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Abstract. The Disjunctive Temporal Problem (DTP), which involves Boolean
combination of difference constraints of the fomm- y < ¢, is an expressive
framework for constraints modeling and processing. When a DTP &asitfle
we may want to select a feasible subset of its DTP constraints (i.e., cligiog

of difference constraints), possibly subject to some degree of sdtisfaThe
Max-DTP extends DTP by associating a preference, in the form of weigh
each DTP constraint for its satisfaction, and the goal is to find an assigrme
its variables that maximizes the sum of weights of satisfied DTP constraints. |
this paper we first present an approach based on Boolean optimizalienssto
solve Max-DTPs. Then, we implement our ideas in TSAT++, an effidier®
solver, and evaluate its performance on randomly generated Mas;DiEhg
both different Boolean optimization solvers and two optimization techniques.

1 Introduction

The Disjunctive Temporal Problem (DTP), introduced in [8]defined as the finite
conjunction of DTP constraints, each DTP constraint beifigite disjunction of dif-
ference constraints of the form-y < ¢, wherex andy are arithmetic variables ranging
over a domain of interpretation (the set of real numtiers the set of integer®), and

¢ is a numeric constant. The goal is to find an assignment todhahles of the prob-
lem that satisfies all DTP constraints. The DTP is recogniadsk a good compromise
between expressivity and efficiency, given that the aritionensistency of a set of
difference constraints can be checked in polynomial time, fzas found applications
in many areas such as planning, scheduling, hardware ahdasefverification, see,
e.g., [19, 5]. Along the years several systems that can $&I\Rs have been developed,
e.g., SK [21], TsAT [2], CSR [18], EPILITIS [23], TSAT++ [4], and MATHSAT [5].
Moreover, the competition of solvers for Satisfiability Mo Theories (SMT-COMP)
has two logics that include DTPs (called QL and QFEIDL, respectively).

When a DTP is unfeasible, i.e., unsatisfiable, we may wantlezta feasible sub-
set of its DTP constraints, which can be possibly subjecbioesdegree of satisfaction:
The maximum satisfiability problem on a DTP (i.e., Max-DTR)emds DTP by asso-
ciating a preference, in the form of cost, or weight, to eadiP@onstraint for taking
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into account what the reward for the DTP constraint’s satigbn. The goal is to find an
assignment to the variables of the problem that maximizesuim of the reward of sat-
isfied DTP constraints. The introduction of preferencesTi#®Bhas been first presented
in [20], where complex preferences can be assigned to effehedice constraint.

In this paper we present an approach which extends the lazyb8#ed approach
implemented in solvers for DTPs. The idea i tpabstract a Max-DTRP into a Con-
junctive Normal Form (CNF) formula and an optimization functiorf; (i:) find a
solution fore underf with a Boolean optimization solver; arfdi:) verify if the solu-
tion returned is consistent. Stéfi) can be implemented with a variety of approaches
and solvers, ranging from Max-SABnd Pseudo-Boolean (PB)to Answer Set Pro-
gramming (ASP) [12, 13]. Then, we implement our ideas by iiyitj the DTP solver
TSAT++, a well-known and efficient solver for solving DTPsdacall the resulting
system TSAT#. We finally evaluate its performance on rangiogeinerated DTPs,
using a well-known generation method from [21] extendedhwétndomly generated
weights. We focus our analysis on TSAT#, as representatitieecsolvers implement-
ing the lazy SAT-based approach to DTPs, and consider Max£W PB solvers as
back-engines, as well as two optimization techniques tiatgul effective for solving
DTPs. Our preliminary results show that the Max-SAT solx&MAXSAT performs
well on these benchmarks, and that the employed optimiza¢ichniques help to re-
ducing the search time.

