
Fundamenta Informaticae XX (2011) 1–?? 1

IOS Press

Look-back Techniques for ASP Programs with Aggregates∗

Wolfgang Faber

Department of Mathematics - University of Calabria

Nicola LeoneC

Department of Mathematics - University of Calabria

Marco Maratea

DIST - University of Genova, and

Department of Mathematics - University of Calabria

Francesco Ricca

Department of Mathematics - University of Calabria

Abstract. The introduction of aggregates has been one of the most relevant language extensions
to Answer Set Programming (ASP). Aggregates are very expressive, they allow to represent many
problems in a more succinct and elegant way compared to aggregate-free programs. A significant
amount of research work has been devoted to aggregates in theASP community in the last years, and
relevant research results on ASP with aggregates have been published, on both theoretical and prac-
tical sides. The high expressiveness of aggregates (eliminating aggregates often causes a quadratic
blow-up in program size) requires suitable evaluation methods and optimization techniques for an
efficient implementation. Nevertheless, in spite of the above-mentioned research developments, ag-
gregates are treated in a quite straightforward way in most ASP systems.

In this paper, we explore the exploitation of look-back techniques for an efficient implementation
of aggregates. We define a reason calculus for backjumping inASP programs with aggregates.
Furthermore, we describe how these reasons can be used in order to guide look-back heuristics for
programs with aggregates. We have implemented both the new reason calculus and the proposed
heuristics in the DLV system, and have carried out an experimental analysis on publicly available
benchmarks which shows significant performance benefits.

Keywords: Knowledge Representation and Reasoning, Nonmonotonic Reasoning, Answer Set
Programming, Heuristics, Aggregates.

Address for correspondence: Department of Mathematics, University of Calabria Via P. Bucci, cubo 30b, 87036 Rende (CS),
Italy.
∗Preliminary versions of this work have been published at 15th RCRA workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion (RCRA’08) and Workshopon Logic and Search: Computation of structures
from declarative descriptions (LASH’08).
CCorresponding author

2 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

1. Introduction

Answer Set Programming (ASP) [23] has become a popular logic programming framework during the
last decade, the reason being mostly its intuitive declarative reading, a mathematically precise expressiv-
ity, and last but not least the availability of some efficient ASP systems, whichfavoured the implementa-
tion of many advanced real-world ASP applications (see, e.g., [34, 36, 29]). One of the most important
extensions of the language of ASP has been the introduction of aggregates. Aggregates significantly
enhance the language of ASP, allowing for natural and concise modelling of many problems. A lot of
work has been done both theoretically (mostly for determining the semantics of aggregates that occur in
recursion) [32, 39, 11, 13], and practically, for endowing systems witha selection of aggregate functions
[38, 7, 14, 20, 1].

However, work on optimizing system performance with respect to aggregates in ASP is still sparse,
and current implementations use more or less ad-hoc techniques. Moreover, fine-grained details on their
treatment have been rarely presented (with the recent, notable exception of [18], which nonetheless focus
on a single aggregate function).

In this work, we explore the exploitation of look-back techniques for an efficient implementation of
aggregates. We build upon a technique for backjumping, which was developed in the setting of the solver
DLV for aggregate-free ASP programs. As a main contribution, we describe how thereason calculus
defined in [35] can be extended for keeping track of the reasons for several types of aggregates supported
by DLV. The information collected in this way can then be exploited directly for backjumping, using the
original method described in [35].

Importantly, reasons for aggregates can also be exploited for look-back heuristics. Indeed, we show
how the look-back heuristics presented in [30] can be extended to the aggregate case. For this task,
a key issue is the initialization of heuristic values: since look-back heuristics use information of the
computation done so far, they would be completely uninformed at the beginningof the computation,
as no information can be looked back on. In order to tackle this issue, we consider two alternatives:
in the first, simple alternative, the “relevance” of an aggregate literal is determined by the size of its
aggregate set. The second, more informed, alternative applies standardtechniques on an aggregate-free
program equivalent to the given program with aggregates for initializing the heuristic values. In this
second case we pay particular attention to avoiding the materialization of this aggregate-free program,
but use the knowledge about its structure for computing the initial values. This second method is exact
in the aggregate-stratified case, in the sense that the aggregate-free program is equivalent to the original
program with aggregates, and it can still be used for the purpose of a heuristic in the aggregate-unstratified
case, as it can serve as a reasonable approximation.

We have implemented the proposed techniques for the aggregate-stratified setting, and report on a
performance evaluation of the obtained prototype on publicly available benchmarks, in which we ob-
served performance benefits for the enhanced system.

Summing up the main contributions of the work:

• We extend the reason calculus in [35] to include reasons for all the aggregate functions supported
by DLV;

• We show how this extension can be used to guide look-back heuristics, andwe present two alter-
natives for their initialization;

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 3

• We implement these new features in DLV;

• We perform an experimental analysis on publicly available benchmarks, which shows performance
benefits for the enhanced system employing the more elaborate heuristic.

The paper is structured as follows: first we review syntax and semantics of ASP with aggregates in
Section 2, and the backjumping method and reason calculus of DLV in Section 3. We then describe
the extension of the reason calculus to aggregates in Section 4. Dealing with look-back heuristics in the
presence of aggregates is discussed in Section 5. The experimental evaluation of the enhanced system
is presented and discussed in Section 6. In Section 7 we discuss related work and conclude the paper in
Section 8. The appendix provides further details on the experiments.

2. Answer Set Programming with Aggregates

In this section, we recall syntax, semantics, and some basic properties of logic programs with aggregates
under the answer set semantics.

2.1. Syntax

Variables, Constants, and Predicates. We consider finite sets ofvariables, constants, andpredi-
cates. Similar to Prolog notation, we will denote variables as strings starting with uppercase letters and
constants as non-negative integers or strings starting with lowercase letters. Predicates are strings start-
ing with lowercase letters or symbols such as=, <, > (so-called built-in predicates that have a fixed
meaning). Anarity (non-negative integer) is associated with each predicate.

Standard Atoms and Literals. A term is either a variable or a constant. Astandard atomis an
expressionp(t1, . . .,tn), wherep is apredicateof arity n andt1,. . . ,tn are terms. Astandard literalL
is either a standard atomA (in this case, it ispositive) or a standard atomA preceded by the default
negation symbolnot (in this case, it isnegative). A conjunction of standard literals is of the form
L1, . . . , Lk where eachLi (1 ≤ i ≤ k) is a standard literal. Two literals are complementary if they are
of the formp andnot p (wherep is an atom). Given a literalL, let¬.L denote its complementary literal.
Accordingly, given a setL of literals,¬.L = {¬.L | L ∈ L}.

Set Terms. A set termis either a symbolic set or a ground set. Asymbolic setis a pair{Vars : conj},
whereVars is a list of variables andconj is a conjunction of standard atoms.1 A ground setis a set of
pairs of the form〈t : conj 〉, wheret is a list of constants andconj is a ground conjunction of standard
atoms.

Aggregate Functions. An aggregate functionis of the formf(S), whereS is a set term, andf is an
aggregate function symbol. Intuitively, an aggregate function can be thought of as a (possibly partial)
function mapping multisets of constants to a constant.

1Intuitively, a symbolic set{X : a(X, Y), p(Y)} stands for the set ofX-values makinga(X, Y), p(Y) true, that is,
{X |∃Y such that a(X, Y), p(Y) is true}.

4 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Example 2.1. In the examples, we adopt the syntax ofDLV to denote aggregates.Aggregate functions
currently supported by the DLV system are:#count (number of terms),#sum (sum of non-negative
integers),#min (minimum term),#max (maximum term).2

Aggregate Literals. An aggregate atomis f(S) ≺ T , wheref(S) is an aggregate function,≺∈ {=
, <, ≤, >,≥} is a predefined comparison operator, andT is a term (variable or constant) referred to as
guard.

Example 2.2. In the following aggregate atoms, the latter contains a ground set and could be a ground
instance of the former:

#max{Z : r(Z), a(Z, V)} > Y

#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atomis either a standard atom or an aggregate atom. Aliteral L is an atomA or an atomA preceded
by the default negation symbolnot; if A is an aggregate atom,L is anaggregate literal.

Programs. A rule r is a construct

a1 v · · · v an :- b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, . . . , an are standard atoms,b1, . . . , bm are atoms, andn ≥ 1, m ≥ k ≥ 0. The disjunction
a1 v · · · v an is referred to as theheadof r while the conjunctionb1, ..., bk, not bk+1, ...,not bm is
thebodyof r. We defineH(r) = {a1, . . . , an}, B+(r) = {b1, ..., bk}, B−(r) = {not bk+1, ...,not bm},
andB(r) = B+(r)∪B−(r). A globalvariable of a ruler appears in a standard atom ofr (possibly also
in other atoms); all other variables arelocal. A programis a set of rules.

Note that this syntax does not explicitly allow rules without head atoms, also known as integrity
constraints, which are usually found in ASP languages. They can, however, be simulated in a standard
way by using a new symbol and negation.

Safety. A rule r is safeif the following conditions hold: (i) each global variable ofr appears in a positive
standard literal in the body ofr; (ii) each local variable ofr appearing in a symbolic set{Vars : conj}
appears in an atom ofconj ; (iii) each guard of an aggregate atom ofr is a constant or a global variable.
A programP is safe if allr ∈ P are safe. In the following we assume that programs are safe. Note that
unsafe rules in general are not domain-independent, a condition which gives rise to semantic issues.

Example 2.3. Consider the following rules with aggregates:

p(X) :- q(X, Y, V), #max{Z : r(Z), a(Z, V)} > Y.

p(X) :- q(X, Y, V), #sum{S : a(Z, Z)} > Y.

p(X) :- q(X, Y, V), #min{Z : r(Z), a(Z, V)} > T.

The first rule is safe, while the second is not, since the local variableS violates condition (ii). The third
rule is not safe either, since the guardT violates condition (iii).
2The first two aggregates roughly correspond, respectively, to the cardinality and weight constraint literals ofLPARSE. #min

and#max are undefined for an empty set.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 5

Stratification. A programP is aggregate-stratifiedif there exists a function|| ||, calledlevel mapping,
from the set of (standard) predicates ofP to ordinals, such that for each paira andb of standard predi-
cates, occurring in the head and body of a ruler ∈ P, respectively: (i) ifb appears in an aggregate atom,
then||b|| < ||a||, and (ii) if b occurs in a standard atom, then||b|| ≤ ||a||.

Example 2.4. Consider the program consisting of the following two rules:

q(X) :- p(X), #count{Y : a(Y, X), b(X)} ≤ 2.

p(X) :- q(X), b(X).

