Fundamenta Informaticae XX (2011) 2> 1
I0S Press

Look-back Techniques for ASP Programs with Aggregates

Wolfgang Faber
Department of Mathematics - University of Calabria

Nicola Leone®
Department of Mathematics - University of Calabria

Marco Maratea
DIST - University of Genova, and
Department of Mathematics - University of Calabria

Francesco Ricca
Department of Mathematics - University of Calabria

Abstract. The introduction of aggregates has been one of the mostargléanguage extensions
to Answer Set Programming (ASP). Aggregates are very egpreshey allow to represent many
problems in a more succinct and elegant way compared to gajgréree programs. A significant
amount of research work has been devoted to aggregatesAStieommunity in the last years, and
relevant research results on ASP with aggregates have loédisled, on both theoretical and prac-
tical sides. The high expressiveness of aggregates (elimgaggregates often causes a quadratic
blow-up in program size) requires suitable evaluation me@shand optimization techniques for an
efficient implementation. Nevertheless, in spite of thevabmentioned research developments, ag-
gregates are treated in a quite straightforward way in m&® 8ystems.

In this paper, we explore the exploitation of look-back te@gnes for an efficient implementation

of aggregates. We define a reason calculus for backjumpim&SiA programs with aggregates.
Furthermore, we describe how these reasons can be useceintorguide look-back heuristics for

programs with aggregates. We have implemented both the eason calculus and the proposed
heuristics in the DLV system, and have carried out an expertal analysis on publicly available

benchmarks which shows significant performance benefits.

Keywords: Knowledge Representation and Reasoning, NonmonotonisdRéay, Answer Set
Programming, Heuristics, Aggregates.

Address for correspondence: Department of Mathematics, Witiyef Calabria Via P. Bucci, cubo 30b, 87036 Rende (CS),
Italy.

*Preliminary versions of this work have been published at 15th RCRAshoxon Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion (RCRA'08) and Workshop_ogic and Search: Computation of structures
from declarative descriptions (LASH’08).

CCorresponding author

2 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

1. Introduction

Answer Set Programming (ASP) [23] has become a popular logic progragrfraimework during the
last decade, the reason being mostly its intuitive declarative reading, amadib&lly precise expressiv-
ity, and last but not least the availability of some efficient ASP systems, vidnchured the implementa-
tion of many advanced real-world ASP applications (see, e.g., [34, 3B,Q8e of the most important
extensions of the language of ASP has been the introduction of aggregsggregates significantly
enhance the language of ASP, allowing for natural and concise modeflimguwy problems. A lot of
work has been done both theoretically (mostly for determining the semantigg@fgates that occur in
recursion) [32, 39, 11, 13], and practically, for endowing systems avitblection of aggregate functions
[38, 7, 14, 20, 1].

However, work on optimizing system performance with respect to aggegaASP is still sparse,
and current implementations use more or less ad-hoc techniques. Moffewgrained details on their
treatment have been rarely presented (with the recent, notable excefti8h ahich nonetheless focus
on a single aggregate function).

In this work, we explore the exploitation of look-back techniques for éiniefit implementation of
aggregates. We build upon a technique for backjumping, which was geekio the setting of the solver
DLV for aggregate-free ASP programs. As a main contribution, we desbtiow thereason calculus
defined in [35] can be extended for keeping track of the reasonsvVeral types of aggregates supported
by DLV. The information collected in this way can then be exploited directly &mikumping, using the
original method described in [35].

Importantly, reasons for aggregates can also be exploited for lodkHzaristics. Indeed, we show
how the look-back heuristics presented in [30] can be extended to thiegagg case. For this task,
a key issue is the initialization of heuristic values: since look-back heurissesniormation of the
computation done so far, they would be completely uninformed at the begiohithge computation,
as no information can be looked back on. In order to tackle this issue, msdew two alternatives:
in the first, simple alternative, the “relevance” of an aggregate literal igrdated by the size of its
aggregate set. The second, more informed, alternative applies staeclamiijues on an aggregate-free
program equivalent to the given program with aggregates for initializieghtburistic values. In this
second case we pay particular attention to avoiding the materialization of thisgaggrfree program,
but use the knowledge about its structure for computing the initial valuds.s€bond method is exact
in the aggregate-stratified case, in the sense that the aggregatesijesnpis equivalent to the original
program with aggregates, and it can still be used for the purpose ofstiein the aggregate-unstratified
case, as it can serve as a reasonable approximation.

We have implemented the proposed techniques for the aggregate-stratifing, and report on a
performance evaluation of the obtained prototype on publicly availablehbesrds, in which we ob-
served performance benefits for the enhanced system.

Summing up the main contributions of the work:

e We extend the reason calculus in [35] to include reasons for all the gaggrunctions supported
by DLV;

e We show how this extension can be used to guide look-back heuristicsyepresent two alter-
natives for their initialization;

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 3

e We implement these new features in DLV,

e We perform an experimental analysis on publicly available benchmarkshwhows performance
benefits for the enhanced system employing the more elaborate heuristic.

The paper is structured as follows: first we review syntax and semarnfthcSR with aggregates in
Section 2, and the backjumping method and reason calculus of DLV in Sectigv¥e3hen describe
the extension of the reason calculus to aggregates in Section 4. Dealing ekthdok heuristics in the
presence of aggregates is discussed in Section 5. The experimettatievaof the enhanced system
is presented and discussed in Section 6. In Section 7 we discuss relatednslaconclude the paper in
Section 8. The appendix provides further details on the experiments.

2. Answer Set Programming with Aggregates

In this section, we recall syntax, semantics, and some basic propertiggaptograms with aggregates
under the answer set semantics.

2.1. Syntax

Variables, Constants, and Predicates. We consider finite sets ofariables constants and predi-
cates Similar to Prolog notation, we will denote variables as strings starting with opperetters and
constants as non-negative integers or strings starting with lowercass.|€ttedicates are strings start-
ing with lowercase letters or symbols such-as<, > (so-called built-in predicates that have a fixed
meaning). Ararity (non-negative integer) is associated with each predicate.

Standard Atoms and Literals. A termis either a variable or a constant. $dandard atoms an
expressiomn(ty, - . .,t,), Wherep is apredicateof arity n andtq,... t,, are terms. Astandard literal L

is either a standard atom (in this case, it iositivg or a standard atom preceded by the default
negation symbohot (in this case, it isnegativg. A conjunction of standard literals is of the form
Ly,..., L where each; (1 < i < k) is a standard literal. Two literals are complementary if they are
of the formp andnot p (wherep is an atom). Given a literdl, let —. L denote its complementary literal.
Accordingly, given a sef of literals,—~.L = {—.L | L € L}.

Set Terms. A set termis either a symbolic set or a ground setsymbolic sets a pair{ Vars : conj },
where Vars is a list of variables andonj is a conjunction of standard atorhgA ground seis a set of
pairs of the form(z : conj), wheret is a list of constants ancbn; is a ground conjunction of standard
atoms.

Aggregate Functions. An aggregate functions of the formf(.S), wheresS is a set term, and is an
aggregate function symholntuitively, an aggregate function can be thought of as a (possibtiapar
function mapping multisets of constants to a constant.

ntuitively, a symbolic set{X : a(X,Y),p(Y)} stands for the set of{-values makinga(X,Y),p(Y) true, that is,
{X|3Y such that a(X,Y),p(Y) is true}.

4 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

Example 2.1. In the examples, we adopt the syntaDdfV to denote aggregatefAggregate functions
currently supported by the DLV system argcount (number of terms)#sum (sum of non-negative
integers) #min (Minimum term) #max (Mmaximum termy: |

Aggregate Literals. An aggregate atonis f(S) < T, wheref(.S) is an aggregate functiore {=
, <, <,>,>}is apredefined comparison operator, hi a term (variable or constant) referred to as
guard.

Example 2.2. In the following aggregate atoms, the latter contains a ground set and aaldtound
instance of the former:
#max{Z :r(Z),a(Z,V)} >Y
#max{(2 : 1(2),a(2,k)), (21 r(2),a(2,0))} > 1
i

An atomis either a standard atom or an aggregate atotitesal L. is an atomA or an atomA preceded
by the default negation symbabt; if A is an aggregate atony, is anaggregate literal

Programs. A rule r is a construct

ay v -+ Vv ap = by,...,bg, not bgy1,..., not by,.
whereas, ..., a, are standard atoms, . .., b,, are atoms, and > 1, m > k > 0. The disjunction
ay v -+ v ayn IS referred to as thaeadof r while the conjunctiorby, ..., by, not bg1,...,not by, is

thebodyof . We defineH (r) = {a1,...,a,}, BY(r) = {b1,...,bx}, B~ (r) = {not bgi1, ..., not by, },
andB(r) = BT (r)U B~ (r). A globalvariable of a rule- appears in a standard atomrafpossibly also
in other atoms); all other variables dogal. A programis a set of rules.

Note that this syntax does not explicitly allow rules without head atoms, alsarkas integrity
constraints, which are usually found in ASP languages. They canMeow® simulated in a standard
way by using a new symbol and negation.

Safety. Aruler issafeif the following conditions hold: (i) each global variableoéppears in a positive
standard literal in the body of, (i) each local variable of appearing in a symbolic s¢tVars : conj}
appears in an atom @bny; (iii) each guard of an aggregate atomras a constant or a global variable.

A program@P is safe if allr € P are safe. In the following we assume that programs are safe. Note that
unsafe rules in general are not domain-independent, a condition wiiehrige to semantic issues.

Example 2.3. Consider the following rules with aggregates:
p(X) =q(X,Y, V), #max{Z : r(Z),a(Z,V)} > Y.
p(X) :=q(X,Y, V), #sun{S : a(Z,2)} > Y.
p(X) :=q(X,Y, V), #min{Z : r(Z),a(Z,V)} > T.

The first rule is safe, while the second is not, since the local variabielates condition (ii). The third
rule is not safe either, since the gudrdiolates condition (iii). |

2The first two aggregates roughly correspond, respectively, to tiknedity and weight constraint literals ePARSE #min
and#max are undefined for an empty set.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 5

Stratification. A program?P is aggregate-stratifiedf there exists a functiofj ||, calledlevel mapping
from the set of (standard) predicatesfto ordinals, such that for each pailandb of standard predi-
cates, occurring in the head and body of a ruke P, respectively: (i) ifb appears in an aggregate atom,
then||b|| < ||a||, and (ii) if b occurs in a standard atom, thgh|| < ||al|.

Example 2.4. Consider the program consisting of the following two rules:

q(X) =p(X), #count{Y : a(Y, X),b(X)} <2.
p(X) = q(X), b(X).

The program is aggregate-stratified, as the level mappiag = |[b|| = 1, ||p|| = ||¢|| =2 satisfies
the required conditions. If we add the ruleX) :- p(X), then no such level-mapping exists and the
program becomes aggregate-unstratified. |

Intuitively, aggregate-stratification forbids recursion through aggesy While the semantics of
aggregate-stratified programs is more or less agreed upon, diffackdisagreeing semantics for aggregate-
unstratified programs have been defined in the past, cf. [32, 39, A thelfollowing, we will consider
aggregate-stratified programs. We refer to [26] for an overviewag@sed semantics for the unstratified
case and how they relate.

2.2. Answer Set Semantics

Universe and Base. Given a progran®, letUp denote the set of constants appearing iits Herbrand
universe), andBp be the set of standard atoms constructible from the (standard) predi¢g®ewith
constants irU/p (the Herbrand base). Given a sét let2” denote the set of all multisets over elements
from X. Without loss of generality, we assume that aggregate functions niafthe set of integers).

Example 2.5. #count is defined ove"”” #sum over2 ; #min and#max are defined oveZ \{0}. 1

Instantiation. A substitutionis a mapping from a set of variables&®. A substitution from the set
of global variables of a rule (to Up) is aglobal substitution for y a substitution from the set of local
variables of a symbolic s&t (to Up) is alocal substitution forS. Given a symbolic set without global
variablesS = {Vars : conj}, theinstantiation ofS is the ground set of pairgist(S) = {(y(Vars) :
v(conj)) | v is a local substitution forS}.3

A ground instancef a ruler is obtained in two steps: (1) a global substitutiofor r is first applied over
r; (2) every symbolic sef in o(r) is replaced by its instantiatiom.st(S). The instantiatiorzround(P)
of a prograntP is the set of all possible instances of the rule®of

Example 2.6. Consider the prograrf :

d)vp(2,2). q(2)vp(2.1). H(X) = q(X), #sum{Y : p(X,Y)} > L.