2 Formal Background

Disjunctive Temporal ProblemsTemporal constraints have been introduced in [8], as
an extension of the Simple Temporal Problem (STP), whichsisté of conjunction
of different constraints. LeY be a set of symbols, calledgriables A difference con-
straint, or simply constraintis an expression of the form — y < ¢, wherex,y € V,
andc is a numeric constant. ®TP formulg or simply formula, is a combination of
constraints via the unary connective™for negation and thex-ary connectives A”
and “v" (n > 0) for conjunction and disjunction, respectively.cAnstraint literal or
simply literal, is either a constraint or its negation.dlfis a constraint, then abbrevi-
ates—a and=a stands fom. Let the sef) (domain of interpretatiopbe either the set of
the real numberR, or the set of integerg. An assignmenis a total function mapping
variables tdD. Let o be an assignment antlbe a formula. Thew = ¢ (o satisfiesa
formula¢) is defined as follows.

oEx—y<cifandonlyifo(z) — o(y) < e,

o = —¢ if and only if it is not the case that |= ¢,

o = (A, ¢;) if and only if for eachi € [1,n], o |= ¢;, and
o = (Vi ¢;) ifand only if for somei € [1,n], 0 = ¢;.

If ¢ E ¢ theno will also be called anodelof ¢. We also say that a formula is
satisfiableif and only if there exists a model for it.

“http://ww. maxsat . udl . cat/.
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A DTP is the problem of deciding whether a formula is satidéiadr not in the
given domain of interpretatio. Notice that the satisfiability of a formula depends on
D, e.g., the formulac — y > 0 A x — y < 1 is satisfiable ifD is R but unsatisfiable if
D is Z. However, the problems of checking satisfiabilityZrandR are closely related
and will be almost always treated uniformly. Thereforenfraow on, we will drop
the distinction (and we will re-introduce it only when nedjleThe definition of DTP
we have made in this section extends the classical one [8hgdivat the DTP is orig-
inally introduced in CNF, i.e., a DTP is represented as awwmtjvely intended set of
DTP constraints, each DTP constraint being a disjunctiirglynded set of difference
constraints. From now on, we consider the formula to be in CNF

Maximum satisfiability for DTPsGiven an unsatisfiable DT®, we may want to find an
assignment’ that maximizes the number of satisfied DTP constraints€ddiMax-
DTP”), or maximizes the sum of the weights associated to satisfied DTP con-
straints (called “Weighted-Max-DTP"), in case the DTP dogisits are subject to some
degree of satisfaction. The name of the problems are boddreen the terminology
used in the Max-SAT Evaluations and Competitions, see, E.h.In related works,
e.g., [7,17] always Max-SMT (meaning, e.g., Max-DTP in cimeoptimization is de-
fined on a DTP) is used, regardless of whether constraint$aggighted”, or not. In
the following, we will use the same terminology, for us meanivhat we are going to
define. Formally, a Max-DTP is a pait, w) where(i) ¢ is an (unsatisfiable) DTP, and
(74) w is a function that maps each DTP constraint to a positivgygrtaumber.

Our goal is to find an assignmentfor ¢ that maximizes the sum of weights associ-
ated to satisfied DTP constraints, i.e., maximizes thevigfig linear objective function

Y wd)

deg,o’|=d

whered is a DTP constraint.

3 Algorithm and Optimizations

Algorithm Our approach for solving DTPs extends the lazy SAT-basedoaph em-
ployed by TSAT++ [4] for solving formulas in Separation Lod¢22], which involves
difference constraints. For convenience, here we regsiatgorithm to DTPs. Given a
Max-DTP P:=(¢, w), our approach works by

1. abstracting the DTR into a propositional CNF formula: Each difference con-
straint is replaced by a new distinct propositional atom;

2. solving¢ subject to a linear optimization function defined on the s&muofy:
This is done by relying on Boolean optimization solvers tieairn a propositional
assignment; for ¢;

3. checkingu for arithmetic consistency ifd: Each propositional literdl € p is re-
placed by the corresponding constraint literal, and thesistency of all constraint
literals is verified. If the consistency check succeeds) the have found a solution
to P, otherwise the algorithm goes back to skep



It is a well known fact that BF can be used in st check the satisfiability of a
finite set@ of constraints of the form: — y < ¢. This is done by first building aon-
straint graph for@, see, e.g., [6]. The soundness and completeness of thétlahyds
guaranteed by the soundness and completeness of the undedyving procedure for
solving DTPs, i.e., the solving procedure fb(showed in [4]), and from the soundness
and completeness of the Boolean optimization procedurgdoged. For solving step
2 a wide range of formulations, solving procedures and teples can be employed,
e.g., Weighted Max-SAT, Pseudo-Boolean, and ASP.