The program is aggregate-stratified, as the level mapping||a|| = ||b|| = 1, ||p|| = ||q|| = 2 satisfies
the required conditions. If we add the ruleb(X) :- p(X), then no such level-mapping exists and the
program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursion through aggregates. While the semantics of
aggregate-stratified programs is more or less agreed upon, different and disagreeing semantics for aggregate-
unstratified programs have been defined in the past, cf. [32, 39, 11]. In the following, we will consider
aggregate-stratified programs. We refer to [26] for an overview of proposed semantics for the unstratified
case and how they relate.

2.2. Answer Set Semantics

Universe and Base. Given a programP, letUP denote the set of constants appearing inP (its Herbrand
universe), andBP be the set of standard atoms constructible from the (standard) predicatesof P with
constants inUP (the Herbrand base). Given a setX, let 2X denote the set of all multisets over elements
from X. Without loss of generality, we assume that aggregate functions map toZ (the set of integers).

Example 2.5. #count is defined over2UP, #sum over2N, #min and#max are defined over2N
\ {∅}.

Instantiation. A substitutionis a mapping from a set of variables toUP . A substitution from the set
of global variables of a ruler (to UP) is aglobal substitution for r; a substitution from the set of local
variables of a symbolic setS (to UP) is a local substitution forS. Given a symbolic set without global
variablesS = {Vars : conj}, the instantiation ofS is the ground set of pairsinst(S) = {〈γ(Vars) :
γ(conj)〉 | γ is a local substitution forS}.3

A ground instanceof a ruler is obtained in two steps: (1) a global substitutionσ for r is first applied over
r; (2) every symbolic setS in σ(r) is replaced by its instantiationinst(S). The instantiationGround(P)
of a programP is the set of all possible instances of the rules ofP.

Example 2.6. Consider the programP1:

q(1) v p(2, 2). q(2) v p(2, 1). t(X) :- q(X), #sum{Y : p(X, Y)} > 1.

3Given a substitutionσ and an objectObj of the language (rule, set, etc.), we denote byσ(Obj) the object obtained by replacing
each variableX in Obj by σ(X).

6 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

The instantiationGround(P1) is

q(1) v p(2, 2). t(1) :- q(1), #sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.

q(2) v p(2, 1). t(2) :- q(2), #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

Interpretations. An interpretationfor a programP is a consistent set of standard ground literals, that
is I ⊆ (BP ∪ ¬.BP) such thatI ∩ ¬.I = ∅. A standard ground literalL is true (resp. false) with respect
to I if L ∈ I (resp.L ∈ ¬.I). If a standard ground literal is neither true nor false with respect toI then
it is undefined with respect toI. We denote byI+ (resp.I−) the set of all atoms occurring in standard
positive (resp. negative) literals inI. We denote bȳI the set of undefined atoms with respect toI (that
is, BP \ I+ ∪ I−). An interpretationI is total if Ī is empty (that is,I+ ∪ ¬.I− = BP), otherwiseI is
partial.

An interpretation also provides a meaning for aggregate literals. Their truth value is first defined for
total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction is true with respectto I if all its literals
are true with respect toI; it is false if any of its literals is false with respect toI. Letf(S) be an aggregate
function, whereS is a ground set. The valuationI(S) of S with respect toI is the multiset of the first
constant of the elements inS whose conjunction is true with respect toI. More precisely, letI(S) denote
the multiset[t1 | 〈t1, ..., tn : conj 〉 ∈ S∧ conj is true with respect to I]. The valuationI(f(S)) of an
aggregate functionf(S) with respect toI is the result of the application off on I(S). If the multiset
I(S) is not in the domain off , I(f(S)) = ⊥ (where⊥ is a fixed symbol not occurring inP).

An instantiated aggregate atomA of the formf(S) ≺ k is true with respect toI if: (i) I(f(S)) 6=
⊥, and, (ii) I(f(S)) ≺ k holds; otherwise,A is false. An instantiated aggregate literal of the form
notf(S) ≺ k is true with respect toI if (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k does not hold;
otherwise, it is false.

If I is apartial interpretation, an aggregate literalA is true (resp. false) with respect toI if it is true
(resp. false) with respect toeach totalinterpretationJ extendingI (that is, for allJ such thatI ⊆ J , A
is true (resp. false) with respect toJ); otherwise, it is undefined.

Example 2.7. Consider the atomA = #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1. Let S be the ground set
in A. For the interpretationI = {p(2, 2)}, each extending total interpretation contains eitherp(2, 1) or
not p(2, 1). Therefore, eitherI(S) = [2] or I(S) = [1, 2] and the application of#sum yields either
2 > 1 or 3 > 1, henceA is true with respect toI.

The above definitions of interpretation and truth values preserve “knowledge monotonicity”. If an
interpretationJ extendsI (that is,I ⊆ J), then each literal which is true with respect toI is true with
respect toJ , and each literal which is false with respect toI is false with respect toJ as well.

Minimal Models. Given an interpretationI, a ruler is satisfied with respect toI if some head atom
is true with respect toI whenever all body literals are true with respect toI. A total interpretationM
is a modelof a programP if all rules r ∈ Ground(P) are satisfied with respect toM . A modelM
for P is (subset) minimal if no modelN for P exists such thatN+ (M+. Note that, under these
definitions, the wordinterpretationrefers to a possibly partial interpretation, while amodelis always a
total interpretation.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 7

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transformation and answer
sets for programs with aggregates from [11]: Given a ground program P and a total interpretationI, let
PI denote the transformed program obtained fromP by deleting all rules in which a body literal is false
with respect toI. I is an answer set of a programP if it is a minimal model ofGround(P)I .

Example 2.8. Consider the total interpretationsI1 = {p(a), q(a)}, I2 = {not p(a), q(a)}, I3 =
{p(a), not q(a)}, andI4 = {not p(a), not q(a)} and program:

P = {p(a) :-#count{X : q(X)} > 0.}

Then we obtain:

Ground(P) = {p(a) :-#count{〈a : q(a)〉} > 0.}

Ground(P)I1 = Ground(P)

Ground(P)I2 = Ground(P)

Ground(P)I3 = ∅

Ground(P)I4 = ∅

We observe that:I1 andI3 are not answer sets ofP , indeed bothI1 andI3 are not minimal models of
respectivelyGround(P)I1 andGround(P)I3 ; I2 is not a model forP (the only rule inP is not satisfied
in I2); andI4 is the only answer set ofP .

Note that any answer setA of P is also a model ofP becauseGround(P)A ⊆ Ground(P), and
rules inGround(P) \ Ground(P)A are satisfied with respect toA.

3. Answer Sets Computation with Backjumping and Reason Calculus in
DLV

The computation of the answer sets of a disjunctive programP is usually carried out in two steps. The
first, calledinstantiation (or grounding), has the role of generating a ground program having the same
answer sets ofP (usually, much smaller than —but equivalent to— the theoretical ground instantiation
of P); the second step of the computation, often calledmodel generation, amounts to searching for the
answer sets of the ground program produced by the instantiation.

Model generation is the non-deterministic core of an ASP system, and it is usually implemented
as a backtracking search similar to the Davis-Putnam-Logemann-Loveland (DPLL) procedure [4] for
SAT solving. The Model Generator algorithm employed by DLV is sketched In Figure 1.4 Basically,
starting from the empty (partial) interpretation (I = ∅), the ModelGenerator procedure repeatedly
assumes truth-values for atoms (chosen according to a heuristic), subsequently computing their deter-
ministic consequences (by a call toPropagateDetCons). This is done until either an answer set is
found or an inconsistency is detected. In particular, if the input programhas an answer set, the procedure
ModelGenerator returns True (andI contains the computed solution); otherwise, it returns False.

4The algorithm presented here is simplified in order to focus on the aspects that are relevant to our contribution. For details, we
refer to [9] for the basic DLV algorithm and [35] for backjumping.

8 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Inconsistencies are detected in two cases:(i) conflicting literals, that is, propagation determines that
an atoma and its negationnot a should both hold (in this casePropagateDetCons returns the set of
all literalsL); or (ii) stability check failures. The latter case occurs if the checked interpretation, which
is guaranteed to be a model, is not stable (and the functionIsAnswerSet returns false). This is a pecu-
liarity of disjunctive ASP, since the stability check is not needed in non-disjunctive ASP systems [27].
In both cases, since the last choice might not be the only cause of the found inconsistency, the system
detects (using theComputeNextLevel function) the most recent choiceℓ that isrelevantfor the found
inconsistency and it goes back to modifyℓ (non-chronological backtracking or backjumping). Note that
this is done in order to avoid encountering again the same inconsistency, thusperforming a lot of useless
computations.

A crucial point is how relevance for an inconsistency can be determined.The necessary information
for deciding relevance is recorded by means of areason calculus[35], which collects information about
the choices (“reasons”) whose truth-values have caused truth-values of other deterministically derived
atoms. In practice, once an atom has been assigned a truth-value during the computation, we can asso-
ciate a reason to it. For instance, given a rulea :- b, c,not d., if b andc are true andd is false in the
current partial interpretation, thena will be derived as true during propagation. In this case,a is true
becauseb andc are true andd is false. Therefore, the reasons fora will consist of the reasons forb, c,
andd. More generally, the reason of a derived literal consists of the reasons of those literals that entail
its truth; on the other hand,chosenliterals become true unconditionally, and their only reason is their
choice. Therefore, each literall derived during the propagation has an associated set of positive integers
R(l) representing the reasons forl, which contains essentially the recursion levels of the choices which
entail l. Hence, for any chosen literalc, |R(c)| = 1 holds, while for any derived (that is, non-chosen)
literal n, |R(n)| ≥ 1 holds. For instance, ifR(l) = {1, 3, 4}, then the literals chosen at recursion levels
1,3 and 4 entaill.

The reason information is used for detecting the set of chosen literals that are relevant for an incon-
sistency. It is easy to see that, for avoiding that the same inconsistency occurs again, we have to go
back in the search until at least one choice that causes the inconsistencyis undone. This set of choices
(that entail the inconsistency) is called the reason for the inconsistency. In the case of conflicting literals,
it is obtained by the combination of the reasons fora andnot a: R(a) ∪ R(not a). In the case of a
stability check failure the reason for such an inconsistency is always based on an unfounded set, which
has been determined insideIsAnswerSet as a side-effect. Using this unfounded set, the reason for the
inconsistency is composed of the reasons of literals which satisfy rules containing unfounded atoms in
their head [35].

In the algorithm of Figure 1, the reason for an inconsistency is stored in thevariableIncReason,
and backjumping is performed by computing the next recursion level (next level) by calling the function
ComputeNextLevel. ComputeNextLevel, basically, selects the maximal recursion level contained
in IncReason, which is different fromcurrent level.