3Given a substitutiom and an objecDb; of the language (rule, set, etc.), we denoterlb®b;) the object obtained by replacing
each variableX in Obj by o(X).

6 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

The instantiatiorGround(P;) is

q(1)vp(2,2). (1) :=q(1), #sum{(1:p(1,1)), (2:p(1,2))} > 1.
q(2)vp(2,1). #(2):=q(2), #sun{(1:p(2,1)), (2:p(2,2))} > 1.

Interpretations. An interpretationfor a prograniP is a consistent set of standard ground literals, that
isI C (Bp U-.Bp) such that N —.I = (). A standard ground literdl is true (resp. false) with respect
tolif L € I (resp.L € —.I). If a standard ground literal is neither true nor false with respectttten

it is undefined with respect tb. We denote by + (resp./ ™) the set of all atoms occurring in standard
positive (resp. negative) literals ih We denote byl the set of undefined atoms with respect t(ihat

is, Bp \ It U I7). An interpretation/ is total if I is empty (thatis/* U —.I- = Bp), otherwisel is
partial.

An interpretation also provides a meaning for aggregate literals. Their taliile \s first defined for
total interpretations, and then generalized to partial ones.

Let I be atotal interpretation. A standard ground conjunction is true with regpédtall its literals
are true with respect tf; it is false if any of its literals is false with respectfoLet f(S) be an aggregate
function, whereS is a ground set. The valuatiaditS) of S with respect tal is the multiset of the first
constant of the elements fhwhose conjunction is true with respectitoMore precisely, lef (S) denote
the multiset]t; | (t1,...,t, : conj) € SA conj is true with respect to |. The valuation/(f(S)) of an
aggregate functiorf (.S) with respect tal is the result of the application of on I(S). If the multiset
I(S) is notin the domain of, I(f(S)) = L (where_L is a fixed symbol not occurring iR).

An instantiated aggregate atamof the form f(.S) < k is true with respect td if: (i) 1(f(S)) #

1, and, (i) I(f(S)) < k holds; otherwise A is false. An instantiated aggregate literal of the form
notf(S) < k is true with respect tal if (i) I(f(S)) # L, and, (ii) I(f(S)) < k does not hold,;
otherwise, it is false.

If I is apartial interpretation, an aggregate literdlis true (resp. false) with respect fdf it is true
(resp. false) with respect &ach totalinterpretation/ extending/ (that is, for all/ such thatt C J, A
is true (resp. false) with respect fQ; otherwise, it is undefined.

Example 2.7. Consider the atoml = #sum{(1:p(2,1)),(2:p(2,2))} > 1. Let S be the ground set
in A. For the interpretatiod = {p(2,2)}, each extending total interpretation contains eit{@r 1) or
not p(2,1). Therefore, eithef (S) = [2] or I(S) = [1,2] and the application ofsunm yields either
2 > 1o0r3 > 1, henceA is true with respect td.]

The above definitions of interpretation and truth values preserve “kag@lenonotonicity”. If an
interpretation/ extends/ (thatis,/ C J), then each literal which is true with respectitds true with
respect to/, and each literal which is false with respect/tes false with respect td as well.

Minimal Models. Given an interpretatiod, a ruler is satisfied with respect td if some head atom
is true with respect td whenever all body literals are true with respect/toA total interpretation\/
is amodelof a programP if all rules r € Ground(P) are satisfied with respect t/. A model M
for P is (subset) minimal if no modeN for P exists such thatv™ C M™. Note that, under these
definitions, the wordnterpretationrefers to a possibly partial interpretation, whilenadelis always a
total interpretation.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 7

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transformatiaharswer
sets for programs with aggregates from [11]: Given a ground pno@tand a total interpretation, let
P! denote the transformed program obtained fBray deleting all rules in which a body literal is false
with respect tdl. I is an answer set of a prograhhif it is a minimal model ofGround(P)’.

Example 2.8. Consider the total interpretations = {p(a),q(a)}, Io = {not p(a),q(a)}, Is =
{p(a),not q(a)}, andly = {not p(a),not ¢(a)} and program:

P = {p(a) :-#count{X : ¢(X)} > 0.}
Then we obtain:

Ground(P {p(a) := #count{(a : q(a))} > 0.}

(P)

Ground(P)" = Ground(P)
Ground(P)® = Ground(P)
Ground(P)s = 0
Ground(P)l+ = 0

We observe thatf; and I3 are not answer sets @f, indeed both/; and 3 are not minimal models of
respectivelyGround(P)"* andGround(P)!3; Iy is not a model forP (the only rule inP is not satisfied
in I5); andly is the only answer set dp. |

Note that any answer set of P is also a model of? becauseGround(P)4 C Ground(P), and
rules inGround(P) \ Ground(P)* are satisfied with respect tb.

3. Answer Sets Computation with Backjumping and Reason Calculus in
DLV

The computation of the answer sets of a disjunctive progPai:iusually carried out in two steps. The
first, calledinstantiation (or grounding)has the role of generating a ground program having the same
answer sets gP (usually, much smaller than —but equivalent to— the theoretical grounchinetian

of P); the second step of the computation, often calteztlel generationamounts to searching for the
answer sets of the ground program produced by the instantiation.

Model generation is the non-deterministic core of an ASP system, and it &@lyusuplemented
as a backtracking search similar to the Davis-Putham-Logemann-Lovedldid | procedure [4] for
SAT solving. The Model Generator algorithm employed by DLV is sketcmeBigure 14 Basically,
starting from the empty (partial) interpretatioh & (), the ModelGenerator procedure repeatedly
assumes truth-values for atoms (chosen according to a heuristic)gsebsg computing their deter-
ministic consequences (by a call #ropagate DetCons). This is done until either an answer set is
found or an inconsistency is detected. In particular, if the input prodpasran answer set, the procedure
ModelGenerator returns True (and contains the computed solution); otherwise, it returns False.

“The algorithm presented here is simplified in order to focus on the aspaterérelevant to our contribution. For details, we
refer to [9] for the basic DLV algorithm and [35] for backjumping.

8 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

Inconsistencies are detected in two cagésconflicting literals that is, propagation determines that
an atoma and its negatiomot a should both hold (in this casBropagate DetCons returns the set of
all literals £); or (i) stability check failuresThe latter case occurs if the checked interpretation, which
is guaranteed to be a model, is not stable (and the funétidmswerSet returns false). This is a pecu-
liarity of disjunctive ASP, since the stability check is not needed in non-disiaASP systems [27].

In both cases, since the last choice might not be the only cause of the ifmzonsistency, the system
detects (using th€' ompute N ext Level function) the most recent choi¢ahat isrelevantfor the found
inconsistency and it goes back to modifynon-chronological backtracking or backjumping). Note that
this is done in order to avoid encountering again the same inconsistencpgifiosming a lot of useless
computations.

A crucial point is how relevance for an inconsistency can be determirfeeinecessary information
for deciding relevance is recorded by means odason calculu$35], which collects information about
the choices (“reasons”) whose truth-values have caused truthsvafu@her deterministically derived
atoms. In practice, once an atom has been assigned a truth-value dercaniputation, we can asso-
ciate a reason to it. For instance, given a rale b, ¢, not d., if b andc are true andl is false in the
current partial interpretation, thenwill be derived as true during propagation. In this casés true
becausé andc are true and{ is false. Therefore, the reasons fowill consist of the reasons fdr, c,
andd. More generally, the reason of a derived literal consists of the reasfdihose literals that entalil
its truth; on the other hanahosenliterals become true unconditionally, and their only reason is their
choice. Therefore, each literatlerived during the propagation has an associated set of positiverimtege
R(1) representing the reasons femhich contains essentially the recursion levels of the choices which
entaill. Hence, for any chosen litera)] |R(c)| = 1 holds, while for any derived (that is, non-chosen)
literal n, |[R(n)| > 1 holds. For instance, iR(l) = {1, 3,4}, then the literals chosen at recursion levels
1,3 and 4 entail.

The reason information is used for detecting the set of chosen literalsr¢haglevant for an incon-
sistency. It is easy to see that, for avoiding that the same inconsistengss again, we have to go
back in the search until at least one choice that causes the inconsigemzione. This set of choices
(that entail the inconsistency) is called the reason for the inconsistenttye tase of conflicting literals,
it is obtained by the combination of the reasonsdandnot a: R(a) U R(not a). In the case of a
stability check failure the reason for such an inconsistency is alwaysllmasan unfounded set, which
has been determined insideAnswerSet as a side-effect. Using this unfounded set, the reason for the
inconsistency is composed of the reasons of literals which satisfy rulé¢sicioig unfounded atoms in
their head [35].

In the algorithm of Figure 1, the reason for an inconsistency is stored iuatti@ble IncReason,
and backjumping is performed by computing the next recursion level(level) by calling the function
ComputeNextLevel. ComputeNextLevel, basically, selects the maximal recursion level contained
in IncReason, which is different fromcurrent_level.

It is worth noting thatPropagate DetCons plays a crucial role in the model generation process. It
is similar tounit propagation(UP) in DPLL SAT solvers; however, its implementation is quite more
complex than UP, becauseropagate DetCons implements a set of inference rules. Those rules com-
bine an extension of the Well-founded operator for disjunctive progsaitisa number of techniques
based on disjunctive ASP program properties. We will not report inldetee all the propagation rules
for standard ASP programs and the associated reason calculus, asdhet a novelty of this paper,
and refer to [10, 3] for their precise definitions and implementation. Horvavéhe following, we will

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 9

static integer curr_level = 0; //stores the current recursion level
static integer nextlevel = 0; //used to control recursion

bool ModelGenerator (Interpretation& §)

curr_level ++; /lupdate current recursion level
nextlevel = currentlevel;

| = PropagateDetCons (I, IncReason);

if (1== L) //conflicting literals found during propagation
curr_level --; return false;

if (“no atom is undefined inI")
if IsAnswerSet(|, IncReasonreturn true ; //answer set found
else{ /linconsistency from model checking
nextlevel = ComputeNextLevel(IncReason);
curr_level --; return false; }

Select an undefined atorhusing a heuristig

if (ModelGenerator{ U {A}) return true ;
else if(nextlevel < curr_level) // control recursion (backjumping?)
return false;

if (ModelGenerator { U {not A}) return true ;
else if(nextlevel < curr_level) // control recursion (backjumping?)
return false;

/I tried bothA andnot A, deal with inconsistency
nextlevel = ComputeNextLevel(IncReason);
curr_level --; return false;

Figure 1. Computation of Answer Sets in DLV.

describe the inference rules needed for correctly implementing aggsd@ate7], and we present the
associated extension of the reason calculus which allows for dealing vgtbgages.

4. Propagation Rules and Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supportetd\byHereafter, a partial interpre-
tation (denoted by a set of literal$)is assumed to be given. Moreover, without loss of generality, we
assume that aggregate literals are in the simplified fé(rh)©%, where: (i) the aggregate sdtonly
contains pairs of the form(t : a), wherea is an atom; and (ii) only two comparison operators are

10 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

allowed, namely® € {<, >}.