In the next paragraphs we present two optimization teclesigoat can help to im-
prove the performance of the basic algorithm presentedsrstittion. However, there
is an optimization to the basic procedure that it is set baudéfn TSAT#: If the con-
sistency check at stepdoes not succeed, we add a “reason” to the abstraction farmul
©, i.e., a clause that prevents the solver employed to re-atevgm assignmepthaving
the literals corresponding to constraint literals thatseslithe arithmetic inconsistency
assigned in the same way. Given the BF, computing such reasolme done efficiently,
by considering the difference constraints involved in (ofi¢he) negative cycles. Of
course, methods for limiting the number of added reasongésled, in order to let
the procedure to still working in polynomial space, e.gvegia positive integel, by
adding only the reasons that contain a number of literatsdegqual thai.
Optimizations.We herewith highlight two optimization techniques, oneottyedepen-
dent and one theory independent, that proved to be effefctivaolving DTPs, and that
can be fruitfully used with black-box engines. Their gehétea is to reduce the enu-
meration of unfruitful assignments at a reasonable pri¢e flrst one, denoted with
IS,, is a preprocessing step: For each unordered(pait;) of distinct difference con-
straints appearing in the formudaand involving the same variables, all possible pairs
of literals built out of them are checked for consistencyséraingc; andc; are incon-
sistent, the constrair V ¢; is added to the input formula before calling TSAT#. The
second technique, called “model reduction”, is based owoliservation that an assign-
menty, generated by TSAT# can be redundant, that is, there migsit @xiassignment
' C u that propositionally entails the input formula. When thighie case, we can
check the consistency @f insteadu. Details for both techniques can be found in [4].

4 Implementation and Experimental Analysis

We have implemented TSAT# as an extension of the TSAT++ sfJeby integrat-
ing some Max-SAT and PB solvers as back-engines for reag@fiout Boolean opti-
mization problems. Specifically, the employed solvers sreii MAX SAT ver. 1.0 [14],
MINISAT + [9] ver. 1.14, andAKMAXSAT [15], the version submitted to the last Max-
SAT 2010 Competition. These are well-known solvers for Baal optimization and
among the best Partial Weighted Max-SAfnhd Pseudo-Boolean (focusing on the OPT-
SMALL-INT 7 category) solvers, in various Max-SAT and PB Evaluatiorgs@ampe-

% The “partial” version of the problem, where both hard and soft classepresent, is needed
because the original clauses of the abstracted problem are soft, whilddid ones are hard.

" We remind that this is a category of PB Evaluations and Competitions vwieme constraint
has a sum of coefficients greater th&A 20 bits), andii) the objective function is linear.



titions. We remind thamINISAT + is a PB solveraAKMAXSAT is a Max-SAT solver,
while MINIMAX SAT accepts problems in both formalisms: Given it has been mainl
evaluated on Max-SAT formulations, we rely on such formabim analysis. Given a
CNF formulay, and a functionv® mapping each clause to a positive integer number
that represents its weight, the main implementation pastiie®n devoted to introduce
weights and formulate the optimization problems in Max-S&id PB formats. For
Max-SAT problems, there is an immediate formulation by diseassigning weights

to clauses, while PB problems need “clause selectors” taldedito each soft clause,
and the optimization function to be defined over the clautecs®s. In the following,
given a Boolean optimization solver X,

TSAT#(X) is TSAT# in plain configuration employing X foregi2;

TSAT#+p(X) is TSAT# with model reduction enabled empiayiX for step2;
TSAT#+is(X) is TSAT# with/ S, preprocessing enabled employing X for step
TSAT#+is+p(X) is TSAT# with both model reduction afd, preprocessing en-
abled employing X for step.

