w〉, our approach works by

1. abstracting the DTPφ into a propositional CNF formulaϕ: Each difference con-
straint is replaced by a new distinct propositional atom;

2. solvingϕ subject to a linear optimization function defined on the clauses ofϕ:
This is done by relying on Boolean optimization solvers thatreturn a propositional
assignmentµ for ϕ;

3. checkingµ for arithmetic consistency inD: Each propositional literall ∈ µ is re-
placed by the corresponding constraint literal, and the consistency of all constraint
literals is verified. If the consistency check succeeds, then we have found a solution
to P , otherwise the algorithm goes back to step2
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It is a well known fact that BF can be used in step3 to check the satisfiability of a
finite setQ of constraints of the formx − y ≤ c. This is done by first building acon-
straint graph forQ, see, e.g., [6]. The soundness and completeness of the algorithm is
guaranteed by the soundness and completeness of the underlying solving procedure for
solving DTPs, i.e., the solving procedure forφ (showed in [4]), and from the soundness
and completeness of the Boolean optimization procedures employed. For solving step
2 a wide range of formulations, solving procedures and techniques can be employed,
e.g., Weighted Max-SAT, Pseudo-Boolean, and ASP.

In the next paragraphs we present two optimization techniques that can help to im-
prove the performance of the basic algorithm presented in this section. However, there
is an optimization to the basic procedure that it is set by default in TSAT#: If the con-
sistency check at step3 does not succeed, we add a “reason” to the abstraction formula
ϕ, i.e., a clause that prevents the solver employed to re-compute an assignmentµ having
the literals corresponding to constraint literals that caused the arithmetic inconsistency
assigned in the same way. Given the BF, computing such reasoncan be done efficiently,
by considering the difference constraints involved in (oneof the) negative cycles. Of
course, methods for limiting the number of added reasons is needed, in order to let
the procedure to still working in polynomial space, e.g., given a positive integerb, by
adding only the reasons that contain a number of literals less or equal thanb.
Optimizations.We herewith highlight two optimization techniques, one theory depen-
dent and one theory independent, that proved to be effectivefor solving DTPs, and that
can be fruitfully used with black-box engines. Their general idea is to reduce the enu-
meration of unfruitful assignments at a reasonable price. The first one, denoted with
IS2, is a preprocessing step: For each unordered pair〈ci, cj〉 of distinct difference con-
straints appearing in the formulaφ and involving the same variables, all possible pairs
of literals built out of them are checked for consistency. Assumingci andcj are incon-
sistent, the constraintci ∨ cj is added to the input formula before calling TSAT#. The
second technique, called “model reduction”, is based on theobservation that an assign-
mentµ generated by TSAT# can be redundant, that is, there might exist an assignment
µ′ ⊂ µ that propositionally entails the input formula. When this isthe case, we can
check the consistency ofµ′ insteadµ. Details for both techniques can be found in [4].

4 Implementation and Experimental Analysis

We have implemented TSAT# as an extension of the TSAT++ solver [3], by integrat-
ing some Max-SAT and PB solvers as back-engines for reasoning about Boolean opti-
mization problems. Specifically, the employed solvers are:M INI MAX SAT ver. 1.0 [14],
MINISAT + [9] ver. 1.14, andAKMAXSAT [15], the version submitted to the last Max-
SAT 2010 Competition. These are well-known solvers for Boolean optimization and
among the best Partial Weighted Max-SAT6 and Pseudo-Boolean (focusing on the OPT-
SMALL-INT 7 category) solvers, in various Max-SAT and PB Evaluations and Compe-

6 The “partial” version of the problem, where both hard and soft clausesare present, is needed
because the original clauses of the abstracted problem are soft, while theadded ones are hard.

7 We remind that this is a category of PB Evaluations and Competitions where(i) no constraint
has a sum of coefficients greater than 220 (20 bits), and(ii) the objective function is linear.
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titions. We remind thatMINISAT + is a PB solver,AKMAXSAT is a Max-SAT solver,
while MINI MAX SAT accepts problems in both formalisms: Given it has been mainly
evaluated on Max-SAT formulations, we rely on such format inour analysis. Given a
CNF formulaϕ, and a functionw8 mapping each clause to a positive integer number
that represents its weight, the main implementation part has been devoted to introduce
weights and formulate the optimization problems in Max-SATand PB formats. For
Max-SAT problems, there is an immediate formulation by directly assigning weights
to clauses, while PB problems need “clause selectors” to be added to each soft clause,
and the optimization function to be defined over the clause selectors. In the following,
given a Boolean optimization solver X,

1. TSAT#(X) is TSAT# in plain configuration employing X for step2;
2. TSAT#+p(X) is TSAT# with model reduction enabled employing X for step2;
3. TSAT#+is(X) is TSAT# withIS2 preprocessing enabled employing X for step2;
4. TSAT#+is+p(X) is TSAT# with both model reduction andIS2 preprocessing en-

abled employing X for step2.