It is worth noting thatPropagateDetCons plays a crucial role in the model generation process. It
is similar tounit propagation(UP) in DPLL SAT solvers; however, its implementation is quite more
complex than UP, becausePropagateDetCons implements a set of inference rules. Those rules com-
bine an extension of the Well-founded operator for disjunctive programswith a number of techniques
based on disjunctive ASP program properties. We will not report in detail here all the propagation rules
for standard ASP programs and the associated reason calculus, as theyare not a novelty of this paper,
and refer to [10, 3] for their precise definitions and implementation. However, in the following, we will

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 9

static integercurr level = 0; //stores the current recursion level
static integernext level = 0; //used to control recursion

bool ModelGenerator (Interpretation& I){

curr level ++; //update current recursion level
next level = currentlevel;

I = PropagateDetCons (I, IncReason);

if (I == L) //conflicting literals found during propagation
curr level --; return false;

if (“no atom is undefined in I”)
if IsAnswerSet(I, IncReason);return true ; //answer set found
else{ //inconsistency from model checking

next level = ComputeNextLevel(IncReason);
curr level --; return false; }

Select an undefined atomA using a heuristic;

if (ModelGenerator(I ∪ {A}) return true ;
else if(next level< curr level) // control recursion (backjumping?)

return false;

if (ModelGenerator (I ∪ {not A}) return true ;
else if(next level< curr level) // control recursion (backjumping?)

return false;

// tried bothA andnot A, deal with inconsistency
next level = ComputeNextLevel(IncReason);
curr level --; return false;

};

Figure 1. Computation of Answer Sets in DLV.

describe the inference rules needed for correctly implementing aggregates [38, 7], and we present the
associated extension of the reason calculus which allows for dealing with aggregates.

4. Propagation Rules and Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supported byDLV. Hereafter, a partial interpre-
tation (denoted by a set of literals)I is assumed to be given. Moreover, without loss of generality, we
assume that aggregate literals are in the simplified formf(A)Θk, where: (i) the aggregate setA only
contains pairs of the form〈t : a〉, wherea is an atom; and (ii) only two comparison operators are

10 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

allowed, namelyΘ ∈ {<, >}.
Actually, DLV internally rewrites the input programP to obtain this simplified form. In particular,

each aggregate literalf(S) ≺ T (with ≺∈ {=, <, ≤, >,≥}) occurring inP is first transformed in
such a way that only one of the comparison operators inΘ ∈ {<, >} is used;5 then, for each〈t :
conj〉 ∈ S, conj is replaced by a new atomauxf(S)<T (v), and the ruleauxf(S)<T (v) :- conj is added
to the program, wherev are the variables occurring inconj. This means that conjunctions inS are
replaced by freshly introduced auxiliary atoms, along with a rule defining theauxiliary atom by means
of the conjunction. This transformation has several advantages: it simplifies both the description and
the implementation of propagation; and (as it will become clear in the following) allows for defining
some additional derivation rules. Moreover, letA = {〈t1 : a1〉, . . . , 〈tn : an〉} be a set term; we define
CA =

⋃

〈v,t:a〉∈A∧not a∈I R(not a) andSA =
⋃

〈v,t:a〉∈A∧a∈I R(a). Intuitively, CA represents the reasons
for false atoms inA, whileSA represents the reason for true atoms inA.

In the next sections, each propagation rule and the corresponding reason calculus are described in
detail. In particular, we consider two different scenarios depending onwhether the propagation proceeds
from atoms inA to aggregate literalsf(A)Θk (forward inference) or the other way around (backward
inference). Basically, in the first case we derive the truth/falsity of the aggregate literalf(A)Θk from
the truth/falsity of some atoms occurring inA; in the second case, given a rule containing an aggregate
atom which is already known to be true or false with respect to the current interpretation,6 we infer some
atoms occurring in the conjunctions inA to be true/false.

4.1. Forward Inference

This kind of propagation rules apply when it is possible to derive an aggregate literalf(A)Θk to be true
or false because some atom inA is true or false with respect toI. As an example consider the program:

a(1). a(2). h : −#count{〈1 : a(1)〉, 〈1 : a(2)〉} < 1.

Since botha(1) anda(2) are facts, they are immediately derived to be true; then, since the function
value for the aggregate is 2, the aggregate literal is inferred to be false byforward inference.

In the following, we report in a separate paragraph propagation rules and reason calculus for the
aggregates supported by DLV. Hereafter,〈v, t : a〉 is a syntactic shorthand for〈v, t1, . . . , tn : a〉, where
v is a constant andt is the list of constantst1, . . . , tn, n ≥ 0.

#count{A} > k. Suppose that there exists a setA′ ⊆ A such that for each〈t : a〉 ∈ A′, a is false
in I and |A′| ≥ |A| − k, then#count{A} > k is inferred to be false and its reasons are set toCA′ .
Conversely, suppose that there exists a setA′ ⊆ A such that for each〈t : a〉 ∈ A′, a is true inI and
|A′| > k, then we infer that#count{A} > k is true and we set its reason toSA′ .

Let us now consider the symmetric case.

#count{A} < k. Suppose that there exists a setA′ ⊆ A such that for each〈t : a〉 ∈ A′, a is true in
I and|A′| ≥ k, then#count{A} < k is inferred to be false and its reasons are set toSA′ Conversely,

5Note that, for the aggregates considered in this paper,f(S) ≤ T (resp. f(S) ≥ T) is equivalent tof(S) < T + 1 (resp.
f(S) > T − 1), andf(S) = T can be replaced by the conjunctionf(S) < T + 1, f(S) > T − 1.
6This can happen in our setting as a consequence of the application of eithercontraposition for true heador contraposition for
false headpropagation rules, see [35].

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 11

suppose that there exists a setA′ ⊆ A such that for each〈t : a〉 ∈ A′, a is false inI and|A′| > |A| − k,
then we infer that#count{A} < k is true and we set its reason toCA′ .

Example 4.1. Suppose that the input program contains the rule:

h :- c,#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1.

and suppose also that the current partial interpretationI contains botha(1) anda(2). Then, we have that
there exists a set, namelyA′ = {〈1 : a(1)〉, 〈2 : a(2)〉} (which contains true atoms), that ensures that
the aggregate function value is at least greater than the guard; thus,#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 :
a(3)〉} < 1 is derived to be false, and its reason is set toSA′ = R(a(1)) ∪ R(a(2)).

Note that the specifications described above leaves some freedom for animplementation, since there
might exist several setsA′ that satisfy the respective properties. A possibility with more information
value would be to consider all of these sets, which however might be costly tocompute. A compromise
solution is to create one suchA′ by iterating over the setA, adding suitable elements to an initially empty
A′ until the condition is met. The latter option has been implemented in our prototype (cf. Section 6),
also for cases described below, where analogous options are available.

#min{A} > k. Let A′ be the set of all pairs〈v, t : a〉 ∈ A such thatv ≤ k. If for each〈v, t : a〉 ∈ A′,
a is false inI, and if there exists also a pair〈v, t : a〉 ∈ A such thata is true inI then#min{A} > k
is derived to be true and we set its reason toCA′ ∪ R(a), otherwise (the function is undefined over the
empty set)#min{A} > k is derived to be false with reasonCA\A′ . Conversely, suppose there exists a
pair 〈v, t : a〉 ∈ A such thata is true inI andv ≤ k, then we infer that#min{A} > k is false and set its
reason toR(a).

#min{A} < k. Let A′ be the set of all pairs〈v, t : a〉 ∈ A such thatv < k. If for each〈v, t : a〉 ∈ A′, a
is false inI, then#min{A} < k is derived to be false and we set its reason toCA′ . Conversely, suppose
there exists a pair〈v, t : a〉 ∈ A such thata is true inI andv < k, then we infer that#min{A} < k is
true and set its reason toR(a).

Example 4.2. Suppose that the input program contains the rule:

h :- c,#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2.

and suppose also that the current partial interpretationI contains botha(1) anda(3). Then, we have that
there exists a pair, namely〈1 : a(1)〉, that ensures that the minimum is 1 which is smaller than the guard
(here1 < k = 2); thus,#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2 is derived to be true and its reason
is set toR(a(1)).

#max{A} < k. Suppose there exists a pair〈v, t : a〉 ∈ A such thata is true inI andv ≥ k, then
we infer that#max{A} < k is false and set its reason toR(a). Conversely, letA′ be the set of all pairs
〈v, t : a〉 ∈ A such thatv ≥ k. If for each〈v, t : a〉 ∈ A′, a is false inI, and if there exists also a pair
〈v, t : a〉 ∈ A \ A′ such thata is true inI then#max{A} < k is derived to be true and we set its reason
to CA′ ∪ R(a), otherwise (the function is undefined over the empty set)#max{A} < k is derived to be
false with reasonCA\A′ .

12 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

#max{A} > k. Suppose there exists a pair〈v, t : a〉 ∈ A such thata is true inI andv > k, then
we infer that#max{A} > k is true and set its reason toR(a). Conversely, letA′ be the set of all
pairs〈v, t : a〉 ∈ A such thatv > k, and suppose that for each〈v, t : a〉 ∈ A′, a is false inI, then
#max{A} > k is derived to be false and we set its reason toCA′ .

Example 4.3. Suppose that the input program contains the rule:

h :- c,#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 2.

and suppose also that the current partial interpretationI containsnot a(1), not a(2), andnot a(3). Then,
we have that the entire setA = {〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} contains only false atoms; thus, the
aggregate atom is is derived to be false, and its reason is set toCA = R(a(1)) ∪ R(a(2)) ∪ R(a(3)).

#sum{A} > k. Suppose that there exists a setA′ ⊆ A such that for each〈v, t : a〉 ∈ A′ a is false in
I andΣ[v|〈v,t:a〉∈A]v − Σ[v|〈v,t:a〉∈A′]v ≤ k,7 then#sum{A} > k is false and we set its reason toCA′ .
Conversely, suppose that there exists a setA′ ⊆ A such that for each〈v, t : a〉 ∈ A′, a is true inI and
Σ[v|〈v,t:a〉∈A′]v > k, then#sum{A} > k is true and its reason isSA′ .

#sum{A} < k. Suppose that there exists a setA′ ⊆ A such that for each〈v, t : a〉 ∈ A′ a is true inI
andΣ[v|〈v,t:a〉∈A′]v ≥ k, then#sum{A} < k is false and we set its reason toSA′ . Conversely, suppose
that there exists a setA′ ⊆ A such that for each〈v, t : a〉 ∈ A′, a is false inI andΣ[v|〈v,t:a〉∈A]v −
Σ[v|〈v,t:a〉∈A′]v < k, then#sum{A} < k is true and its reason isCA′ .

Example 4.4. Suppose that the input program contains the rule:

h :- c,#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4.

and suppose also that the current partial interpretationI containsa(1), a(2) andnot a(3). Then there
exists a set, namelyA′ = {〈3 : a(3)〉} (which contains a false atom), that ensures that the function value
cannot be greater than the guard (here3 > 6 − 4); thus,#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4 is
derived to be false and its reason is set toR(not a(3)).

4.2. Backward Inference

This kind of propagation rules apply when an aggregate literalf(A)Θk, Θ ∈ {<, >} has been derived
true (or false), and there isa unique way8 to satisfy it by inferring that some atom belonging toA is true
or false. For example, suppose thatI is empty and consider the program:

:- not h. h : −#count{〈1 : a〉, 〈1 : b〉} > 1.