Actually, DLV internally rewrites the input prograf to obtain this simplified form. In particular,
each aggregate literdl(S) < T (with <€ {=, <, <,>,>}) occurring inP is first transformed in
such a way that only one of the comparison operator® i {<, >} is used® then, for each(t :
conj) € S, conj is replaced by a new atonux ()7 (v), and the ruleiuz s(s).7(v) :- conj is added
to the program, where are the variables occurring ironj. This means that conjunctions i are
replaced by freshly introduced auxiliary atoms, along with a rule defininguixdiary atom by means
of the conjunction. This transformation has several advantages: it simm@difith the description and
the implementation of propagation; and (as it will become clear in the followingyvalfor defining
some additional derivation rules. Moreover, let= {(t; : a1), ..., (t, : a,)} be a set term; we define
Ca = U zayeannot acr (ot @) andSa = U, 7.0 anaer B(a). Intuitively, C4 represents the reasons
for false atoms iM4, while S 4 represents the reason for true atomslin

In the next sections, each propagation rule and the correspondisignrealculus are described in
detail. In particular, we consider two different scenarios dependingh@ther the propagation proceeds
from atoms inA to aggregate literalg(A)Ok (forward inference) or the other way around (backward
inference). Basically, in the first case we derive the truth/falsity of ttireamte literalf (A)©k from
the truth/falsity of some atoms occurring 7 in the second case, given a rule containing an aggregate
atom which is already known to be true or false with respect to the currempnetatiorf we infer some
atoms occurring in the conjunctions ihto be true/false.

4.1. Forward Inference

This kind of propagation rules apply when it is possible to derive an ggtgditeralf (A)Ok to be true
or false because some atomdris true or false with respect th As an example consider the program:

a(l). a(2). h:—#count{(l:a(1)),(1:a(2)} < 1.

Since bothu(1) anda(2) are facts, they are immediately derived to be true; then, since the function
value for the aggregate is 2, the aggregate literal is inferred to be fafeevibgrd inference.

In the following, we report in a separate paragraph propagation ralksemson calculus for the
aggregates supported by DLV. Hereaftér, ¢ : a) is a syntactic shorthand fdo, ¢4, ..., t, : a), where
v is a constant andlis the list of constants, ..., t,, n > 0.

#count{A} > k. Suppose that there exists a $8tC A such that for eaclki : a) € A’, a is false
in I and|A’| > |A| — k, then#count{A} > k is inferred to be false and its reasons are se&l {0
Conversely, suppose that there exists afet A such that for eaclit : a) € A’, a is true inI and
|A’| > k, then we infer tha#count{A} > k is true and we set its reason&q;.

Let us now consider the symmetric case.

#count{A} < k. Suppose that there exists a s8tC A such that for eacky : a) € A’, ais true in
I'and|A’| > k, then#count{A} < k is inferred to be false and its reasons are settoConversely,

°Note that, for the aggregates considered in this pafief) < T (resp. f(S) > T) is equivalent tof (S) < T + 1 (resp.
f(S) > T —1),andf(S) = T can be replaced by the conjunctignS) < 7'+ 1, f(S) > T — 1.

5This can happen in our setting as a consequence of the application ofceithieposition for true headr contraposition for
false headgpropagation rules, see [35].

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 11

suppose that there exists a gBtC A such that for eack : a) € A’, ais false inI and|A’| > |A| — &,
then we infer that#count{ A} < k is true and we set its reasondq:.

Example 4.1. Suppose that the input program contains the rule:
h :=c,#count{(l : a(1)), (2 :a(2)),(3:a(3))} < 1.

and suppose also that the current partial interpretdtioontains botfu(1) anda(2). Then, we have that
there exists a set, namel{/ = {(1 : a(1)), (2 : a(2))} (which contains true atoms), that ensures that
the aggregate function value is at least greater than the guardtheusnt{(1 : a(1)), (2 : a(2)), (3 :
a(3))} < 1is derived to be false, and its reason is sef o = R(a(1)) U R(a(2)). [

Note that the specifications described above leaves some freedomifignlamentation, since there
might exist several setd’ that satisfy the respective properties. A possibility with more information
value would be to consider all of these sets, which however might be costhntpute. A compromise
solution is to create one sueti by iterating over the set, adding suitable elements to an initially empty
A’ until the condition is met. The latter option has been implemented in our prototyp8ection 6),
also for cases described below, where analogous options are available

#min{A} > k. Let A’ be the set of all pairév,t : a) € A such thaw < k. If for each(v,t: a) € A,

a is false in, and if there exists also a pdiw, ¢ : a) € A such that is true inI then#min{A} > k

is derived to be true and we set its reasol foU R(a), otherwise (the function is undefined over the
empty setj#min{A} > k is derived to be false with reasahy, 4. Conversely, suppose there exists a
pair (v,t : a) € A suchthat is true inl andv < k, then we infer tha##min{ A} > k is false and set its
reason taR(a).

#min{A} < k. LetA’ bethe setofall pair&,?: a) € Asuchthav < k. Ifforeach(v,t:a) € A, a
is false inI, then#min{ A} < k is derived to be false and we set its reaso@ ta Conversely, suppose
there exists a paifv,t : a) € A such that is true inI andv < k, then we infer that#min{A} < kis
true and set its reason #a).

Example 4.2. Suppose that the input program contains the rule:
h:=c, #min{(1 : a(1)),(2: a(2)),(3:a(3))} < 2.

and suppose also that the current partial interpretdtioontains botlu (1) anda(3). Then, we have that
there exists a pair, namely : a(1)), that ensures that the minimum is 1 which is smaller than the guard
(herel < k = 2); thus,#min{(1 : a(1)), (2 : a(2)), (3 : a(3))} < 2 is derived to be true and its reason
is set toR(a(1)). 1

#max{A} < k. Suppose there exists a pair,t : a) € A such that is true inI andv > k, then
we infer that#max{A} < k is false and set its reason ft{a). Conversely, letA’ be the set of all pairs
(v,t: a) € Asuchthaw > k. If for each(v,t : a) € A’, a is false inI, and if there exists also a pair
(v,t:a) € A\ A" such that is true in] then#max{A} < k is derived to be true and we set its reason
to C4 U R(a), otherwise (the function is undefined over the empty #etyx{ A} < k is derived to be
false with reasol 4\ 4/

12 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

#max{A} > k. Suppose there exists a p&ir,t : a) € A such that is true inI andv > k, then
we infer that#max{A} > k is true and set its reason #®(a). Conversely, letd’ be the set of all
pairs(v,t : a) € A such thaty > k, and suppose that for ea¢h,t : a) € A’, a is false inI, then
#max{A} > k is derived to be false and we set its reaso@ ta

Example 4.3. Suppose that the input program contains the rule:
h :=c, #max{(1 : a(1)),(2: a(2)),(3:a(3))} > 2.

and suppose also that the current partial interpretdtimntainsiot a(1), not a(2), andnot a(3). Then,
we have that the entire sdt = {(1 : a(1)), (2 : a(2)), (3 : a(3))} contains only false atoms; thus, the
aggregate atom is is derived to be false, and its reason is8gttoR(a(1)) U R(a(2)) U R(a(3)). I

#sum{A} > k. Suppose that there exists a s8tC A such that for eackw,t : a) € A’ ais false in
IandXp, i, 7:ayea)V = Zppj(viayeanV < k,” then#tsum{ A} > k is false and we set its reasonda:.
Conversely, suppose that there exists aset A such that for eackw,? : a) € A’, ais true inI and
Elo|(viaye]V > k, thengtsum{A} > k is true and its reason &,

v,t:a)
#sum{A} < k. Suppose that there exists a g8tC A such that for eackw,t : a) € A’ ais true inl
andXy, , zajeaqv = k, then#sum{A} < k is false and we set its reason&a,. Conversely, suppose

that there exists a set’ C A such that for eaclfv,? : a) € A', ais false inl and ¥, 7.0 40 —
Eio|(viayeaV < k, thengtsum{A} <k is true and its reason &y-.

Example 4.4. Suppose that the input program contains the rule:
h:=c,#sum{(1 : a(1)), (2 : a(2)),(3: a(3))} < 4.

and suppose also that the current partial interpretatioantainsa(1), a(2) andnot a(3). Then there
exists a set, namelyt’ = {(3 : a(3))} (which contains a false atom), that ensures that the function value
cannot be greater than the guard (h&re 6 — 4); thus,#sum{(1 : a(1)), (2 : a(2)),(3:a(3))} < 4is
derived to be false and its reason is sefi{@ot a(3)). [

4.2. Backward Inference

This kind of propagation rules apply when an aggregate litefdl)©k, © € {<, >} has been derived
true (or false), and there &sunique wa$ to satisfy it by inferring that some atom belongingA4ds true
or false. For example, suppose tlids empty and consider the program:

:-not h. h:—#count{(l:a),(1:b)} > 1.

During propagation we first infér to be true for satisfying the constraint, and then, in order to satisfy
the rule, also the aggregate literal is inferred to be true (independentlyagfgtegate set). At this point,
backward propagation can happen, since there is a unique way to sagisfggregate literal: infer both
a andb to be true.

"Recall that by. . .] we denote a multiset.
8Since the propagation process mustegrministic

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 13

Note that, as far as the reason calculus is concerned, literals are dnfeitse true or false by back-
ward inference because both the aggregate literal is true/false andfaasems inA (whose elements
are either true or false) made the process deterministic; thus, the reassacfoatonu inferred by
backward inference is set #®(a) = R(f(A)Ok)UCs U S4.

The following paragraphs report sufficient conditions for applyingkiaaard inference in the case of
the aggregates supported by DLV. Since conditionsffot) > k to be true (resp. false) coincide with
the ones off (A) < k+1to be false (resp. true), only one of the two cases is reported for gacbgate.

Definition 4.1. Given a ground sefl and a partial interpretation let 74 be the se{(¢; : a;) € A such
thata; is true with respect téd}, andF4 be the se{(; : a;) € A such thau; is false with respect td}.

#count{A} < k. Suppose that botffcount{A} < k is true with respect td and|7T4| = k — 1, then
all undefined atoms; such that(#; : a;) € A are made false. Conversely, suppgseount{A} < kis

false with respect téd and|A| — |F4| = k, then all undefined atoms such that; : a;) € A are made
true.

Example 4.5. Suppose that the input program contains the rule:
h :=#count{(1:a(1)),(2:a(2)),(3:a(3))} < 1.

and suppose also that the current partial interpretdticontains botth and

#count{(1l : a(1)),(2 : a(2)),(3 : a(3))} < 1. Since we have thd’s| = 0 = 1 — 1, we infer
a(1),a(2), anda(3) to be false, and set their reason20#count{(1 : a(1)), (2 : a(2)), (3 : a(3))} <
1). i

#min{A} < k. Suppose tha#min{A} < Fk is true with respect td and that there is only one
(v,t : a) € Asuchthaw < k anda is undefined with respect th suppose also that all the remaining
(vi, t; + a;) € Asuch that; < k are such thad; is false with respect té. Then,a is inferred to be true.
Conversely, suppose th#min{A} < k is false with respect td, there is no(v,t : a) € A such that

v < k with a true with respect td, and, in addition, suppose that eithéi} there existv’, ¢ : a’) € A
such that’ > k andd’ is true with respect td or (ii) there is only ondv”,#” : a”) € A such that
v” > k with " undefined with respect tb. Then, all theu; such that(v;, t; : a;) € A andv; < k are
inferred to be false, and, if case (ii) holds, algois made true with respect to

Example 4.6. Suppose that the input program contains the rule:
h:=#min{(1 : a(1)), (2 : a(2)),(3:a(3))} < 2.

and suppose also that bati2), and#min{(1 : a(1)), (2 : a(2)),(3 : a(3))} < 2. are false with
respect to the current partial interpretation. It can be easily verifigctmaition (ii) holdsy thena(1)
is inferred to be false;(3) is inferred to be true, anft(a(1)) andR(a(3)) are both set taR(#min{(1 :
a(1)),(2:a(2)),(3:a(3))} < 2)U R(a(2)). 1

°Note that the aggregate atom is fala¢]) is the only undefined atom that can make it true, af®) is the only undefined
atom that can make it false.

14 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

#max{A} < k. Suppose thamax{A} < k is false with respect td, there is only on€v,? : a) € A
such that > k with a undefined with respect tb, while all the remainingv;,¢; : a;) € A such that

v; > k are such that, is false with respect t@, thena is inferred to be true. Conversely, suppose that
both #max{A} < k is true with respect td and there is nduv,? : a) € A such thaty > k anda is
true with respect td, and, in addition, suppose that one of the following condition hdldsthere exist
(v',¥ : d’) € Asuchthat’ < kandd’ is true with respect té; or (ii) there is only onév”, " : o) € A
such that” < k with «” undefined with respect tb. Then, in case (ii) holds” is inferred to be true,
and all the remaining undefined such that(v;, ¢; : a;) € A (a; # a”) andv; < k are inferred to be
false.