PoObdPE

About the benchmarks, we randomly generated Max-DTPsgusiwell-known
generation method from [21] extended with random weiglntparticular, in our model
Max-DTPs are randomly generated by fixing the numbef disjuncts per clause, the
numbern of arithmetic variables, a positive integérsuch that all the constants are
taken in[—L, L], and a positive integar such that all the weights are taken[inw].
Then, () the number of clauses is increased to create bigger problerfig) for each
tuple of values of the parameters, 10 instances are gederadkthen fed to the solvers,
and(ii¢) the median of the CPU times is plotted againstithé» ratio. We fixk = 2,

L = 100, w = 100, n = 5,10, and the ration/n varying from 6 to 10. The lower
bound ofm /n has been fixed as the lower positive integer for which theaenisjority
of unsatisfiable underlying DTPs. Further note that the DI Rlieady a “difficult”
problem, and the analysis in literature on DTPs have bedonpeed on problems with
few tens of variables for the setting used in this papadding preferences further
increase the difficulty. The timeout for each problem hasitse to 1800s on a Linux
box equipped with a Pentium IV 3.2GHz processor and 1GB of RAM

Fig. 1 shows the results for TSAT# employingiMMAX SAT (top), MINISAT +
(middle) andAKMAXSAT (bottom), respectively, on randomly generated Max-DTPs
with n = 5. For each plot, the left one considers real-valued varghiéhile the
right one considers integer-valued variables. First, we roate that the optimization
techniques described help to significantly improve theiefficy: Enhancing the plain
TSAT# version with one of the technique helps reducing theral CPU time of
around a factor 08, while enabling both techniques in conjunction improves pler-
formance of around one order of magnitude. Comparing thiseance of the vari-
ous Boolean optimization solvers employ@@MAXSAT is clearly the best underlying

8 w has been originally defined on DTPs. After the abstraction, there is toemee correspon-
dence between each DTP constraint and the related clayseTinus, with a slight abuse of
notation, we consider the optimization function to be defined on the clauges of

%1n [16], DTPs with many variables are used, but the analysis is focused on problems with
k > 2 having ratiosn/n such that a vast majority of instances are satisfiable.
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Fig. 1. Results of TSAT# employing MitMAX SAT (top), MINISAT + (middle), andAKMAXSAT
(bottom) on random Max-DTPs withreal-valued (left) and integer-valued (right) variables.

solver on these benchmarks among the ones analyzed: Orgtiesbinstances, it gains
around one order of magnitude ovenMIM AX SAT, and more than a factor @f) over
MINISAT +. All considerations made hold with both real- and integalied variables.

The intuition for the superior performance MMAXSAT is that, given the results
of the 2010 Max-SAT CompetitiomKMAXSAT seems to be very effective on randomly
generated and synthetic benchmarks, Given our approaeistditing abstraction for-
mula has the following structure: It is a fixed-length foraulhere each variable occurs
once (with high probability) in the formula. But this was riolly expected: During the
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Fig.2. Results of TSAT# employinghkKMAXSAT on random Max-DTPs withi0 real-valued
(Left) and integer-valued (Right) variables.

search, adding constraints corresponding to reasonsuthear of occurrences of lit-
erals increase, giving to the formula a less “synthetiaictre.

We increase the number of variablegdo 10, and focus the analysis on TSAT#
employingAKMAXSAT , i.e., our best Boolean optimization solver on these beracksn
From Fig. 2 we can note that the impact of the optimizatiohmégues is now different:
Model reduction improves dramatically the performance 8SAT#(AKMAXSAT ), while
the impact of the preprocessing is limited with this setting

5 Conclusionsand Future Work

In this paper we have presented an approach to solving veelghtiximum satisfiabil-
ity on DTPs. The approach extends the one implemented in FSABy employing
Boolean optimization solvers as reasoning engines. Thienpesince of the resulting
system, TSAT#, employing some Max-SAT and PB solvers arg/aed on randomly
generated benchmarks, together with the impact that bettryrdependent and inde-
pendent optimization techniques have on its performanbe AKMAXSAT Max-SAT
solver is the best option among the solvers analyzed, arfddmimization techniques
help to improve the overall performance. Current researchudles(:) the integration
of other solvers in TSAT#, e.g., the ASP soh@&rasp [11], that have proved to be
very competitive at the 2009 PB Competitidii;) the extension of our algorithm to
deal with other forms of preferences, e.g., where weightdbesassociated to each dif-
ferent constraint, for which it is still possible to rely oBRnd ASP formalisms and
systems, antiii) a comparative analysis with rival tools for which such masenplex
preferences can be easily specified, e.gxMITIS and Hr SAT [10].
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