During propagation we first inferh to be true for satisfying the constraint, and then, in order to satisfy
the rule, also the aggregate literal is inferred to be true (independently of itsaggregate set). At this point,
backward propagation can happen, since there is a unique way to satisfythe aggregate literal: infer both
a andb to be true.
7Recall that by[. . .] we denote a multiset.
8Since the propagation process must bedeterministic.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 13

Note that, as far as the reason calculus is concerned, literals are inferred to be true or false by back-
ward inference because both the aggregate literal is true/false and a setof atoms inA (whose elements
are either true or false) made the process deterministic; thus, the reason for each atoma inferred by
backward inference is set toR(a) = R(f(A)Θk) ∪ CA ∪ SA.

The following paragraphs report sufficient conditions for applying backward inference in the case of
the aggregates supported by DLV. Since conditions forf(A) > k to be true (resp. false) coincide with
the ones off(A) < k+1 to be false (resp. true), only one of the two cases is reported for each aggregate.

Definition 4.1. Given a ground setA and a partial interpretationI, let TA be the set{〈ti : ai〉 ∈ A such
thatai is true with respect toI}, andFA be the set{〈ti : ai〉 ∈ A such thatai is false with respect toI}.

#count{A} < k. Suppose that both#count{A} < k is true with respect toI and|TA| = k − 1, then
all undefined atomsai such that〈ti : ai〉 ∈ A are made false. Conversely, suppose#count{A} < k is
false with respect toI and|A| − |FA| = k, then all undefined atomsai such that〈ti : ai〉 ∈ A are made
true.

Example 4.5. Suppose that the input program contains the rule:

h :-#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1.

and suppose also that the current partial interpretationI contains bothh and
#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 1. Since we have that|TA| = 0 = 1 − 1, we infer
a(1), a(2), anda(3) to be false, and set their reason toR(#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} <
1).

#min{A} < k. Suppose that#min{A} < k is true with respect toI and that there is only one
〈v, t : a〉 ∈ A such thatv < k anda is undefined with respect toI; suppose also that all the remaining
〈vi, ti : ai〉 ∈ A such thatvi < k are such thatai is false with respect toI. Then,a is inferred to be true.
Conversely, suppose that#min{A} < k is false with respect toI, there is no〈v, t : a〉 ∈ A such that
v < k with a true with respect toI, and, in addition, suppose that either:(i) there exist〈v′, t′ : a′〉 ∈ A
such thatv′ > k anda′ is true with respect toI or (ii) there is only one〈v′′, t′′ : a′′〉 ∈ A such that
v′′ > k with a′′ undefined with respect toI. Then, all theai such that〈vi, ti : ai〉 ∈ A andvi < k are
inferred to be false, and, if case (ii) holds, alsoa′′ is made true with respect toI.

Example 4.6. Suppose that the input program contains the rule:

h :-#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2.

and suppose also that botha(2), and#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. are false with
respect to the current partial interpretation. It can be easily verified that condition(ii) holds,9 thena(1)
is inferred to be false,a(3) is inferred to be true, andR(a(1)) andR(a(3)) are both set toR(#min{〈1 :
a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2) ∪ R(a(2)).

9Note that the aggregate atom is false,a(1) is the only undefined atom that can make it true, anda(3) is the only undefined
atom that can make it false.

14 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

#max{A} < k. Suppose that#max{A} < k is false with respect toI, there is only one〈v, t : a〉 ∈ A
such thatv > k with a undefined with respect toI, while all the remaining〈vi, ti : ai〉 ∈ A such that
vi > k are such thatai is false with respect toI, thena is inferred to be true. Conversely, suppose that
both#max{A} < k is true with respect toI and there is no〈v, t : a〉 ∈ A such thatv ≥ k anda is
true with respect toI, and, in addition, suppose that one of the following condition holds:(i) there exist
〈v′, t′ : a′〉 ∈ A such thatv′ < k anda′ is true with respect toI; or (ii) there is only one〈v′′, t′′ : a′′〉 ∈ A
such thatv′′ < k with a′′ undefined with respect toI. Then, in case (ii) holdsa′′ is inferred to be true,
and all the remaining undefinedai such that〈vi, ti : ai〉 ∈ A (ai 6= a′′) andvi < k are inferred to be
false.

Example 4.7. Suppose that the input program contains the rule:

h :-#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3.

and suppose also that#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3 is false,a(1) is true, whilea(2)
anda(3) are undefined (with respect to the current partial interpretation). Then, a(3) is inferred to be
true, (note that this is the only way for ensuring that the aggregate atom is false) andR(a(3)) is set to
R(a(1)) ∪ R(#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3).

#sum{A} < k. Let us denote byS(X) the sum
∑

〈vi,ti:ai〉∈X vi, and suppose that#sum{A} < k is
true with respect toI andS(TA) = k − 1, then all undefined atoms inA are made false. Conversely,
suppose that#sum{A} < k is false inI andS(A) − S(FA) = k, then all undefined atoms inA are
made true.

Example 4.8. Suppose that the input program contains the rule:

h :-#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4.

and suppose also that botha(3) and#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4 are true, while
a(1) anda(2) are undefined with respect to the current partial interpretation. It can be easily verified
thatS(TA) = 3, thus botha(1) anda(2) are inferred to be false, and their reason is set toR(a(1)) =
R(a(2)) = R(a(3)) ∪ R(#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 4).

5. Heuristics in the Presence of Aggregates

The efficiency of the answers set computation process strongly depends on heuristics used for choosing
the branching variables. In the following sections, we describe both the look-ahead [12] and the look-
back [30] heuristics employed by the DLV system; and, in particular, we pointout how the presence of
aggregates can be taken into account in both cases.

5.1. Look-ahead Heuristic

The look-ahead heuristic of DLV [12] was shown to be very effective on many relevant problems, and it
is still the default in the standard distribution.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 15

In general, in a look-ahead heuristic each possible choice literal is tentatively assumed, its conse-
quences are computed, and some characteristic values on the result are recorded. Hence, according to a
heuristic criterion based on these values, the choice is determined.

The main heuristic criterion employed by DLV exploits a peculiar property of ASP, calledsupport-
edness. Basically, for each true atomA of an answer setI, there exists a ruler of the program such
that the body ofr is true with respect toI andA is the only true atom in the head ofr. Since answer
sets are supported interpretations, an ASP system must eventually converge to a situation in which there
are noUnsupported True (UT)atoms, i.e, true atoms missing a supporting rule. Following this obser-
vation, the idea is to prefer the choice of those literals that minimize the number ofUnsupportedTrue
(UT) atoms. In more detail, the heuristic of DLV “layers” several criteria, and, inparticular, for each
literal L the following measures (with respect to the interpretation resulting from the propagation ofL)
are considered:UT (L), UT2(L), UT3(L), Sat(L), DS(L); whereUT is the number of UT atoms;UT2

andUT3 are, respectively the number of UT atoms occurring in the heads of exactly2 and 3 unsatisfied
rules; Sat(L) is the total number of satisfied rules; andDS is the degree of supportedness (namely,
the average number of supporting rules for the true non-head-cycle-free atoms). The heuristic of DLV
considersUT (L), UT2(L) andUT3(L) in a prioritized way, to favor atoms yielding interpretations with
fewerUT/UT2/UT3 atoms (which should more likely lead to a supported model). If all UT counters are
equal, then the heuristic considers the total numberSat(L) of rules which are satisfied; finally, literals
with higher degree of supportedness are preferred (this last criterionhas been added in order to deal with
hard problems, see [15]). Moreover, the heuristic is “balanced”, thatis, the heuristic values of a literalL
depend on both the effect of takingL andnot.L.

Example 5.1. Consider the following program:

a v b v c. d v e v f. :- not w. w :- a. w :- d.

a v z :-w. b v z :-w. :- d, z. :- a, z.

and let the current interpretationI = {w, not x}. Notice thatw is true but misses a supporting rule, that
is, it is UT. Moreover,a andd are the best choices according to the look-ahead heuristics of DLV as only
assuming their truth can eliminate the UTw. Indeed, anything apart froma or d would be a poor choice.

Note that this heuristic does not need to be modified in order to take the presence of aggregate literals
into account; indeed, the values for all the above-mentioned counters aredirectly computed during the
propagation of aggregate literals.

5.2. Look-back Heuristics

Look-back heuristics, which have been originally exploited in SAT solverslike CHAFF [31] (where the
heuristic is called VSIDS), have also been considered for DLV, in conjunction with backjumping, leading
to positive results [30].

The intuition behind this kind of heuristics is to periodically update a numeric valueV (l), associated
to each literall, indicating the number of occurrences ofl in a conflict. Basically, this heuristic favors
the choice of literals which are more likely to lead to inconsistent sub-branches, which in general has
the effect of more likely exploring a smaller search tree. In detail, after having chosenk literals,V (l)

16 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

is updated for eachl as follows:V (l) := V (l)/Ag + I(l), whereI(l) is the number of inconsistencies
l has been a reason for (since the most recent heuristic value update), and Ag is the “aging” factor that
allows for giving more importance to recent data. Whenever a choice has tobe made among undefined
literals, the positive literal with the largestV (l) will be chosen. If several literals have the sameV (l),
then negative literals are preferred over positive ones, but among negative and positive literals having the
sameV (l), the ordering will be random.

A key factor of this type of heuristic is the initialization of the weights of the literals [30], to be
updated by the reason calculus during the search. Indeed, at the beginning of the search, the solver has
no information about inconsistencies, and allV (l) initially will be 0, and so a random choice would
be taken. A common practice is to initializeV (l) values with the number of occurrences ofl in the
input (ground) program. However, this strategy, originally devised foraggregate-free programs, does
not take properly into account the presence of aggregates in the program, which can be exploited for
guiding the search instead. To this end, we propose two different new heuristics: the first and simpler
criterion (calledsize-based heuristic) is based on the size of the aggregate sets, while the second (called
equivalent-program heuristic) tries to estimate more precisely the effect of aggregate literals in a program
by exploiting the following idea: aggregates can be simulated by replacing the original program with
an equivalent aggregate-free one, so that standard techniques canbe used for counting occurrences.
However, physically replacing a program by an aggregate-free one isimpractical for a number of reasons,
such as the additional space requirement or the loss of structure, which would quite clearly outweigh the
benefit of having a smarter heuristic. Our approach is therefore to compute (or in some cases estimate)
these values without materializing the equivalent program, as described below.

The generic method for computing the values ofV (l) is by iterating on the input rules. Whenever
a standard literall is encountered,V (l) is increased by 1, while when an aggregate literalf(A)Θk is
encountered, the value ofV (f(A)Θk) is increased byEocc(f(A)Θk), which is the heuristically esti-
mated weight of the aggregate literal, and for each〈t : a〉 ∈ A, V (a) is incremented byEocc(a) (again
determined by the chosen heuristic).