Example 4.7. Suppose that the input program contains the rule:

h = #max{(1 : a(1)),(2: a(2)),(3:a(3))} < 3.

and suppose also thatmax{(1 : a(1)), (2 : a(2)),(3 : a(3))} < 3 is false,a(1) is true, whilea(2)
anda(3) are undefined (with respect to the current partial interpretation). ,Td{@h is inferred to be
true, (note that this is the only way for ensuring that the aggregate atorsés géndR(a(3)) is set to
R(a(1)) U R(#max{(1:a(1)),(2:a(2)),(3:a(3))} < 3). [

#sum{A} < k. Letus denote byy(X) the sum_,, ;.,cx vi, and suppose thatsum{A} < k is
true with respect td and.S(74) = k — 1, then all undefined atoms iA are made false. Conversely,
suppose thagtsum{A} < kis false inl andS(A) — S(Fa) = k, then all undefined atoms iA are
made true.

Example 4.8. Suppose that the input program contains the rule:
h =#sum{(1 : a(1)), (2 : a(2)), (3 :a(3))} < 4.

and suppose also that batti3) and #sum{(1 : a(1)),(2 : a(2)),(3 : a(3))} < 4 are true, while
a(1) anda(2) are undefined with respect to the current partial interpretation. It eagabily verified
that S(74) = 3, thus botha(1) anda(2) are inferred to be false, and their reason is sekto(1)) =
R(a(2)) = R(a(3)) U R(#sun{(1 : a(1)), (2 : a(2)), (3 : a(3))} < 4). i

5. Heuristics in the Presence of Aggregates

The efficiency of the answers set computation process strongly deperfteuristics used for choosing
the branching variables. In the following sections, we describe both thedbead [12] and the look-

back [30] heuristics employed by the DLV system; and, in particular, we jpoinhow the presence of
aggregates can be taken into account in both cases.

5.1. Look-ahead Heuristic

The look-ahead heuristic of DLV [12] was shown to be very effectiwemany relevant problems, and it
is still the default in the standard distribution.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 15

In general, in a look-ahead heuristic each possible choice literal is teyafigsumed, its conse-
guences are computed, and some characteristic values on the resettaaded. Hence, according to a
heuristic criterion based on these values, the choice is determined.

The main heuristic criterion employed by DLV exploits a peculiar property d?,A3lledsupport-
edness Basically, for each true atom of an answer sef, there exists a rule of the program such
that the body of- is true with respect td and A is the only true atom in the head of Since answer
sets are supported interpretations, an ASP system must eventuallygmtwersituation in which there
are noUnsupported True (UTatoms, i.e, true atoms missing a supporting rule. Following this obser-
vation, the idea is to prefer the choice of those literals that minimize the numtémsafpportedTrue
(UT) atoms. In more detail, the heuristic of DLV “layers” several criteria, andharticular, for each
literal L the following measures (with respect to the interpretation resulting from tiagation off.)
are consideredT'(L), UT>(L), UT5(L), Sat(L), DS(L); whereUT is the number of UT atom&/ 75
andUTj; are, respectively the number of UT atoms occurring in the heads of exaatig 3 unsatisfied
rules; Sat(L) is the total number of satisfied rules; ahts is the degree of supportedness (namely,
the average number of supporting rules for the true non-head-agdeatoms). The heuristic of DLV
considerd/T'(L), UT>(L) andUT3(L) in a prioritized way, to favor atoms yielding interpretations with
fewerUT /UT,/UTs atoms (which should more likely lead to a supported model). If all UT counters ar
equal, then the heuristic considers the total nunthe(L) of rules which are satisfied; finally, literals
with higher degree of supportedness are preferred (this last critea®heen added in order to deal with
hard problems, see [15]). Moreover, the heuristic is “balanced”jsh#te heuristic values of a literdl
depend on both the effect of takidgandnot. L.

Example 5.1. Consider the following program:
avbve. dvevf. :notw. w:i-a. w:—d.

avz:i-w. bvz:i-w. :~d,z. :-a,-z.

and let the current interpretatidn= {w, not «}. Notice thatw is true but misses a supporting rule, that
is, itis UT. Moreoverg andd are the best choices according to the look-ahead heuristics of DLMyas on
assuming their truth can eliminate the WT Indeed, anything apart fromor d would be a poor choice.

i

Note that this heuristic does not need to be modified in order to take the pessaggregate literals
into account; indeed, the values for all the above-mentioned countedsracly computed during the
propagation of aggregate literals.

5.2. Look-back Heuristics

Look-back heuristics, which have been originally exploited in SAT soliikescHAFF [31] (where the
heuristic is called VSIDS), have also been considered for DLV, in catijomwith backjumping, leading
to positive results [30].

The intuition behind this kind of heuristics is to periodically update a numeric Va(lg associated
to each literal, indicating the number of occurrencesiah a conflict. Basically, this heuristic favors
the choice of literals which are more likely to lead to inconsistent sub-brane¥tech in general has
the effect of more likely exploring a smaller search tree. In detail, afteingashoser¥ literals, V(1)

16 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

is updated for eachas follows: V(1) := V(I)/A, + I(1), where(l) is the number of inconsistencies
[has been a reason for (since the most recent heuristic value upaate), & the “aging” factor that
allows for giving more importance to recent data. Whenever a choice hesrttade among undefined
literals, the positive literal with the largest(l) will be chosen. If several literals have the saimg),
then negative literals are preferred over positive ones, but amordiveegnd positive literals having the
sameV (1), the ordering will be random.

A key factor of this type of heuristic is the initialization of the weights of the liter8l3],[to be
updated by the reason calculus during the search. Indeed, at thaibggif the search, the solver has
no information about inconsistencies, and 1&ll/) initially will be 0, and so a random choice would
be taken. A common practice is to initializé(l) values with the number of occurrencesidh the
input (ground) program. However, this strategy, originally devisedafigregate-free programs, does
not take properly into account the presence of aggregates in theaprogrhich can be exploited for
guiding the search instead. To this end, we propose two different neristies: the first and simpler
criterion (calledsize-based heurisiids based on the size of the aggregate sets, while the second (called
equivalent-program heuristjdries to estimate more precisely the effect of aggregate literals in a program
by exploiting the following idea: aggregates can be simulated by replacingritfiead program with
an equivalent aggregate-free one, so that standard techniqudxe azsed for counting occurrences.
However, physically replacing a program by an aggregate-free am@ractical for a number of reasons,
such as the additional space requirement or the loss of structure, whidt guite clearly outweigh the
benefit of having a smarter heuristic. Our approach is therefore to deniguin some cases estimate)
these values without materializing the equivalent program, as descrilmd be

The generic method for computing the values/f) is by iterating on the input rules. Whenever
a standard literal is encounteredy/ (/) is increased by 1, while when an aggregate litgigd)Ok is
encountered, the value &f(f(A)Ok) is increased by,..(f(A)©k), which is the heuristically esti-
mated weight of the aggregate literal, and for eacha) € A, V(a) is incremented by,..(a) (again
determined by the chosen heuristic).

Size-based Heuristic. This heuristic is based on a simple principle: if an aggregate litgrd) Ok
occurs in the input program, its “weight” is given by the size of its aggregatemoreover, also the
occurrences of each atomsuch thatt : a) € A have to be added t@(a) (to take into account the role
played bya in the aggregate). In particular, we have that.(f(A)Ok) = |A|, and&,..(a) is set to the
number of occurrences of : a) in A.

Example 5.2. Consider the following program:
r1: h=#count{(1l:a(1)),(2:a(2)),(3:a(3))} > 1.
ro: bimeod, #sun{(2:a(2)), (3 a(3)), (4: a(4)), (5 : a(5))} > 3.
rg: a(l). rg: a(2).
according to the size-based heuristic, we have that:
e V(h) =V (b) =1, becausé andb occur once in the head of andr., respectively;
e V(c) =V(d) =1, because andd both occur once in the body of;

e V(a(1)) =2, because(1) occurs both in the aggregate literal of raleand in factrs;

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 17

e V(a(2)) = 3, because(2) occurs in both aggregate literals of the program and insfgct

e V(a(3)) =2, because(3) occurs in both aggregate literals of the program;

e V(a(4)) =V(a(5)) =1, because(4) anda(5) occur in the aggregate literals of rule

o V(#count{(1l:a(1)),(2:a(2)),(3:a(3))} >1)=3andV(#sun{(2: a(2)), (3 : a(3)),(4:

a(4)), (5 : a(5))} > 3) = 4, because the corresponding aggregate sets have cardinality 3 and 4,
respectively.

Equivalent-program Heuristic. This heuristic computes a somewhat more precise estimation of the
impact of aggregates by also taking into account their semantics. The idesiititdly replace each
occurrence of an aggregate atom of the foffal)©k with a fresh-new predicatg, and “define”h
by means of a standard subprogram which emul#tes©%.1° As mentioned earlier, this equivalent
program does not have to be materialized in memory; in Table 1 we summarizerhgds that allow
for directly computing the additional number of occurren€gs(l) that would have been determined by
replacingf(A)©k by its equivalent subprogram, for each litetalccurring in a given aggregate literal
f(A)Ok. Sinceh replacesf(A)Ok in the aggregate-free program, we 8gt.(f(A)Ok) to Eyee(h). In
the following paragraphs, we provide both the description of the coresideguivalent programs, and
detail on how the results in Table 1 have been determined.
#min{A} < k. The equivalent standard program for this aggregate atom contaites @f the type

h :=a;, for each(v;,t; : a;) € A (1 < i < n)such thaw; < k. In this way,h is true if at least one
of the a; With v; < k is true, that is, if the minimum computed by the aggregate is lessihdrus,

Eoce(h) = {vi : (vi, t; + a;) € Ayv; < k}| + 1, and for eachu; such that(v;, t; : a;) € A, Epee(a;) =1
if v < k, otherwise€,..(a;) = 0.

Example 5.3. Consider the following program:
f e, #min{(1: a(1)),(2:a(2)),(3:a(3))} <3. a(l). a(2).
Its aggregate-free version is:
fic,h. h:i=a(l). h:=a(2). a(l). a(2).

thus,V(c) = V(f) = 1, V(R) = Egee(h) = 3, V(a(1)) = Epeela(1)) +1 =2, V(a(2)) = Epec(a(2)) +
1 =2,andV (a(3)) = Eee(a(3)) = 0.1 |

#min{A} > k. The equivalent standard program for this aggregate atom contaiimgle rile of
the formh = not by ..., not by, haue., Whereby, ... by] = [a; | (vi,t; : a;) € Aandy; < kJ; and,
(possibly) several auxiliary rules of the fortm,,,. :- a;, one for eachv;,; : a;) € A such thaw; > k.

OActually, a distinct not-appearing-elsewhere-in-the-program preglitameh s 4)0, Should be employed for each aggregate
literal f(A)©k occurring inP. With a small abuse of notation, we omit the additional subscript for obgiaisimpler
notation. Note also that equivalence with subprograms in general holgénahe stratified setting, but could also serve as an
approximation also in non-recursive settings.

n the following examples, we only repaft..(.).

18 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

Note that, in the obtained equivalent programis true if all thea; (associated with a; < k) are
false, and at least ong (with v; > k) is true, that is if the actual minimum computed by the aggregate
is greater thark (note that the auxiliary rules are needed becdysein(())) = L). Thus, in this case:
Eoce(h) = 2, and for eachu; such thatv;, ¢; : a;) € A we have that,..(a;) = 1if v; > k, otherwise (if
v; < k) we have that,..(not a;) = 1.

Example 5.4. Consider the following program:
f e, #min{(1: a(1)),(2:a(2)),(3:a(3))} >2. a(l).a(2).
its equivalent version is:
fi=c,h. h:i=nota(l),not a(2), heuz. haus :=a(3). a(l).a(2).
thus,Epec(h) = 2, Eoee(a(3)) = 1, andEpee(not a(1)) = Epee(not a(2)) = 1. I

#max{A} < k. The equivalent standard program for this aggregate contains a sithglef the form
h :=not by, ...,not by, hauz., Wherefby, ..., by] = [a; | (vi,t; : a;) € Aandv; > k|; and (possibly)
several auxiliary rules of the fort,,,,, :- a; for each(v;,t; : a;) € A such that; < k.