About the benchmarks, we randomly generated Max-DTPs, using a well-known
generation method from [21] extended with random weights. In particular, in our model
Max-DTPs are randomly generated by fixing the numberk of disjuncts per clause, the
numbern of arithmetic variables, a positive integerL such that all the constants are
taken in[−L,L], and a positive integerw such that all the weights are taken in[1, w].
Then,(i) the number of clausesm is increased to create bigger problems,(ii) for each
tuple of values of the parameters, 10 instances are generated and then fed to the solvers,
and(iii) the median of the CPU times is plotted against them/n ratio. We fixk = 2,
L = 100, w = 100, n = 5, 10, and the ratiom/n varying from 6 to 10. The lower
bound ofm/n has been fixed as the lower positive integer for which there isa majority
of unsatisfiable underlying DTPs. Further note that the DTP is already a “difficult”
problem, and the analysis in literature on DTPs have been performed on problems with
few tens of variables for the setting used in this paper9: adding preferences further
increase the difficulty. The timeout for each problem has been set to 1800s on a Linux
box equipped with a Pentium IV 3.2GHz processor and 1GB of RAM.

Fig. 1 shows the results for TSAT# employing MINI MAX SAT (top), MINISAT +
(middle) andAKMAXSAT (bottom), respectively, on randomly generated Max-DTPs
with n = 5. For each plot, the left one considers real-valued variables, while the
right one considers integer-valued variables. First, we can note that the optimization
techniques described help to significantly improve the efficiency: Enhancing the plain
TSAT# version with one of the technique helps reducing the overall CPU time of
around a factor of3, while enabling both techniques in conjunction improves the per-
formance of around one order of magnitude. Comparing the performance of the vari-
ous Boolean optimization solvers employed,AKMAXSAT is clearly the best underlying

8 w has been originally defined on DTPs. After the abstraction, there is a one-to-one correspon-
dence between each DTP constraint and the related clause inϕ. Thus, with a slight abuse of
notation, we consider the optimization function to be defined on the clauses ofϕ.

9 In [16], DTPs with many variablesn are used, but the analysis is focused on problems with
k > 2 having ratiosm/n such that a vast majority of instances are satisfiable.
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Fig. 1. Results of TSAT# employing MINI MAX SAT (top),MINISAT + (middle), andAKMAXSAT

(bottom) on random Max-DTPs with5 real-valued (left) and integer-valued (right) variables.

solver on these benchmarks among the ones analyzed: On the biggest instances, it gains
around one order of magnitude over MINI MAX SAT, and more than a factor of20 over
MINISAT +. All considerations made hold with both real- and integer-valued variables.

The intuition for the superior performance ofAKMAXSAT is that, given the results
of the 2010 Max-SAT Competition,AKMAXSAT seems to be very effective on randomly
generated and synthetic benchmarks, Given our approach, the starting abstraction for-
mula has the following structure: It is a fixed-length formula where each variable occurs
once (with high probability) in the formula. But this was notfully expected: During the
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search, adding constraints corresponding to reasons, the number of occurrences of lit-
erals increase, giving to the formula a less “synthetic” structure.

We increase the number of variablesn to 10, and focus the analysis on TSAT#
employingAKMAXSAT , i.e., our best Boolean optimization solver on these benchmarks.
From Fig. 2 we can note that the impact of the optimization techniques is now different:
Model reduction improves dramatically the performance of TSAT#(AKMAXSAT ), while
the impact of the preprocessing is limited with this setting.

5 Conclusions and Future Work

In this paper we have presented an approach to solving weighted maximum satisfiabil-
ity on DTPs. The approach extends the one implemented in TSAT++, by employing
Boolean optimization solvers as reasoning engines. The performance of the resulting
system, TSAT#, employing some Max-SAT and PB solvers are analyzed on randomly
generated benchmarks, together with the impact that both theory dependent and inde-
pendent optimization techniques have on its performance. The AKMAXSAT Max-SAT
solver is the best option among the solvers analyzed, and both optimization techniques
help to improve the overall performance. Current research includes(i) the integration
of other solvers in TSAT#, e.g., the ASP solverCLASP [11], that have proved to be
very competitive at the 2009 PB Competition,(ii) the extension of our algorithm to
deal with other forms of preferences, e.g., where weights can be associated to each dif-
ferent constraint, for which it is still possible to rely on PB and ASP formalisms and
systems, and(iii) a comparative analysis with rival tools for which such more complex
preferences can be easily specified, e.g. MAXILITIS and HYSAT [10].
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