Size-based Heuristic. This heuristic is based on a simple principle: if an aggregate literalf(A)Θk
occurs in the input program, its “weight” is given by the size of its aggregateset; moreover, also the
occurrences of each atoma such that〈t : a〉 ∈ A have to be added toV (a) (to take into account the role
played bya in the aggregate). In particular, we have thatEocc(f(A)Θk) = |A|, andEocc(a) is set to the
number of occurrences of〈t : a〉 in A.

Example 5.2. Consider the following program:

r1 : h :-#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1.

r2 : b :- c, d, #sum{〈2 : a(2)〉, 〈3 : a(3)〉, 〈4 : a(4)〉, 〈5 : a(5)〉} > 3.

r3 : a(1). r4 : a(2).

according to the size-based heuristic, we have that:

• V (h) = V (b) = 1, becauseh andb occur once in the head ofr1 andr2, respectively;

• V (c) = V (d) = 1, becausec andd both occur once in the body ofr2;

• V (a(1)) = 2, becausea(1) occurs both in the aggregate literal of ruler1 and in factr3;

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 17

• V (a(2)) = 3, becausea(2) occurs in both aggregate literals of the program and in factr4;

• V (a(3)) = 2, becausea(3) occurs in both aggregate literals of the program;

• V (a(4)) = V (a(5)) = 1, becausea(4) anda(5) occur in the aggregate literals of ruler2.

• V (#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1) = 3 andV (#sum{〈2 : a(2)〉, 〈3 : a(3)〉, 〈4 :
a(4)〉, 〈5 : a(5)〉} > 3) = 4, because the corresponding aggregate sets have cardinality 3 and 4,
respectively.

Equivalent-program Heuristic. This heuristic computes a somewhat more precise estimation of the
impact of aggregates by also taking into account their semantics. The idea is tovirtually replace each
occurrence of an aggregate atom of the formf(A)Θk with a fresh-new predicateh, and “define”h
by means of a standard subprogram which emulatesf(A)Θk.10 As mentioned earlier, this equivalent
program does not have to be materialized in memory; in Table 1 we summarize the formulas that allow
for directly computing the additional number of occurrencesEocc(l) that would have been determined by
replacingf(A)Θk by its equivalent subprogram, for each literall occurring in a given aggregate literal
f(A)Θk. Sinceh replacesf(A)Θk in the aggregate-free program, we setEocc(f(A)Θk) to Eocc(h). In
the following paragraphs, we provide both the description of the considered equivalent programs, and
detail on how the results in Table 1 have been determined.

#min{A} < k. The equivalent standard program for this aggregate atom contains a rule of the type
h :- ai, for each〈vi, ti : ai〉 ∈ A (1 ≤ i ≤ n) such thatvi < k. In this way,h is true if at least one
of theai with vi < k is true, that is, if the minimum computed by the aggregate is less thank. Thus,
Eocc(h) = |{vi : 〈vi, ti : ai〉 ∈ A, vi < k}| + 1, and for eachai such that〈vi, ti : ai〉 ∈ A, Eocc(ai) = 1
if v < k, otherwiseEocc(ai) = 0.

Example 5.3. Consider the following program:

f :- c,#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 3. a(1). a(2).

Its aggregate-free version is:

f :- c, h. h :- a(1). h :- a(2). a(1). a(2).

thus,V (c) = V (f) = 1, V (h) = Eocc(h) = 3, V (a(1)) = Eocc(a(1)) + 1 = 2, V (a(2)) = Eocc(a(2)) +
1 = 2, andV (a(3)) = Eocc(a(3)) = 0.11

#min{A} > k. The equivalent standard program for this aggregate atom contains: a single rule of
the formh :- not b1 . . . ,not bm, haux., where[b1, . . . , bm] = [ai | 〈vi, ti : ai〉 ∈ A andvi ≤ k]; and,
(possibly) several auxiliary rules of the formhaux :- aj , one for each〈vj , tj : aj〉 ∈ A such thatvj > k.

10Actually, a distinct not-appearing-elsewhere-in-the-program predicate namehf(A)Θk should be employed for each aggregate
literal f(A)Θk occurring inP . With a small abuse of notation, we omit the additional subscript for obtaining a simpler
notation. Note also that equivalence with subprograms in general holds only in the stratified setting, but could also serve as an
approximation also in non-recursive settings.
11In the following examples, we only reportEocc(.).

18 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Note that, in the obtained equivalent program,h is true if all theai (associated with avi ≤ k) are
false, and at least oneaj (with vj > k) is true, that is if the actual minimum computed by the aggregate
is greater thank (note that the auxiliary rules are needed becauseI(min(∅)) = ⊥). Thus, in this case:
Eocc(h) = 2, and for eachai such that〈vi, ti : ai〉 ∈ A we have thatEocc(ai) = 1 if vi > k, otherwise (if
vi ≤ k) we have thatEocc(not ai) = 1 .

Example 5.4. Consider the following program:

f :- c,#min{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 2. a(1). a(2).

its equivalent version is:

f :- c, h. h :- not a(1), not a(2), haux. haux :- a(3). a(1). a(2).

thus,Eocc(h) = 2, Eocc(a(3)) = 1, andEocc(not a(1)) = Eocc(not a(2)) = 1.

#max{A} < k. The equivalent standard program for this aggregate contains a single rule of the form
h :- not b1, . . . ,not bm, haux., where[b1, . . . , bm] = [ai | 〈vi, ti : ai〉 ∈ A andvi ≥ k]; and (possibly)
several auxiliary rules of the formhaux :- aj for each〈vj , tj : aj〉 ∈ A such thatvj < k.

Note that, in the obtained program,h is true if all theai (with vi ≥ k) are false, and at least one
aj (with vj < k) is true, that is if the maximum computed by the aggregate is less thank in the current
interpretation (note that, again, auxiliary rules are needed becauseI(max(∅)) = ⊥). Thus, in this case:
Eocc(h) = 2, and for eachai such that〈vi, ti : ai〉 ∈ A, vi ≥ k we have thatEocc(not ai) = 1, otherwise
(if vi < k) we have thatEocc(ai) = 1.

Example 5.5. Consider the following program:

f :- c,#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. a(1). a(2).

its equivalent version is:

f :- c, h. h :- not a(2), not a(3), haux. haux :- a(1). a(1). a(2).

thus,Eocc(h) = 2, Eocc(a(1)) = 1, andEocc(not a(2)) = Eocc(not a(3)) = 1.

#max{A} > k. The equivalent standard program for this aggregate contains a rule ofthe type
h :- ai, for each〈vi, ti : ai〉 ∈ A such thatvi > k (1 ≤ i ≤ n). In this way,h is true if at least one
of theai with vi > k is true, that is if the maximum computed by the aggregate is more thank in the
current interpretation. Thus,Eocc(h) = |{vi : 〈vi, ti : ai〉 ∈ A, vi > k}| + 1, and for eachai such that
〈vi, ti : ai〉 ∈ A Eocc(ai) = 1 if vi > k, otherwiseEocc(ai) = 0.

Example 5.6. Consider the following program:

f :- c,#max{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1. a(1). a(2).

Its aggregate-free version is:

f :- c, h. h :- a(2). h :- a(3). a(1). a(2).

thus,Eocc(h) = 3, andEocc(a(2)) = Eocc(a(3)) = 1.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 19

#count{A} < k. For this kind of aggregate atoms we have to distinguish two different cases.In
particular, ifk > |A| the value of the aggregate cannot exceed the guard; thus there is no interpretation
in which the aggregate is false. In this case, the equivalent program is made of a single facth, and:
Eocc(h) = 2, Eocc(ai) = Eocc(not ai) = 0, for eachai such that〈ti : ai〉 ∈ A.

In the other case (in whichk ≤ |A|), we consider a more involved subprogram denoted byP< that is
obtained as follows. LetP<

i be the program containing a rule of the formh :- not a1, not a2, . . . ,not ai−1

for each(i − 1)-combination of elements in the aggregate setA, wherea1, . . . , ai−1 are the atoms they
contain. Intuitively,h will be derived to be true inP<

i if there are at leasti − 1 false conjunctions (that
is if #count{A} < i.).

Then, the subprogramP< is obtained by taking the union of allP<
i such thati ≤ k, that isP< =

∪i≤kP
<
i . Intuitively, in P< we consider the contribution given by each of the possible combinations

of 1 < i < k atoms of the aggregate set (a1, . . . , ai−1) that, if true (i.e.,a1, . . . , ai−1 ∈ I), can make
the count less than the guard (that is original aggregate to be true). It can be shown that in this case we
obtain:Eocc(h) =

∑k−1
i=0

(

|A|
i

)

+ 1, Eocc(ai) = 0, andEocc(not ai) =
∑k−1

i=0

(

|A|−1
i

)

.

Example 5.7. Consider the following program:

f :- c,#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} < 2. a(1). a(2).

Its aggregate-free version is:

f :- c, h. a(1). a(2). h :- not a(1), not a(2), not a(3).

h :- not a(1), not a(2). h :- not a(1), not a(3). h :-not a(2), not a(3).

thus,Eocc(h) =
(

3
0

)

+
(

3
1

)

+1 = 5, andEocc(not a(1)) = Eocc(not a(2)) = Eocc(not a(3)) =
(

2
0

)

+
(

2
1

)

=
3.

#count{A} > k. For this kind of aggregate atom, we again distinguish two different cases. In
particular, if|A| ≤ k the value of the aggregate cannot satisfy the guard; thus, there is no interpretation
in which the aggregate is true. In this case, the equivalent program wouldbe made of a single constraint
:-h, and:Eocc(h) = 2, Eocc(ai) = Eocc(not ai) = 0, for eachai such that〈ti : ai〉 ∈ A.

In the other case (in which|A| > k), we consider a subprogram denoted byP> that is obtained as
follows. Let P>

i be the program containing a rule of the formh :- a1, a2, . . . , ai+1 for each possible
combination of atoms obtained by takingi + 1 different atoms from the|A| different ones available in
the aggregate setA. Intuitively, h will be derived to be true inP>

i if there are at leasti + 1 true atoms
(that is if#count{A} > i.).

Then, the subprogramP> is obtained by taking the union of allP>
i such thati ≤ k, that isP> =

∪i≤kP
>
i . Intuitively, in P> we consider the contribution given by each of the possible combinations

of true atoms making the original aggregate true. We obtain that:Eocc(h) =
∑|A|−1

i=k

(

|A|
i+1

)

+ 1 =
∑|A|−k−1

i=0

(

|A|
i

)

+ 1, Eocc(ai) =
∑|A|

i=k+1

(

|A|−1
i−1

)

=
∑|A|−k

i=1

(

|A|−1
i−1

)

, andEocc(not ai) = 0.

Example 5.8. Consider the following program:

f :- c,#count{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 1. a(1). a(2).