Note that, in the obtained prograrh,is true if all thea; (with v; > k) are false, and at least one
a; (with v; < k) is true, that is if the maximum computed by the aggregate is lessitivathe current
interpretation (note that, again, auxiliary rules are needed bedéuser(())) =). Thus, in this case:
Eoce(h) = 2, and for eachw; such thatv;, ¢; : a;) € A, v; > k we have that,..(not a;) = 1, otherwise
(if v; < k) we have that,..(a;) = 1.

Example 5.5. Consider the following program:
f e, #max{(1: a(1)),(2:a(2)),(3:a(3))} <2. a(l).a(2).
its equivalent version is:
fi=c,h. h:i-nota(2),not a(3), hauz- haue —a(l). a(l).a(2).
thus,Eocc(h) = 2, Eoec(a(1)) = 1, and€sec(not a(2)) = Epee(not a(3)) = 1. [

#max{A} > k. The equivalent standard program for this aggregate contains a rufe df/pe
h :=a;, for each(v;,t; : a;) € A suchthat; > k (1 < i < n). In this way,h is true if at least one
of the a; with v; > k is true, that is if the maximum computed by the aggregate is moreitharhe
current interpretation. Thug,..(h) = |{v; : (v, t; : a;) € A,v; > k}| + 1, and for eachu; such that
(Vi ti 2 a;) € A Epec(a;) = 1if v; > k, otherwiseC,..(a;) = 0.

Example 5.6. Consider the following program:
[o, #max{(1:a(1)),(2:a(2)),(3:a(3))} >1. a(l).a(2).
Its aggregate-free version is:
f=ch. h:i=a(2). h:=a(3). a(l).a(2).
thus,Eocc(h) = 3, and&oec(a(2)) = Eoce(a(3)) = 1. :

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 19

#count{A} < k. For this kind of aggregate atoms we have to distinguish two different cases.
particular, ift > |A| the value of the aggregate cannot exceed the guard; thus there is podteon
in which the aggregate is false. In this case, the equivalent program is aialsingle fact:, and:
Eoce(h) = 2, Epee(a;) = Epec(not a;) = 0, for eacha; such thatt; : a;) € A.

In the other case (in which < | A[), we consider a more involved subprogram denote@bythat is
obtained as follows. L&~ be the program containing a rule of the fokn+ not a1, not a, . . ., not a;_;
for each(i — 1)-combination of elements in the aggregate Aewhereay, . .., a;—; are the atoms they
contain. Intuitively,h will be derived to be true itP~ if there are at least— 1 false conjunctions (that
is if #count{A} < i.).

Then, the subprogra?< is obtained by taking the union of alt~ such that < k, that isP< =
U;<xP=. Intuitively, in P< we consider the contribution given by each of the possible combinations
of 1 < i < k atoms of the aggregate set (..., a;_1) that, if true (i.e.,ay,...,a,_1 € I), can make
the count less than the guard (that is original aggregate to be true)1 HIecahown that in this case we
obtain: Eee(h) = S50 (1) + 1, Eoee(as) = 0, andEpee(not a;) = S5 (4171,

2

Example 5.7. Consider the following program:
f =, #count{(1:a(1)),(2:a(2)),(3:a(3))} <2. a(l).a(2).
Its aggregate-free version is:
fi=c,h. a(l).a(2). h:=nota(l),not a(2),not a(3).

h :=not a(1),not a(2). h :-nota(l),not a(3). h :-not a(2),not a(3).

thus,Eoce(h) = (3) + (5) +1 = 5, andoec(not a(1)) = Egee(not a(2)) = Epce(not a(3)) = (3)+(3) =
3. |

#count{A} > k. For this kind of aggregate atom, we again distinguish two different cases. |
particular, if A| < k the value of the aggregate cannot satisfy the guard; thus, there is nurétégion
in which the aggregate is true. In this case, the equivalent program Wweutthde of a single constraint

==h, and:Eyec(h) = 2, Epec(a;) = Epec(not a;) = 0, for eacha; such thatz; : a;) € A.

In the other case (in whichd| > k), we consider a subprogram denoted®y that is obtained as
follows. Let P be the program containing a rule of the fofm-as, as, ..., a;41 for each possible
combination of atoms obtained by taking- 1 different atoms from théA| different ones available in
the aggregate set. Intuitively, ~ will be derived to be true i if there are at least+ 1 true atoms
(thatis if #count{A} > i.).

Then, the subprogra?~ is obtained by taking the union of alt” such that < k, that isP~> =
U;<xP;. Intuitively, in P~ we consider the contribution given by each of the possible combinations

. - . _ Al-
of true atoms making the original aggregate true. We obtain tHat:(h) = Z‘- -t (Jf'l) +1 =
ST 1 o) = S (1Y) = ST (), andéeenot) =

Example 5.8. Consider the following program:

f e, #count{(1:a(1)),(2:a(2)),(3:a(3))} >1. a(l).a(2).

20 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

Its aggregate-free version is:
fch. a(l).a(2). h:a(l),a(2),a(3).
h:=a(l),a(2). h:==a(l),a(3). h:-a(2),a(3).
thus,Eoce(h) = (5) + () + 1 =5, andEce(a(l)) = Eoce(a(2)) = Eoce(a(3)) = () + (F) =3. 1

#sum{A}Ok. © € [<,>]. Equivalent programs in the case #fum are quite involved, render-
ing the computation of the exact values fairly inefficient (many binomial coeffts have to be calcu-
lated). Therefore we decided to approximate the corresponding hewskie, replacing#sum{A} by
#count{ A*} whereA* containsv; different elements for each;, ¢; : a;) € A.

Example 5.9. Consider the following aggregate atom:
h :=#sum{(1 : a(1)),(2:a(2)),(3:a(3))} >5

it is approximated by:
#count{(1,1: a(1)), (1,1: a(2)),(1,2: a(2)),

(1,1:a(3)), (1,2 a(3)), (1,3 : a(3)} > 5
ThUS:gocc(h) = (8) =1, gocc(a(l)) = gocc(a(2)) = 5000((1(3)) = (8) = 1. i

6. Experimental Analysis

We have implemented the techniques described in Sections 3-5 as an extdrib®isystem DLV. In
this section we report on the experimental evaluation of the various versias obtained.

6.1. Compared Methods

For our experiments, we have compared three versions of DLV, whitdr dif the employed heuristic
for dealing with aggregates, namely:

e DLV, the standard DLV system, employing the heuristic based on look-atesatibed in Sec-
tion 5.1.

e DLV.BJA.VS.SIZE, DLV with backjumping on aggregates and (look-back) size-basedstieur

e DLV.BJA.VS.EQ, DLV with backjumping on aggregates and (look-back) equivalentsamdeuris-
tic.

| | #count{A} <k \ #min{A} <k | #max{A} <k | #sun{A} <k |
M +1 k<A _ FTOAN L1 k< |A
Eocc(h) Zz 0 (i) + | ‘ |{U1 | <’U7;7ti : ai> S A;Ui < k}| +1 2 Zl:o (i) + = | ‘
2 else 2 else
Epeelai) 0 1 v <k 1 v <k .
oce\Wq 0 else 0 else
k=T (JA]-1 < 4 k-1 (|A" \ 1 < [A*
gocc(not ai) Zz:O (v) k - |A| 0 0 v < k Zz:() () k — |A |
0 else 1 else 0 else
H #Hcount{A} >k ‘ #min{A} >k ‘ #max{A} >k ‘ #sum{A} > k ‘
'A‘“lf‘l 1 kE<|A _ [AT—F—1 ([A7] 1 k<A
Encelh) {Z G+ k<i4 > ol tokiag e dn> gy ar| | 2 (G FD RS
else else
Eoce(ai) 0 Lovi>k 1 v >k 0
0 else 0 else
Eoee(not a;) Z‘A‘ * (‘?‘:11) k< |A] 0 vi>k 0 ZIA [~k (IAZ_*_\l—l) k < |A*|
o ' else 1 else else

Table 1. Occurrence formulas for literals involved in aggites.

sarefaifby yum sweibold @ssenbiuyoa] ¥oeq-400T /201y H ‘ealere I\ ‘duoaT N Uaged M

T

22 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

| #count | #min | #max | #sun |

BoundedSpanningTreeg X
TravelingSalesperson X X
WeightedLatinSquares X X
WeightedSpanningTree X X

Labyrinth X X

KnightTour X

TimeTabling X
MagicSquare X X

Table 2. Occurrence of aggregate functions in the considdoenains.

In look-back heuristics, as a matter of fact, there are two parametecsiadf¢he VSIDS behavior.
One is the “importance” of literals in reasons (called “reward”, that is, haveh the related counters
for such literals are to be increased, which corresponds to the coefffaié(/) in the definition ofl/ (1)
in Section 5.2) and the other is the constant faetgiby which counters are periodically divided. For
the experiments presented here, these parameters have beet aatty respectively, which are the
original values used iGHAFF.

In this paper, we focus on the comparison of our new proposals to thevesasion of DLV. This
is because we are interested in the evaluation of the techniques preseotdparison to the standard
setting of DLV. This comparison is motivated by the fact that these versionks @n exactly the same
ground logic program, the output of the internal DLV grounder.

As reference, we also include other ASP solvers in the analysis, narnelyp [19] ver. 1.0.4,
CMODELS [24] ver. 3.75 andsMODELS [38] ver. 2.34, using.PARSE'? [40] as grounder. We point
out that the evaluation of our techniques with respect to solvers workitigtiae output of a different
grounder could be (at least in part) misleading, because of both thelaligilaf different features in the
grounders’ input language and the difference in the ground progrinus, their performance should be
mainly considered as a reference, and complements our experimentaitiralu

6.2. Benchmarks

For the experimental analysis on benchmarks with aggregates, we hasidezed some domains (see
Table 2) already used in literature for the comparative evaluation of ASterag on logic programs with
aggregates [7, 21, 8, 28}.In Table 2 we list these domains and specify what types of aggregates they
contain. Observe that all domains but one confaitount, some domains contai#tsum, while #min
and#max are contained in only one single domain.

2http://www.tcs.hut.fi/Software/smodels/lparse/.

13The encodings for competing solvers have been mainly taken from tReCd&petitions, except for thiémeTablingdomain
(we adapted the DLV encoding t®ARSE) and theMagicSquareproblem (we downloaded thePARSE encoding from [28]).
For KnightTourwe usedsRINGO [22] sinceLPARSEWas unable to parse the available encoding.TFavelingSalespersome
have used thePARSE “nontight” encoding (which is faster than the “tight” one).

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 23

For two of the domainBoundedSpanningTresndWeightedSpanningTreee have noticed that all
the versions based on DLV can solve the available instances easily (estare solved in less than
0.1 seconds on average). Considering that the graphs the instarcesnatructed of are relatively
small, we have generated larger instances for these domains, and madditlemal instances avail-
able athttp://www.mat.unical.it/~ricca/downloads/fi-benchmarks.zip. In the following
we briefly describe how these additional instances have been generated

Instances in thBoundedSpanningTrg@oblem are defined on graphs with vertidésedgest and
a parameted. The problem is deciding whether there existélaounded spanning tree. The instances
of [21, 8] are made of four sets of (randomly generated) graphs|With35 or |V |=45, | E|=250, d=2
or d=4. The additional instances have been created randomly (as were thabinigiances), expanding
the graph sizes by a factor of four, maintaining the ratio between the nurhbedes and the number of
edges. In this way, we have obtained four further sets ¥itk140 or |V |=180, | E|=1000, andd = 2 or
d = 4, consisting of 10 graphs each. In Table 3, we have grouped the iBstantwo sets, those having
|V|=140 and|E|=1000, and those having/|=180 and|E|=1000, respectively.