20 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

Its aggregate-free version is:

f :- c, h. a(1). a(2). h :- a(1), a(2), a(3).

h :- a(1), a(2). h :- a(1), a(3). h :- a(2), a(3).

thus,Eocc(h) =
(

3
0

)

+
(

3
1

)

+ 1 = 5, andEocc(a(1)) = Eocc(a(2)) = Eocc(a(3)) =
(

2
0

)

+
(

2
1

)

= 3.

#sum{A}Θk. Θ ∈ [<, >]. Equivalent programs in the case of#sum are quite involved, render-
ing the computation of the exact values fairly inefficient (many binomial coefficients have to be calcu-
lated). Therefore we decided to approximate the corresponding heuristicvalue, replacing#sum{A} by
#count{A∗} whereA∗ containsvi different elements for each〈vi, ti : ai〉 ∈ A.

Example 5.9. Consider the following aggregate atom:

h :-#sum{〈1 : a(1)〉, 〈2 : a(2)〉, 〈3 : a(3)〉} > 5

it is approximated by:
#count{〈1, 1 : a(1)〉, 〈1, 1 : a(2)〉, 〈1, 2 : a(2)〉,

〈1, 1 : a(3)〉, 〈1, 2 : a(3)〉, 〈1, 3 : a(3)〉} > 5

Thus:Eocc(h) =
(

6
0

)

= 1, Eocc(a(1)) = Eocc(a(2)) = Eocc(a(3)) =
(

5
0

)

= 1.

6. Experimental Analysis

We have implemented the techniques described in Sections 3-5 as an extensionof the system DLV. In
this section we report on the experimental evaluation of the various versions thus obtained.

6.1. Compared Methods

For our experiments, we have compared three versions of DLV, which differ on the employed heuristic
for dealing with aggregates, namely:

• DLV, the standard DLV system, employing the heuristic based on look-aheaddescribed in Sec-
tion 5.1.

• DLV. BJA.VS.SIZE, DLV with backjumping on aggregates and (look-back) size-based heuristic.

• DLV. BJA.VS.EQ, DLV with backjumping on aggregates and (look-back) equivalent-program heuris-
tic.

W
.Fa

b
e

r,N
.L

e
o

n
e,M

.M
a

ra
te

a
,F.R

icca
/L

o
o

k-b
a

ck
Te

ch
n

iq
u

e
s

fo
r

A
S

P
P

rog
ra

m
s

w
ith

A
gg

reg
a

te
s

21

#count{A} < k #min{A} < k #max{A} < k #sum{A} < k

Eocc(h)

{

∑k−1

i=0

(

|A|
i

)

+ 1 k ≤ |A|

2 else
|{vi | 〈vi, ti : ai〉 ∈ A, vi < k}| + 1 2

{

∑k−1

i=0

(

|A∗|
i

)

+ 1 k ≤ |A∗|

2 else

Eocc(ai) 0

{

1 vi < k

0 else

{

1 vi < k

0 else
0

Eocc(not ai)

{

∑k−1

i=0

(

|A|−1

i

)

k ≤ |A|

0 else
0

{

0 vi < k

1 else

{

∑k−1

i=0

(

|A∗|−1

i

)

k ≤ |A∗|

0 else

#count{A} > k #min{A} > k #max{A} > k #sum{A} > k

Eocc(h)

{

∑|A|−k−1

i=0

(

|A|
i

)

+ 1 k ≤ |A|

2 else
2 |{vi | 〈vi, ti : ai〉 ∈ A, vi > k}| + 1

{

∑|A∗|−k−1

i=0

(

|A∗|
i

)

+ 1 k ≤ |A∗|

2 else

Eocc(ai) 0

{

1 vi > k

0 else

{

1 vi > k

0 else
0

Eocc(not ai)

{

∑|A|−k

i=1

(

|A|−1

i−1

)

k ≤ |A|

0 else

{

0 vi > k

1 else
0

{

∑|A∗|−k

i=1

(

|A∗|−1

i−1

)

k ≤ |A∗|

0 else

Table 1. Occurrence formulas for literals involved in aggregates.

22 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

#count #min #max #sum

BoundedSpanningTree X

TravelingSalesperson X X

WeightedLatinSquares X X

WeightedSpanningTree X X

Labyrinth X X

KnightTour X

TimeTabling X

MagicSquare X X

Table 2. Occurrence of aggregate functions in the considered domains.

In look-back heuristics, as a matter of fact, there are two parameters affecting the VSIDS behavior.
One is the “importance” of literals in reasons (called “reward”, that is, howmuch the related counters
for such literals are to be increased, which corresponds to the coefficient of I(l) in the definition ofV (l)
in Section 5.2) and the other is the constant factorAg by which counters are periodically divided. For
the experiments presented here, these parameters have been set to1 and2, respectively, which are the
original values used inCHAFF.

In this paper, we focus on the comparison of our new proposals to the basic version of DLV. This
is because we are interested in the evaluation of the techniques presented,in comparison to the standard
setting of DLV. This comparison is motivated by the fact that these versions work on exactly the same
ground logic program, the output of the internal DLV grounder.

As reference, we also include other ASP solvers in the analysis, namelyCLASP [19] ver. 1.0.4,
CMODELS [24] ver. 3.75 andSMODELS [38] ver. 2.34, usingLPARSE12 [40] as grounder. We point
out that the evaluation of our techniques with respect to solvers working with the output of a different
grounder could be (at least in part) misleading, because of both the availability of different features in the
grounders’ input language and the difference in the ground programs. Thus, their performance should be
mainly considered as a reference, and complements our experimental evaluation.

6.2. Benchmarks

For the experimental analysis on benchmarks with aggregates, we have considered some domains (see
Table 2) already used in literature for the comparative evaluation of ASP systems on logic programs with
aggregates [7, 21, 8, 28].13 In Table 2 we list these domains and specify what types of aggregates they
contain. Observe that all domains but one contain#count, some domains contain#sum, while #min

and#max are contained in only one single domain.

12http://www.tcs.hut.fi/Software/smodels/lparse/.
13The encodings for competing solvers have been mainly taken from the ASP Competitions, except for theTimeTablingdomain
(we adapted the DLV encoding toLPARSE) and theMagicSquareproblem (we downloaded theLPARSE encoding from [28]).
ForKnightTourwe usedGRINGO [22] sinceLPARSEwas unable to parse the available encoding. ForTravelingSalespersonwe
have used theLPARSE“nontight” encoding (which is faster than the “tight” one).

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 23

For two of the domains,BoundedSpanningTreeandWeightedSpanningTree, we have noticed that all
the versions based on DLV can solve the available instances easily (instances are solved in less than
0.1 seconds on average). Considering that the graphs the instances are constructed of are relatively
small, we have generated larger instances for these domains, and made the additional instances avail-
able athttp://www.mat.unical.it/~ricca/downloads/fi-benchmarks.zip. In the following
we briefly describe how these additional instances have been generated.

Instances in theBoundedSpanningTreeproblem are defined on graphs with verticesV , edgesE and
a parameterd. The problem is deciding whether there exists ad-bounded spanning tree. The instances
of [21, 8] are made of four sets of (randomly generated) graphs with|V |=35 or |V |=45, |E|=250, d=2
or d=4. The additional instances have been created randomly (as were the original instances), expanding
the graph sizes by a factor of four, maintaining the ratio between the number of nodes and the number of
edges. In this way, we have obtained four further sets with|V |=140 or |V |=180, |E|=1000, andd = 2 or
d = 4, consisting of 10 graphs each. In Table 3, we have grouped the instances in two sets, those having
|V |=140 and|E|=1000, and those having|V |=180 and|E|=1000, respectively.

The WeightedSpanningTreeproblem is similar to theBoundedSpanningTree, but each edge has an
associated weight between1 and|V |. The previously existing instances contain five sets of instances with
|V | between30 and45, and|E| between138 and146. Again, we have created randomly some new sets,
where the graph sizes have been enlarged by a factor of eight (again maintaining the ratio between the
number of nodes and the number of edges), and the weights still range between1 and|V |. In particular,
we have generated5 sets of10 new instances forWeightedSpanningTree.

6.3. Results

All the experiments were performed on a machine equipped with two Intel Xeon“Woodcrest” (quad
core) processors clocked at 3 GHz with 4MB of Level 2 Cache and 4GBof RAM, running Debian
GNU Linux 4.0. Time measurements have been done using thetime command provided by the system,
counting total CPU time for the respective process. We report the execution time elapsed for finding one
answer set, if any, within10 minutes. The memory available to the solvers has been limited to 512MB.

Results are summarized in Table 3, and reported in detail for the various DLVversions in the Ap-
pendix.14 In particular, Table 3 reports for each solver (columns 4-9) and for each domain (rows 2-9) the
number of instances solved within the time limit, and the average CPU time (for solvedinstances); the
number of available instances for each domain is reported in column 2. Finally,the last row reports the
cumulative results of our experiments.

We remark that the data reported in Table 3 is normally used in system evaluations and competitions
(for both presenting results and determining the winners) where the winningsystem is determined by the
number of solved instances, and ties are broken by considering the mean CPU time. As an example we
refer to the Max-SAT evaluations.15

Focusing on the results of the DLV versions analyzed, the cumulative results of our experiments,
reported in the last row of Table 3, clearly indicate that DLV.BJA.VS.EQ performs better than the other
two DLV versions in the considered domains. Indeed, DLV.BJA.VS.EQ is the system which solves the
greatest number of instances, and it is much faster than the other systems onaverage. In particular, con-

14Results for the original instances ofBoundedSpanningTreeandWeightedSpanningTreedomains are not reported.
15Seehttp://www.maxsat.udl.cat/09/, andhttp://www.maxsat.udl.cat/10/ for the last two evaluations.

24 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

sidering the mean time, DLV.BJA.VS.EQ is more than 4 times faster than DLV (8.57 vs36.71 seconds),
and it is nearly 3 times faster than DLV.BJA.VS.SIZE (8.57 vs22.41 seconds).

Concerning the results of the specific domains, observe that DLV.BJA.VS.EQ is the best performer
on theWeightedLatinSquaresdomain, where it solves4 (resp. 19) instances more than standard DLV
(resp. DLV.BJA.VS.SIZE) and in shorter time; it is also the best onTimeTablingwhere, even if standard
DLV solves the same number of instances, it gains one order of magnitude considering average CPU
time (while DLV.BJA.VS.SIZE solves only2 instances on this domain), and onMagicSquarewhere
it solves one instance more than DLV.BJA.VS.SIZE, and has a better mean CPU time of approximately
30% than DLV. Moreover, in other four domains, that is,BoundedSpanningTree, WeightedSpanningTree,
LabyrinthandKnightTourit performs similar to DLV.BJA.VS.SIZE, and better (with respect to the num-
ber of problems solved and/or mean CPU time) than standard DLV. In the domains that contain instances
with and without answer sets, DLV.BJA.VS.EQ is usually particularly effective on instances having so-
lutions. We refer to the appendix for details.

In Section 5.2 we noted that a characteristic feature of the DLV.BJA.VS.EQ method is that atoms
“involved” in aggregates receive a higher priority. So far, we have seen that this heuristic leads to positive
results on the domains we considered, but, of course, a more “lazy” heuristic could be preferred in some
situation. Indeed, this is witnessed by the results of DLV.BJA.VS.SIZE on theTravelingSalesperson
domain: besides the good results in comparison to DLV cited above, in theTravelingSalespersondomain
DLV. BJA.VS.SIZE solves2 instances more than DLV.BJA.VS.EQ and in less time, being much faster
than standard DLV (approximately by a factor of20).

It is worthwhile evidencing also some relationships between the set of instances solved by the various
systems (the complete data are reported in the appendix):(i) in theWeightedLatinSquaresdomain both
DLV and DLV.BJA.VS.SIZE solve a subset of the instances solved by DLV.BJA.VS.EQ, while the sets
of instances solved by DLV and DLV.BJA.VS.SIZE are incomparable;(ii) in the Labyrinth domain,
DLV. BJA.VS.SIZE and DLV.BJA.VS.EQ solve the same set of instances, which is incomparable to the
set of instances solved by DLV;(iii) in the KnightTour domain, the same set of instances is solved
by the three methods;(iv) in the TimeTablingandMagicSquaredomains, DLV.BJA.VS.SIZE solves a
subset of the instances solved by DLV and DLV.BJA.VS.EQ.

Regarding the other ASP systems that we considered as references, from Table 3 we can see that
CLASP performs better thanCMODELS andSMODELS, and shows good results in several domains, ex-
cept for theBoundedSpanningTreeandWeightedSpanningTreedomains, where is runs out of memory.
Even if on theWeightedSpanningTreeinstancesLPARSEcan not ground the instances in the given avail-
able memory16, in theBoundedSpanningTreedomain instances are grounded byLPARSE, butCLASPand
CMODELS run out of memory andSMODELS runs out of time on each instance. Further, note that the
original 30 BoundedSpanningTreeinstances are solved byCLASP andCMODELS with mean CPU time
of 7.62 and7.97 seconds, respectively (SMODELSonly solves19 out of30 instances). DLV.BJA.VS.EQ

solves all instances with a mean CPU time of0.02 seconds. Similar results hold for theWeightedSpan-
ningTreeinstances:CLASP, CMODELS and DLV.BJA.VS.EQ solve the30 original instances with mean
CPU time of3.3, 3.66 and0.03 seconds, respectively, whileSMODELS times out on9 instances.

A further analysis is devoted to the scalability of the various DLV versions. We consider the do-
mains for which there is a parameter that influences the size of the instances:BoundedSpanningTreeand

16This is also the case whenGRINGO [22] is used in place ofLPARSE.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 25

#I DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ CLASP CMODELS SMODELS

BoundedSpanningTree20 #Solved 20 20 20 0 0 0

|V |=140 |E|=1000 Mean 3.08 0.14 0.15 MEM MEM TIME

BoundedSpanningTree20 #Solved 20 20 20 0 0 0

|V |=190 |E|=1000 Mean 4.8 0.15 0.15 MEM MEM TIME

WeightedLatinSquares 35 #Solved 30 15 34 35 35 34

Mean 144.07 188.58 27.5 0.03 0.23 105.88

WeightedSpanningTree50 #Solved 50 50 50 0 0 0

Mean 1.53 0.17 0.17 MEM MEM MEM

Labyrinth 29 #Solved 6 8 8 22 3 0

Mean 114.73 58.48 58.41 108.13 218.51 TIME

TravelingSalesperson 30 #Solved 30 30 28 30 2 20

Mean 36.49 1.5 3.34 0.13 151.68 1.98

KnightTour 10 #Solved 6 6 6 9 6 7

Mean 12.4 0.22 0.23 59.82 0.45 4.45

TimeTabling 9 #Solved 9 2 9 9 9 2

Mean 2.07 25.1 0.22 0.76 0.82 2.7

MagicSquare 5 #Solved 3 2 3 5 4 3

Mean 3.25 0.01 2.45 0.49 15.46 0.05

Total 207 #Solved 174 153 178 110 59 66

Mean 36.51 22.26 8.52 26.65 17.61 55.7

Table 3. Number of solved instances within the time limit andtheir mean CPU time for the domains we consid-
ered. The last row contains cumulative results.

26 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

45 90 180

m
ea

n
C

P
U

 ti
m

e

V

BoundedSpanningTree domain

DLV
DLV.BJA.VS.SIZE

DLV.BJA.VS.EQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

30 60 120 240

m
ea

n
C

P
U

 ti
m

e

V

WeightedSpanningTree domain

DLV
DLV.BJA.VS.SIZE

DLV.BJA.VS.EQ

Figure 2. Additional instances of theBoundedSpanningTree(Left) andWeightedSpanningTree(Right) domain:
scalability study with respect to the number of verticesV .

WeightedSpanningTree(i.e., the domains for which we have created new instances), as well asMagic-
Square, TimeTablingandKnightTour (for which we have considered the original instances). Figure 2
(Left) contains the results for theBoundedSpanningTreeinstances, with|V |=45, 90, 180. Similarly for
theWeightedSpanningTreeinstances in Figure 2 (Right), where|V |=30, 60, 120, 240. Figures 3 and 4,
instead, show the behavior in terms of scalability of theMagicSquareandTimeTabling(in Figure 3), and
Knight domain (in Figure 4). The graphs in Figures 2 and 4 clearly indicate a better scalability for both
the new DLV versions in comparison to standard DLV on theBoundedSpanningTree, WeightedSpan-
ningTreeandKnightTourdomains, while Figure 3 shows better scalability of DLV.BJA.VS.EQ than both
DLV. BJA.VS.SIZE and standard DLV on theMagicSquareandTimeTablingdomains.

7. Related Work

Backjumping [17] has been first studied in the area of constraint solving (see, e.g., [5, 33, 6]), and then
successfully applied to related research areas such as SAT [2, 37, 31], QBF [25], and ASP [35] solving.
We refer to [30] for a detailed comparison of the backjumping strategies employed in these research
areas.

In ASP, aggregates are arguably the most important linguistic enhancementin recent years, and
most of the available systems are already able to deal with them. In particular,CLASP, CMODELS,
SMODELS and PBMODELS support cardinality and weight constraints, which correspond to#count

and#sum aggregates, respectively, whileSMODELS-CC supports only cardinality constraints, and both
GNT and ASSAT do not support aggregates. Among these, aggregates are considered explicitly for
backjumping inSMODELS-CC (where additional arcs are added to its implication graph) andCLASP,
while CMODELS (resp. PBMODELS) translates the original program into a propositional (resp. Pseudo-
Boolean) formula that is then evaluated by a SAT (resp. PB) solver. In thelatter case, backjumping is
then (possibly) exploited within the underlying SAT (resp. PB) solver, without thus having the possibility
of taking advantage of the original “structure” of the aggregate. Notably, fine-grained details on the

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 27

 0.01

 0.1

 1

 10

2 3 4

C
P

U
 ti

m
e

(lo
g

sc
al

e)

Ns

MagicSquare domain

DLV
DLV.BJA.VS.SIZE

DLV.BJA.VS.EQ

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9
C

P
U

 ti
m

e
(lo

g
sc

al
e)

Ng

TimeTabling domain

DLV
DLV.BJA.VS.SIZE

DLV.BJA.VS.EQ

Figure 3. Instances of theMagicSquare(Left) andTimeTabling(Right) domain. Ns indicates an Ns x Ns square
(Left) and Ng is the groups of students (Right).

 0.1

 1

 10

 100

 8 10 12 14 16 20

C
P

U
 ti

m
e

(lo
g

sc
al

e)

Nc

KnightTour domain

DLV
DLV.BJA.VS.SIZE

DLV.BJA.VS.EQ

Figure 4. Instances of the Knight domain. Nc indicates that the related chess board size is Nc x Nc.

28 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

treatment of aggregates have been rarely presented before, and current implementations use more or less
ad-hoc techniques. An exception, which nonetheless involves only#sum (weight constraints), has been
recently presented in [18]. In that work, a comparison of different strategies to handle weight constraints
in CLASP has been performed. In particular, two strategies have been presentedand compared: One
where weight constraint rules are incorporated inCLASP’s constraint-based characterization in terms
of nogoods, and another which (similar to the approach inCMODELS17) translates the aggregate into
(constraints corresponding to) an aggregate-free program. Experimental analysis on some domains show
that each strategy performs well on different domains.

8. Conclusion

In this paper we have described techniques and heuristics for the evaluation of logic programs with
aggregates. In particular the main contributions are:(i) an extension of thereason calculusdefined
in [35]; and,(ii) enhanced versions of the heuristic presented in [30] that explicitly take thepresence
of aggregates into account. Moreover, we have implemented the proposedtechniques in a prototype
version of the DLV system and performed a set of benchmarks, which indicate performance benefits of
the enhanced system employing the equivalent-program heuristic.

Acknowledgements

This work has been partially supported by M.I.U.R. under the PRIN projectLoDeN, and under the FIRB
project “tocai.it: Tecnologie Orientate alla Conoscenza per Aggregazionidi Imprese in Internet,” and by
Regione Calabria and EU under POR Calabria FESR 2007-2013 within the PIA project of DLVSYSTEM
s.r.l.

We would like to thank the anonymous reviewers for their helpful suggestions. This work is dedicated
to “mulo” and two other machines which broke down under the burden of executing the experiments
reported in this paper.

References

[1] Alviano, M.: Efficient Recursive Aggregate Evaluation in Logic Programming,Intelligenza Artificiale.IOS
Press, 2011, To appear.

[2] Bayardo, R., Schrag, R.: Using CSP Look-back Techniquesto Solve Real-world SAT Instances,Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-97), 1997.

[3] Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: PruningOperators for Answer Set Programming Systems,
Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR’2002), April 2002.

[4] Davis, M., Logemann, G., Loveland, D.: A Machine Programfor Theorem Proving,Communications of the
ACM, 5, 1962, 394–397.

[5] Dechter, R.: Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decom-
position,Artificial Intelligence, 41(3), 1990, 273–312.

17CMODELS implements the transformation described in [16], whileCLASP implements a polynomial transformation.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 29

[6] Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems.,Artificial Intelli-
gence, 136(2), 2002, 147–188.

[7] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer,G.: Aggregate Functions in DLV,Proceedings ASP03
- Answer Set Programming: Advances in Theory and Implementation (M. de Vos, A. Provetti, Eds.), Messina,
Italy, September 2003, Online athttp://CEUR-WS.org/Vol-78/.

[8] Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The Second Answer Set Programming
Competition, Proceedings of tre 10th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR’09(E. Erdem, F. Lin, T. Schaub, Eds.), 5753, Springer, 2009.