The WeightedSpanningTrgaoblem is similar to thé8oundedSpanningTrebut each edge has an
associated weight betweérand|V|. The previously existing instances contain five sets of instances with
|V | betweerB0 and45, and|E| betweenl 38 and146. Again, we have created randomly some new sets,
where the graph sizes have been enlarged by a factor of eight (agaitaimiag the ratio between the
number of nodes and the number of edges), and the weights still rangedmgtand|V/|. In particular,
we have generategisets ofl0 new instances foweightedSpanningTree

6.3. Results

All the experiments were performed on a machine equipped with two Intel Xa&@odcrest” (quad
core) processors clocked at 3 GHz with 4MB of Level 2 Cache and 4GBAM, running Debian
GNU Linux 4.0. Time measurements have been done usingitiie command provided by the system,
counting total CPU time for the respective process. We report the exadintie elapsed for finding one
answer set, if any, within0 minutes. The memory available to the solvers has been limited to 512MB.

Results are summarized in Table 3, and reported in detail for the variousvBXsibns in the Ap-
pendix# In particular, Table 3 reports for each solver (columns 4-9) and fcn damain (rows 2-9) the
number of instances solved within the time limit, and the average CPU time (for sobtadices); the
number of available instances for each domain is reported in column 2. Fihalligst row reports the
cumulative results of our experiments.

We remark that the data reported in Table 3 is normally used in system evatuatidrcompetitions
(for both presenting results and determining the winners) where the wispgtgm is determined by the
number of solved instances, and ties are broken by considering the rRéatirGe. As an example we
refer to the Max-SAT evaluations.

Focusing on the results of the DLV versions analyzed, the cumulativétgeduour experiments,
reported in the last row of Table 3, clearly indicate that DkYA.vS.EQ performs better than the other
two DLV versions in the considered domains. Indeed, DAM.VS.EQ is the system which solves the
greatest number of instances, and it is much faster than the other systewverage. In particular, con-

14Results for the original instances BbundedSpanning Tresnd WeightedSpanning Tre#omains are not reported.
15Seehttp: //www.maxsat.udl.cat/09/, andhttp: //www.maxsat.udl.cat/10/ for the last two evaluations.

24 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

sidering the mean time, DLMJA.VS.EQ is more than 4 times faster than DL¥.{7 vs 36.71 seconds),
and it is nearly 3 times faster than DLRJA.VS.SIZE (8.57 v§ 22.41 seconds).

Concerning the results of the specific domains, observe that BUA/S.EQ is the best performer
on theWeightedLatinSquaredomain, where it solves (resp. 19) instances more than standard DLV
(resp. DLV BJA.VS.SIZE) and in shorter time; it is also the best dimeTablingwhere, even if standard
DLV solves the same number of instances, it gains one order of magnitndeledng average CPU
time (while DLV.BJA.VS.SIZE solves only2 instances on this domain), and degicSquarewhere
it solves one instance more than DIBJA.vS.SIZE, and has a better mean CPU time of approximately
30% than DLV. Moreover, in other four domains, thatByundedSpanningTre@/eightedSpanningTree
LabyrinthandKnightTourit performs similar to DLVBJA.VS.SIZE, and better (with respect to the num-
ber of problems solved and/or mean CPU time) than standard DLV. In the dethaircontain instances
with and without answer sets, DLBJA.VS.EQ is usually particularly effective on instances having so-
lutions. We refer to the appendix for details.

In Section 5.2 we noted that a characteristic feature of the BIMVS.EQ method is that atoms
“involved” in aggregates receive a higher priority. So far, we haea $leat this heuristic leads to positive
results on the domains we considered, but, of course, a more “lazyistiewould be preferred in some
situation. Indeed, this is witnessed by the results of DAM.vs.SIZE on the TravelingSalesperson
domain: besides the good results in comparison to DLV cited above, irdlelingSalespersaomain
DLV.BJA.VS.SIZE solves2 instances more than DL®JA.VS.EQ and in less time, being much faster
than standard DLV (approximately by a factor2of).

It is worthwhile evidencing also some relationships between the set of ikstanbved by the various
systems (the complete data are reported in the apperid)xj the WeightedLatinSquaredomain both
DLV and DLV.BJA.VS.SIZE solve a subset of the instances solved by DRIA.vS.EQ, while the sets
of instances solved by DLV and DL®JA.vS.SIZE are incomparable(ii) in the Labyrinth domain,
DLV.BJA.vS.sIZE and DLV BJA.VS.EQ solve the same set of instances, which is incomparable to the
set of instances solved by DL\(jii) in the KnightTourdomain, the same set of instances is solved
by the three methodsgjv) in the TimeTablingand MagicSquarelomains, DLVBJA.VS.SIZE solves a
subset of the instances solved by DLV and DEYA.VS.EQ.

Regarding the other ASP systems that we considered as referemmasldble 3 we can see that
CLASP performs better thaemMoDELS andSMODELS, and shows good results in several domains, ex-
cept for theBoundedSpanningTreand WeightedSpanning Tredomains, where is runs out of memory.
Even if on theWeightedSpanningTréestances PARSE can not ground the instances in the given avail-
able memorif, in theBoundedSpanning Tremain instances are groundeduU®ARSE, butcLAsPand
CMODELS run out of memory angMODELS runs out of time on each instance. Further, note that the
original 30 BoundedSpanningTreestances are solved mrLAsp andcMODELS with mean CPU time
of 7.62 and7.97 seconds, respectivelgiioDELSoNly solvesl9 out of 30 instances). DLVBJA.VS.EQ
solves all instances with a mean CPU timeé)df2 seconds. Similar results hold for thiéeightedSpan-
ningTreeinstancesCLASP, CMODELS and DLV BJA.VS.EQ solve the30 original instances with mean
CPU time 0f3.3, 3.66 and0.03 seconds, respectively, whilsmODELStimes out orp instances.

A further analysis is devoted to the scalability of the various DLV versiong. cdhsider the do-
mains for which there is a parameter that influences the size of the instBmesdedSpanningTresd

15This is also the case whe&RINGO[22] is used in place of PARSE

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 25

’ ‘ #l ‘ H DLV ‘DLV.BJA.VS.SIZE DLV.BJA.VS.EQH CLASP‘CMODELS SMODELS
BoundedSpanningTree20 | #Solved|| 20 20 20 0 0 0
|V]|=140 | E|=1000 Mean || 3.08 0.14 0.15 MEM MEM TIME
BoundedSpanningTree20 | #Solved|| 20 20 20 0 0 0
[V]=190 | E|=1000 Mean 438 0.15 0.15 MEM MEM TIME
WeightedLatinSquares 35 | #Solved|| 30 15 34 35 35 34
Mean || 144.07 188.58 27.5 0.03 0.23 105.88

WeightedSpanningTree50 | #Solved|| 50 50 50 0 0 0
Mean 1.53 0.17 0.17 MEM MEM MEM

Labyrinth 29 | #Solved 6 8 8 22 3 0
Mean || 114.73 58.48 58.41 108.13| 218.51 TIME

TravelingSalesperson 30 | #Solved|| 30 30 28 30 2 20
Mean || 36.49 15 3.34 0.13 | 151.68 1.98

KnightTour 10 | #Solved 6 6 6 9 6 7
Mean 12.4 0.22 0.23 59.82 0.45 4.45

TimeTabling 9 | #Solved 9 2 9 9 9 2
Mean || 2.07 25.1 0.22 0.76 0.82 2.7

MagicSquare 5 | #Solved 3 2 3 5 4 3
Mean || 3.25 0.01 2.45 0.49 15.46 0.05

Total 207 | #Solved| 174 153 178 110 59 66

Mean || 36.51 22.26 8.52 26.65| 17.61 55.7

Table 3. Number of solved instances within the time limit émeir mean CPU time for the domains we consid-
ered. The last row contains cumulative results.

26 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

BoundedSpanningTree domain WeightedSpanningTree domain

DLV.BJA.VS.SIZE -~
DLV.BJAVS.EQ ---%*-

DLV.BJAVS.SIZE -~
45 DLV.BJAVSEQ -—-*

mean CPU time
N
2

mean CPU time
N
o

-
T

o
@
T

Figure 2. Additional instances of tHgoundedSpanningTreéeft) andWeightedSpanningTrg®ight) domain:
scalability study with respect to the number of vertités

WeightedSpanningTrgee., the domains for which we have created new instances), as Welhgis-
Square TimeTablingand KnightTour (for which we have considered the original instances). Figure 2
(Left) contains the results for tiBoundedSpanningTraastances, withV/|=45, 90, 180. Similarly for

the WeightedSpanningTreestances in Figure 2 (Right), whef&|=30, 60, 120, 240. Figures 3 and 4,
instead, show the behavior in terms of scalability of MegicSquareandTimeTabling(in Figure 3), and
Knightdomain (in Figure 4). The graphs in Figures 2 and 4 clearly indicate a be#tletdity for both

the new DLV versions in comparison to standard DLV on BaundedSpanningTregVeightedSpan-
ningTreeandKnightTourdomains, while Figure 3 shows better scalability of DBVA.vS.EQ than both
DLV.BJA.vs.sIZE and standard DLV on thelagicSquareandTimeTablingdomains.

7. Related Work

Backjumping [17] has been first studied in the area of constraint solsewg €.9., [5, 33, 6]), and then
successfully applied to related research areas such as SAT [2,]3QBH [25], and ASP [35] solving.
We refer to [30] for a detailed comparison of the backjumping strategies gagplio these research
areas.

In ASP, aggregates are arguably the most important linguistic enhancémesttent years, and
most of the available systems are already able to deal with them. In particulesP, CMODELS,
SMODELS and PBMODELS support cardinality and weight constraints, which correspong-¢ount
and+#sum aggregates, respectively, whg&ODELS-CC supports only cardinality constraints, and both
GNT and ASSAT do not support aggregates. Among these, aggregates are codsidelieitly for
backjumping insMODELS-cC (where additional arcs are added to its implication graph) @nssp,
while CMODELS (resp. PBMODELS) translates the original program into a propositional (resp. Pseudo-
Boolean) formula that is then evaluated by a SAT (resp. PB) solver. Ifattez case, backjumping is
then (possibly) exploited within the underlying SAT (resp. PB) solver, wittious having the possibility
of taking advantage of the original “structure” of the aggregate. Notdinlg-grained details on the

W. Faber, N. Leone, M. Maratea, F.

MagicSquare domain

DLV —— T
DLV.BJAVS.SIZE =
10 & "DLV.BIAVS.EQ %
o)
s af
H
g
3
E
S
z
o
01f
0.01
2
Figure 3.

Figure 4.

CPU time (log scale)

KnightTour domain

TimeTabling domain

Ricca/Look-back TechniquesS® Programs with Aggregates

27

100

10

01 / e

' DLV ——

DLV.BJAVS.SIZE ~——-—
DLV.BJAVSEQ -*-

100 . ‘ ‘
DLV
DLV.BJAVS.SIZE -
DLV.BJAVS.EQ ---%--- /
=
10t - |
g o
a
=
2
o
£
>
a
o
o 4
-
01 £ ¥ ‘ ‘
8 10 12 m =

Instances of thdagicSquardgLeft) and TimeTabling(Right) domain. Ns indicates an Ns x Ns square
(Left) and Ng is the groups of students (Right).

Instances of the Knight domain. Nc indicates thatélated chess board size is Nc x Nc.

28 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

treatment of aggregates have been rarely presented before, agwt doplementations use more or less
ad-hoc techniques. An exception, which nonetheless involves#silyn (weight constraints), has been
recently presented in [18]. In that work, a comparison of differematesgies to handle weight constraints
in CLASP has been performed. In particular, two strategies have been presemtesbmpared: One
where weight constraint rules are incorporatedcitnsP's constraint-based characterization in terms
of nogoods, and another which (similar to the approachnmoDELS!) translates the aggregate into
(constraints corresponding to) an aggregate-free program. Expaaha@alysis on some domains show
that each strategy performs well on different domains.

8. Conclusion

In this paper we have described techniques and heuristics for the walo logic programs with
aggregates. In particular the main contributions &rg:an extension of theeason calculugiefined
in [35]; and, (ii) enhanced versions of the heuristic presented in [30] that explicitly takprédsence
of aggregates into account. Moreover, we have implemented the propagdedques in a prototype
version of the DLV system and performed a set of benchmarks, whiateitedperformance benefits of
the enhanced system employing the equivalent-program heuristic.

Acknowledgements

This work has been patrtially supported by M.1.U.R. under the PRIN pro@oeN, and under the FIRB
project “tocai.it: Tecnologie Orientate alla Conoscenza per Aggregadidmiprese in Internet,” and by
Regione Calabria and EU under POR Calabria FESR 2007-2013 withinAh@éject of DLVSYSTEM
s.r.l.

We would like to thank the anonymous reviewers for their helpful suggestidris work is dedicated
to “mulo” and two other machines which broke down under the burden afutixey the experiments
reported in this paper.

References
[1] Alviano, M.: Efficient Recursive Aggregate Evaluationliogic Programming]ntelligenza ArtificialelOS
Press, 2011, To appear.

[2] Bayardo, R., Schrag, R.: Using CSP Look-back Techniga&olve Real-world SAT InstanceBroceedings
of the 15th National Conference on Artificial Intelligen@eAI-97) 1997.

[3] Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruni@gerators for Answer Set Programming Systems,
Proceedings of the 9th International Workshop on Non-MoniatReasoning (NMR’20024\pril 2002.

[4] Davis, M., Logemann, G., Loveland, D.: A Machine ProgrianTheorem ProvingCommunications of the
ACM, 5, 1962, 394—-397.

[5] Dechter, R.: Enhancement Schemes for Constraint PsowgsBackjumping, Learning, and Cutset Decom-
position, Artificial Intelligence 41(3), 1990, 273-312.

"cmoDpELSimplements the transformation described in [16], wiilsxsp implements a polynomial transformation.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 29

Dechter, R., Frost, D.: Backjump-based backtrackimgcfinstraint satisfaction problemgytificial Intelli-
gence 136(2), 2002, 147-188.

Dell’Armi, T., Faber, W., lelpa, G., Leone, N., Pfeifés,: Aggregate Functions in DL\Rroceedings ASP03
- Answer Set Programming: Advances in Theory and ImplertientgM. de Vos, A. Provetti, Eds.), Messina,
Italy, September 2003, Online&ttp://CEUR-WS.org/Vol-78/.

Denecker, M., Vennekens, J., Bond, S., Gebser, M., Tmysrski, M.: The Second Answer Set Programming
Competition, Proceedings of tre 10th International Conference on LogiagPamming and Nonmonotonic
Reasoning, LPNMR’0O€. Erdem, F. Lin, T. Schaub, Eds.), 5753, Springer, 2009.

Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set &roging SystemsPh.D. Thesis,
Institut fur Informationssysteme, Technische Universivien, 2002.

Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Deitmtn DLP Computations,Proceedings of the 5th
International Conference on Logic Programming and Nonntonic Reasoning (LPNMR'9QM. Gelfond,
N. Leone, G. Pfeifer, Eds.), 1730, Springer Verlag, El Pas&as, USA, December 1999.

Faber, W., Leone, N., Pfeifer, G.: Recursive AggregateDisjunctive Logic Programs: Semantics and
Complexity, Proceedings of the 9th European Conference on Artificiatlligence (JELIA 2004)J. J.
Alferes, J. Leite, Eds.), 3229, Springer Verlag, Septen2béd.

Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On looleath heuristics in disjunctive logic programming,
Annals of Mathematics and Artificial Intelligencgl(2—4), 2007, 229-266.

Faber, W., Pfeifer, G., Leone, N.: Semantics and coripl®f recursive aggregates in answer set program-
ming, Artificial Intelligence 1751), 2011, 278-298.

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., lelp&.: Design and Implementation of Aggregate Func-
tions in the DLV SystemTheory and Practice of Logic Programming(5—6), 2008, 545-580.

Faber, W., Ricca, F.: Solving Hard ASP Programs Effitien Logic Programming and Nonmonotonic
Reasoning — 8th International Conference, LPNMR’05, Diataaltaly, September 2005, Proceedings
(C. Baral, G. Greco, N. Leone, G. Terracina, Eds.), 3662in§pr Verlag, September 2005, ISBN 3-540-
28538-5.

Ferraris, P., Lifschitz, V.: Weight constraints as teelsexpressionsTheory and Practice of Logic Program-
ming, 5(1-2), 2005, 45-74.

Gaschnig, J.: A General Backtrack Algorithm That Elmaies Most Redundant TestBroceedings of the
Fifth International Joint Conference on Atrtificial Intediénce (IJCAI) 197,71977.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: @& limplementation of Weight Constraint Rules in
Conflict-Driven ASP SolversProceedings of 25th International Conference on Logic Paogming (ICLP-
09) (P. M. Hill, D. S. Warren, Eds.), 5649, Springer, 2009.

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: glas Conflict-Driven Answer Set SolverPro-
ceedings of the Ninth International Conference on LogicgPaionming and Nonmonotonic Reasoning (LP-
NMR'07)(C. Baral, G. Brewka, J. Schlipf, Eds.), 4483, Springerlagr2007.

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Gorflriven Answer Set Solving, Twentieth
International Joint Conference on Atrtificial Intelligen¢dCAI-07), Morgan Kaufmann Publishers, January
2007.

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., $thd., Truszczfiski, M.: The First Answer Set
Programming System Competitio®th International Conference on Logic Programming and Nonatonic
Reasoning, LPNMR’OTC. Baral, G. Brewka, J. Schlipf, Eds.), 4483, Springer &gfTempe, Arizona, May
2007, ISBN 978-3-540-72199-4.

30 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

[22] Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Groemfibor Answer Set Programmind,ogic Pro-
gramming and Nonmonotonic Reasoning, 9th Internationaif@ence, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceeding€. Baral, G. Brewka, J. S. Schlipf, Eds.), 4483, Springe@ 22

[23] Gelfond, M., Lifschitz, V.: Classical Negation in LagPrograms and Disjunctive Databaségw Genera-
tion Computing9, 1991, 365-385.

[24] Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Setogramming Based on Propositional Satisfiability,
Journal of Automated Reasoniri¢f(4), 2006, 345-377.

[25] Giunchiglia, E., Narizzano, M., Tacchella, A.. Backjping for Quantified Boolean Logic Satisfiability,
Artificial Intelligence 145, 2003, 99-120.

[26] Lee, J., Meng, Y.: On Reductive Semantics of Aggregatésiswer Set Programmingd,ogic Programming
and Nonmonotonic Reasoning — 10th International Confer¢bENMR 2009JE. Erdem, F. Lin, T. Schaub,
Eds.), 5753, Springer Verlag, September 2009, ISBN 97823@1237-9.

[27] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottloh, 8erri, S., Scarcello, F.: The DLV System for Knowl-
edge Representation and Reasonid@@M Transactions on Computational Logi3), July 2006, 499-562.

[28] Liu, L., Truszczyki, M.: The Second Answer Set Programming Competition hage, Since 2005 ttp:
//www.cs.uky.edu/ai/pbmodels/#Benchmark|region.

[29] Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, NThe HiLeX System for Semantic Information Ex-
traction, Transactions on Large-Scale Data and Knowledge-Centeyste8isSpringer Berlin/Heidelberg,
2011, To appear.

[30] Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-Béekhniques and Heuristics in DLV: Implementation,
Evaluation and Comparison to QBF Solvedurnal of Algorithms in Cognition, Informatics and Logics
63(1-3), 2008, 70-89.

[31] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., MaS.: Chaff: Engineering an Efficient SAT
Solver, Proceedings of the 38th Design Automation Conference, D@@L, 2ACM, Las Vegas, NV, USA,
June 2001.

[32] Pelov, N., Denecker, M., Bruynooghe, M.: Well-foundadd Stable Semantics of Logic Programs with
Aggregates;Theory and Practice of Logic Programming(3), 2007, 301-353.

[33] Prosser, P.: Hybrid Algorithms for the Constraint S&tction Problem.Computational Intelligence, 1993,
268-299.

[34] Ricca, F., Alviano, M., Dimasi, A., Grasso, G., lelpa,N., liritano, S., Manna, M., Leone, N.: A Logic—
Based System for e—TourisrRundamenta Informaticae, I0S Pre$$05), 2010, 35-35.

[35] Ricca, F., Faber, W., Leone, N.: A Backjumping Techridor Disjunctive Logic Programmingdl Commu-
nications — The European Journal on Artificial Intelligend&(2), 2006, 155-172.

[36] Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, Mritano, S., Leone, N.: Team-building with An-
swer Set Programming in the Gioia-Tauro Seap®heory and Practice of Logic Programmingambridge
University Press, 2011, To appear.

[37] Silva, J. P. M., Sakallah, K. A.: GRASP: A Search Algbrit for Propositional SatisfiabilityEEE Transac-
tion on ComputersA8(5), 1999, 506-521.

[38] Simons, P., Niemél I., Soininen, T.: Extending and Implementing the Stabteld SemanticsArtificial
Intelligence 138 June 2002, 181-234.

[39] Son, T. C., Pontelli, E.: A Constructive Semantic Cliteazation of Aggregates in ASPTheory and
Practice of Logic Programming/, May 2007, 355—-375.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 31

[40] Syrjanen, T.: Lparse 1.0 User’s Manual, 20@2,tp://www.tcs.hut.fi/Software/smodels/lparse.
ps.gz.

32 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

APPENDIX

In Tables 4-11 we show detailed results for the benchmarks. The rdpuaritebers are seconds for
runtime (user + system time). We do not report instances where no Disibveran find a solution within
the time limit: this is the case for Tables 6, 7, 9 and 10. In Tables 4-11, theditsha reports the specific
instance name, the second column reports the results for the standacth w#r®LV, and the third
and fourth columns report the results for the new versions: BIN.vs.SIzE and DLV.BJA.VS.EQ,
respectively. Moreover, if the related domain contains both instancesakiatanswer sets and others
that do not, a last column (AS?) is added, which indicates whether the ralatadce has an answer set
(Y) or does not (N). If all instances of a domain have answer sets,dhishn is omitted.

Table 4.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ AS?
rand-140-1000-b2-0.gph| 2.53 0.14 0.14 Y
rand-140-1000-b2-1.gph| 2.49 0.14 0.15 Y
rand-140-1000-b2-2.gph| 2.57 0.14 0.15 Y
rand-140-1000-b2-3.gph| 5.60 0.14 0.15 Y
rand-140-1000-b2-4.gph| 3.04 0.14 0.14 Y
rand-140-1000-b2-5.gph| 2.69 0.14 0.14 Y
rand-140-1000-b2-6.gph| 2.48 0.14 0.15 Y
rand-140-1000-b2-7.gph| 2.46 0.14 0.15 Y
rand-140-1000-b2-8.gph| 2.50 0.14 0.15 Y
rand-140-1000-b2-9.gph| 2.49 0.14 0.14 Y
rand-140-1000-b4-0.gph| 2.68 0.14 0.15 Y
rand-140-1000-b4-1.gph| 5.70 0.16 0.15 Y
rand-140-1000-b4-2.gph| 2.54 0.14 0.16 Y
rand-140-1000-b4-3.gph| 2.86 0.15 0.16 Y
rand-140-1000-b4-4.gph| 2.71 0.14 0.15 Y
rand-140-1000-b4-5.gph| 5.87 0.14 0.16 Y
rand-140-1000-b4-6.gph| 2.73 0.15 0.14 Y
rand-140-1000-b4-7.gph| 2.44 0.14 0.14 Y
rand-140-1000-b4-8.gph| 2.73 0.18 0.16 Y
rand-180-1000-b2-0.gph| 6.92 0.15 0.16 Y
rand-180-1000-b2-1.gph| 7.27 0.15 0.16 Y
rand-180-1000-b2-2.gph| 3.01 0.15 0.16 Y
rand-180-1000-b2-3.gph| 3.05 0.16 0.16 Y
rand-180-1000-b2-4.gph| 6.44 0.15 0.16 Y
rand-180-1000-b2-5.gph| 6.94 0.15 0.16 Y
rand-180-1000-b2-6.gph| 7.58 0.15 0.15 Y
rand-180-1000-b2-7.gph| 7.28 0.15 0.15 Y
rand-180-1000-b2-8.gph| 3.47 0.14 0.16 Y
rand-180-1000-b2-9.gph| 3.44 0.15 0.16 Y
rand-180-1000-b4-0.gph| 0.13 0.13 0.13 N
rand-180-1000-b4-1.gph| 3.55 0.15 0.15 Y
rand-180-1000-b4-2.gph| 0.13 0.12 0.13 N
rand-180-1000-b4-3.gph| 7.95 0.15 0.16 Y
rand-180-1000-b4-4.gph| 7.57 0.15 0.16 Y
rand-180-1000-b4-5.gph| 7.26 0.15 0.16 Y
rand-180-1000-b4-6.gph| 3.31 0.15 0.16 Y
rand-180-1000-b4-7.gph| 7.04 0.16 0.16 Y
rand-180-1000-b4-8.gph| 3.56 0.14 0.16 Y
rand-180-1000-b4-9.gph| 0.13 0.13 0.12 N

vertexes,F edges and bounid’.

33

Instances of the Bounded Spanning Tree domain-WahadblV -i.gph indicates theé-th graph withl”

34 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ AS?
rand-240-1120-b1600-0.gph | 9.49 0.19 0.19 Y
rand-240-1120-b1600-1.gph | 5.60 0.18 0.19 %
rand-240-1120-b1600-2.gph | 0.15 0.14 0.16 N
rand-240-1120-b1600-3.gph | 0.16 0.15 0.16 N
rand-240-1120-b1600-4.gph | 5.63 0.19 0.21 Y
rand-240-1120-b1600-5.gph | 5.52 0.20 0.20 Y
rand-240-1120-b1600-6.gph | 0.15 0.15 0.15 N
rand-240-1120-b1600-7.gph| 0.15 0.15 0.15 N
rand-240-1120-b1600-8.gph | 0.17 0.16 0.16 N
rand-240-1120-b1600-9.gph | 0.15 0.16 0.15 N
rand-256-1120-b1472-0.gph| 5.82 0.19 0.19 %
rand-256-1120-b1472-1.gph| 0.16 0.15 0.16 N
rand-256-1120-b1472-2.gph| 0.16 0.16 0.16 N
rand-256-1120-b1472-3.gph| 0.16 0.15 0.15 N
rand-256-1120-b1472-4.gph| 0.16 0.15 0.15 N
rand-256-1120-b1472-5.gph | 13.39 0.19 0.21 Y
rand-256-1120-b1472-6.gph | 0.15 0.15 0.15 N
rand-256-1120-b1472-7.gph | 0.16 0.16 0.16 N
rand-256-1120-b1472-8.gph| 5.57 0.20 0.21 %
rand-256-1120-b1472-9.gph| 0.15 0.16 0.16 N
rand-256-1160-b1600-0.gph | 0.17 0.18 0.17 N
rand-256-1160-b1600-1.gph | 0.18 0.17 0.17 N
rand-256-1160-b1600-2.gph | 0.17 0.16 0.16 N
rand-256-1160-b1600-3.gph | 6.40 0.21 0.21 Y
rand-256-1160-b1600-4.gph | 5.97 0.21 0.21 Y
rand-256-1160-b1600-5.gph | 0.16 0.16 0.16 N
rand-256-1160-b1600-6.gph | 0.18 0.17 0.18 N
rand-256-1160-b1600-7.gph| 0.16 0.16 0.16 N
rand-256-1160-b1600-8.gph | 6.76 0.21 0.22 Y
rand-256-1160-b1600-9.gph | 0.17 0.17 0.17 N
rand-280-1104-b1984-0.gph | 0.16 0.16 0.16 N
rand-280-1104-b1984-1.gph| 0.16 0.16 0.17 N
rand-280-1104-b1984-2.gph | 0.16 0.16 0.16 N
rand-280-1104-b1984-3.gph| 0.15 0.14 0.14 N
rand-280-1104-b1984-4.gph| 0.16 0.16 0.16 N
rand-280-1104-b1984-5.gph | 0.14 0.13 0.14 N
rand-280-1104-b1984-6.gph | 0.16 0.16 0.16 N
rand-280-1104-b1984-7.gph| 0.16 0.15 0.14 N
rand-280-1104-b1984-8.gph| 0.16 0.16 0.16 N
rand-280-1104-b1984-9.gph | 0.15 0.15 0.16 N
rand-360-1104-b2496-0.gph | 0.16 0.15 0.15 N
rand-360-1104-b2496-1.gph | 0.15 0.16 0.15 N
rand-360-1104-b2496-2.gph | 0.16 0.17 0.17 N
rand-360-1104-b2496-3.gph | 0.15 0.15 0.16 N
rand-360-1104-b2496-4.gph | 0.17 0.16 0.16 N
rand-360-1104-b2496-5.gph | 0.17 0.16 0.17 N
rand-360-1104-b2496-6.gph | 0.15 0.14 0.14 N
rand-360-1104-b2496-7.gph | 0.16 0.17 0.16 N
rand-360-1104-b2496-8.gph | 0.16 0.16 0.15 N
rand-360-1104-b2496-9.gph | 0.16 0.17 0.16 N

Table 5. Instances of the WeightedSpanningTree domaiml-V¥af-bl¥ -i.gph indicates theé-th graph withl
vertexes F edges and bounid’.

instance DLV | DLV.BJA.VS.SIZE | DLV.BJA.VS.EQ
magic-square-2by2 0.00 0.00 0.00
magic-square-3by3 0.01 0.02 0.01
magic-square-4by4 9.75 TIME 7.34

Table 6. Instances of the MagicSquares domain.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

instance DLV DLV.BJA.VS.SI1ZE | DLV.BJA.VS.EQ
knightTour.in1 | 0.20 0.10 0.10
knightTour.in2 | 0.52 0.10 0.11
knightTour.in3 | 2.22 0.13 0.12
knightTour.in4 | 6.11 0.17 0.20
knightTour.in5 | 14.00 0.21 0.36
knightTour.in6 | 51.76 0.62 0.46
Table 7. Instances of the KnightTour domain.

instance DLV | DLV.BJA.VS.SIZE | DLV.BJA.VS.EQ
time-tabling.dat.1| 0.08 0.03 0.03
time-tabling.dat.2| 0.28 50.17 0.06
time-tabling.dat.3| 0.58 TIME 0.10
time-tabling.dat.4| 0.98 TIME 0.15
time-tabling.dat.5| 1.62 TIME 0.18
time-tabling.dat.6| 2.04 TIME 0.25
time-tabling.dat.7| 2.85 TIME 0.32
time-tabling.dat.8| 4.25 TIME 0.38
time-tabling.dat.9| 5.98 TIME 0.50

Table 8.

Instances of the TimeTabling domain.

35

36

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ
laby-17-17-07 | 16.83 4.88 4.83
laby-18-18-04 | 112.46 289.38 289.80
laby-18-18-13| TIME 30.51 40.63
laby-18-18-14 | 18.16 3.86 3.86
laby-19-19-14 | TIME 105.03 105.03
laby-19-19-16 | TIME 11.21 11.13
laby-19-19-19 | 448.95 TIME TIME
laby-20-20-04 | TIME 7.35 7.25
laby-20-20-16 | TIME 5.60 5.57
laby-21-21-05| 46.96 TIME TIME
laby-21-21-15| 45.04 TIME TIME
Table 9. Instances of the Labyrinth domain.

W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates 37

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS.EQ AS?
505.6.1976043347.dat.data 160.28 TIME 6.33 N
505.6.1976043746.dat.data 313.57 TIME 1.66 N
505.6.1976049584.dat.data 267.15 TIME 34.72 N
505.6.1976055607.dat.data 490.32 TIME 2.79 N
505.6.1976056195.dat.data 426.55 TIME 173.44 N
505.6.1976048051.dat.data 59.31 TIME 0.02 Y
505.6.1976089585.dat.data 3.43 5.86 0.02 Y
505.6.1976090993.dat.data 230.87 TIME 77.41 N
505.6.1976095999.dat.data 476.51 1.07 0.02 Y
505.6.1976097106.dat.data TIME 0.02 0.04 Y
505.6.1976097683.dat.data 107.60 TIME 488.43 Y
505.6.1976102161.dat.data 378.58 TIME 20.22 N
505.6.1976103815.dat.data 246.21 TIME 0.03 N
505.6.1976128002.dat.data TIME 645.10 33.53 Y
505.6.1976128122.dat.data 0.15 TIME 0.03 Y
505.6.1976131149.dat.data 31.30 0.99 0.01 Y
505.6.1976135316.dat.data 420.92 TIME 94.67 N
505.6.1976148351.dat.data TIME TIME 0.16 Y
505.6.1976153426.dat.data 46.85 42.80 0.02 Y
505.6.1976164056.dat.data TIME TIME 1.17 Y
505.6.1976164284.dat.data 0.09 558.48 0.07 Y
511.6.1162362547.dat.data 64.69 3.84 0.02 Y
511.6.1162368434.dat.data 70.96 204.38 0.02 Y
511.6.1162583044.dat.data 0.07 0.44 0.03 Y
511.6.1162586028.dat.data 184.04 TIME 0.02 Y
512.6.1669104030.dat.data 22.26 423.10 0.02 Y
512.6.1669117391.dat.data 0.08 4.23 0.03 Y
512.6.1669132369.dat.data 11.31 TIME 0.02 Y
512.6.1669131750.dat.data 3.37 450.98 0.01 Y
512.6.1669245041.dat.data 24.21 TIME 0.03 Y
512.6.1669208235.dat.data 0.08 TIME 0.02 Y
512.6.1669316059.dat.data 29.62 487.31 0.01 Y
512.6.1669326545.dat.data 10.39 TIME 0.05 Y
513.6.2014058873.dat.data 241.45 0.03 0.02 Y

Table 10. Instances of the WeightedLatinSquares domain.

38 W. Faber, N. Leone, M. Maratea, F. Ricca/Look-back Techniques3$® Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS
dom-rand-70-300-1155482584-8 424.70 1.03 2.09
rand-70-300-1155482584-0 0.10 0.03 0.28
rand-70-300-1155482584-3 0.09 0.06 1.17
rand-70-300-1155482584-4 0.11 0.03 0.31
rand-70-300-1155482584-5 0.11 0.04 0.30
rand-70-300-1155482584-7 0.10 0.07 0.46
rand-70-300-1155482584-8 0.09 0.03 0.29
rand-70-300-1155482584-9 0.09 0.04 0.28
rand-70-300-1155482584-11 0.11 0.03 0.30
rand-70-300-1155482584-12 0.13 0.06 0.30
rand-70-300-1155482584-14 0.11 0.04 1.05
rand-80-340-1159656267-0 0.12 0.06 0.39
rand-80-340-1159656267-4 0.12 0.04 0.63
rand-80-340-1159656267-6 0.13 0.11 0.38
rand-80-340-1159656267-10 0.12 0.05 0.56
rand-80-340-1159656267-11 0.18 0.10 0.70
rand-80-340-1159656267-13 0.12 0.07 1.28
rand-80-340-1159656267-15 0.16 0.44 0.35
rand-80-340-1159656267-16 0.13 0.05 1.00
rand-80-340-1159656267-17 0.14 0.51 0.99
rand-80-340-1159656267-18 0.14 0.04 11.19
tsp-rand-70-300-1155482584-0 0.46 0.04 0.56
tsp-rand-70-300-1155482584-4 85.97 0.88 60.76
tsp-rand-70-300-1155482584-5 0.11 0.24 2.30
tsp-rand-70-300-1155482584-7 1.26 0.08 TIME
tsp-rand-70-300-1155482584-8§ 0.15 0.03 0.28
tsp-rand-70-300-1155482584-9 2.82 28.30 0.48
tsp-rand-70-300-1155482584-11 540.09 10.75 TIME
tsp-rand-70-300-1155482584-12 0.14 0.16 0.39
tsp-rand-70-300-1155482584-14 0.12 0.04 1.50

Table 11. Instances of the TravelingSalesperson domain.