[9] Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems, Ph.D. Thesis,
Institut für Informationssysteme, Technische Universität Wien, 2002.

[10] Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations,Proceedings of the 5th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99)(M. Gelfond,
N. Leone, G. Pfeifer, Eds.), 1730, Springer Verlag, El Paso,Texas, USA, December 1999.

[11] Faber, W., Leone, N., Pfeifer, G.: Recursive Aggregates in Disjunctive Logic Programs: Semantics and
Complexity, Proceedings of the 9th European Conference on Artificial Intelligence (JELIA 2004)(J. J.
Alferes, J. Leite, Eds.), 3229, Springer Verlag, September2004.

[12] Faber, W., Leone, N., Pfeifer, G., Ricca, F.: On look-ahead heuristics in disjunctive logic programming,
Annals of Mathematics and Artificial Intelligence, 51(2–4), 2007, 229–266.

[13] Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set program-
ming, Artificial Intelligence, 175(1), 2011, 278–298.

[14] Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and Implementation of Aggregate Func-
tions in the DLV System,Theory and Practice of Logic Programming, 8(5–6), 2008, 545–580.

[15] Faber, W., Ricca, F.: Solving Hard ASP Programs Efficiently, Logic Programming and Nonmonotonic
Reasoning — 8th International Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings
(C. Baral, G. Greco, N. Leone, G. Terracina, Eds.), 3662, Springer Verlag, September 2005, ISBN 3-540-
28538-5.

[16] Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions,Theory and Practice of Logic Program-
ming, 5(1-2), 2005, 45–74.

[17] Gaschnig, J.: A General Backtrack Algorithm That Eliminates Most Redundant Tests,Proceedings of the
Fifth International Joint Conference on Artificial Intelligence (IJCAI) 1977, 1977.

[18] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the Implementation of Weight Constraint Rules in
Conflict-Driven ASP Solvers,Proceedings of 25th International Conference on Logic Programming (ICLP-
09) (P. M. Hill, D. S. Warren, Eds.), 5649, Springer, 2009.

[19] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven Answer Set Solver,Pro-
ceedings of the Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07)(C. Baral, G. Brewka, J. Schlipf, Eds.), 4483, Springer-Verlag, 2007.

[20] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving,Twentieth
International Joint Conference on Artificial Intelligence(IJCAI-07), Morgan Kaufmann Publishers, January
2007.

[21] Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczýnski, M.: The First Answer Set
Programming System Competition,9th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR’07(C. Baral, G. Brewka, J. Schlipf, Eds.), 4483, Springer Verlag, Tempe, Arizona, May
2007, ISBN 978-3-540-72199-4.

30 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

[22] Gebser, M., Schaub, T., Thiele, S.: GrinGo : A New Grounder for Answer Set Programming,Logic Pro-
gramming and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceedings(C. Baral, G. Brewka, J. S. Schlipf, Eds.), 4483, Springer, 2007.

[23] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases,New Genera-
tion Computing, 9, 1991, 365–385.

[24] Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on Propositional Satisfiability,
Journal of Automated Reasoning, 36(4), 2006, 345–377.

[25] Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic Satisfiability,
Artificial Intelligence, 145, 2003, 99–120.

[26] Lee, J., Meng, Y.: On Reductive Semantics of Aggregatesin Answer Set Programming,Logic Programming
and Nonmonotonic Reasoning — 10th International Conference (LPNMR 2009)(E. Erdem, F. Lin, T. Schaub,
Eds.), 5753, Springer Verlag, September 2009, ISBN 978-3-642-04237-9.

[27] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowl-
edge Representation and Reasoning,ACM Transactions on Computational Logic, 7(3), July 2006, 499–562.

[28] Liu, L., Truszczýnki, M.: The Second Answer Set Programming Competition homepage, Since 2005,http:
//www.cs.uky.edu/ai/pbmodels/#Benchmark|region.

[29] Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.:The HiLeX System for Semantic Information Ex-
traction, Transactions on Large-Scale Data and Knowledge-Centered Systems.Springer Berlin/Heidelberg,
2011, To appear.

[30] Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-BackTechniques and Heuristics in DLV: Implementation,
Evaluation and Comparison to QBF Solvers,Journal of Algorithms in Cognition, Informatics and Logics,
63(1–3), 2008, 70–89.

[31] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT
Solver, Proceedings of the 38th Design Automation Conference, DAC 2001, ACM, Las Vegas, NV, USA,
June 2001.

[32] Pelov, N., Denecker, M., Bruynooghe, M.: Well-foundedand Stable Semantics of Logic Programs with
Aggregates,Theory and Practice of Logic Programming, 7(3), 2007, 301–353.

[33] Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem.,Computational Intelligence, 9, 1993,
268–299.

[34] Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S. M., Iiritano, S., Manna, M., Leone, N.: A Logic–
Based System for e–Tourism,Fundamenta Informaticae, IOS Press, (105), 2010, 35–35.

[35] Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Programming,AI Commu-
nications – The European Journal on Artificial Intelligence, 19(2), 2006, 155–172.

[36] Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building with An-
swer Set Programming in the Gioia-Tauro Seaport,Theory and Practice of Logic Programming.Cambridge
University Press, 2011, To appear.

[37] Silva, J. P. M., Sakallah, K. A.: GRASP: A Search Algorithm for Propositional Satisfiability,IEEE Transac-
tion on Computers, 48(5), 1999, 506–521.

[38] Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics,Artificial
Intelligence, 138, June 2002, 181–234.

[39] Son, T. C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates in ASP,Theory and
Practice of Logic Programming, 7, May 2007, 355–375.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 31

[40] Syrjänen, T.: Lparse 1.0 User’s Manual, 2002,http://www.tcs.hut.fi/Software/smodels/lparse.

ps.gz.

32 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

APPENDIX

In Tables 4-11 we show detailed results for the benchmarks. The reported numbers are seconds for
runtime (user + system time). We do not report instances where no DLV version can find a solution within
the time limit: this is the case for Tables 6, 7, 9 and 10. In Tables 4-11, the first column reports the specific
instance name, the second column reports the results for the standard version of DLV, and the third
and fourth columns report the results for the new versions: DLV.BJA.VS.SIZE and DLV.BJA.VS.EQ,
respectively. Moreover, if the related domain contains both instances thathave answer sets and others
that do not, a last column (AS?) is added, which indicates whether the relatedinstance has an answer set
(Y) or does not (N). If all instances of a domain have answer sets, this column is omitted.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 33

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ AS?

rand-140-1000-b2-0.gph 2.53 0.14 0.14 Y

rand-140-1000-b2-1.gph 2.49 0.14 0.15 Y

rand-140-1000-b2-2.gph 2.57 0.14 0.15 Y

rand-140-1000-b2-3.gph 5.60 0.14 0.15 Y

rand-140-1000-b2-4.gph 3.04 0.14 0.14 Y

rand-140-1000-b2-5.gph 2.69 0.14 0.14 Y

rand-140-1000-b2-6.gph 2.48 0.14 0.15 Y

rand-140-1000-b2-7.gph 2.46 0.14 0.15 Y

rand-140-1000-b2-8.gph 2.50 0.14 0.15 Y

rand-140-1000-b2-9.gph 2.49 0.14 0.14 Y

rand-140-1000-b4-0.gph 2.68 0.14 0.15 Y

rand-140-1000-b4-1.gph 5.70 0.16 0.15 Y

rand-140-1000-b4-2.gph 2.54 0.14 0.16 Y

rand-140-1000-b4-3.gph 2.86 0.15 0.16 Y

rand-140-1000-b4-4.gph 2.71 0.14 0.15 Y

rand-140-1000-b4-5.gph 5.87 0.14 0.16 Y

rand-140-1000-b4-6.gph 2.73 0.15 0.14 Y

rand-140-1000-b4-7.gph 2.44 0.14 0.14 Y

rand-140-1000-b4-8.gph 2.73 0.18 0.16 Y

rand-180-1000-b2-0.gph 6.92 0.15 0.16 Y

rand-180-1000-b2-1.gph 7.27 0.15 0.16 Y

rand-180-1000-b2-2.gph 3.01 0.15 0.16 Y

rand-180-1000-b2-3.gph 3.05 0.16 0.16 Y

rand-180-1000-b2-4.gph 6.44 0.15 0.16 Y

rand-180-1000-b2-5.gph 6.94 0.15 0.16 Y

rand-180-1000-b2-6.gph 7.58 0.15 0.15 Y

rand-180-1000-b2-7.gph 7.28 0.15 0.15 Y

rand-180-1000-b2-8.gph 3.47 0.14 0.16 Y

rand-180-1000-b2-9.gph 3.44 0.15 0.16 Y

rand-180-1000-b4-0.gph 0.13 0.13 0.13 N

rand-180-1000-b4-1.gph 3.55 0.15 0.15 Y

rand-180-1000-b4-2.gph 0.13 0.12 0.13 N

rand-180-1000-b4-3.gph 7.95 0.15 0.16 Y

rand-180-1000-b4-4.gph 7.57 0.15 0.16 Y

rand-180-1000-b4-5.gph 7.26 0.15 0.16 Y

rand-180-1000-b4-6.gph 3.31 0.15 0.16 Y

rand-180-1000-b4-7.gph 7.04 0.16 0.16 Y

rand-180-1000-b4-8.gph 3.56 0.14 0.16 Y

rand-180-1000-b4-9.gph 0.13 0.13 0.12 N

Table 4. Instances of the Bounded Spanning Tree domain. rand-V -E-bW -i.gph indicates thei-th graph withV
vertexes,E edges and boundW .

34 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ AS?

rand-240-1120-b1600-0.gph 9.49 0.19 0.19 Y

rand-240-1120-b1600-1.gph 5.60 0.18 0.19 Y

rand-240-1120-b1600-2.gph 0.15 0.14 0.16 N

rand-240-1120-b1600-3.gph 0.16 0.15 0.16 N

rand-240-1120-b1600-4.gph 5.63 0.19 0.21 Y

rand-240-1120-b1600-5.gph 5.52 0.20 0.20 Y

rand-240-1120-b1600-6.gph 0.15 0.15 0.15 N

rand-240-1120-b1600-7.gph 0.15 0.15 0.15 N

rand-240-1120-b1600-8.gph 0.17 0.16 0.16 N

rand-240-1120-b1600-9.gph 0.15 0.16 0.15 N

rand-256-1120-b1472-0.gph 5.82 0.19 0.19 Y

rand-256-1120-b1472-1.gph 0.16 0.15 0.16 N

rand-256-1120-b1472-2.gph 0.16 0.16 0.16 N

rand-256-1120-b1472-3.gph 0.16 0.15 0.15 N

rand-256-1120-b1472-4.gph 0.16 0.15 0.15 N

rand-256-1120-b1472-5.gph 13.39 0.19 0.21 Y

rand-256-1120-b1472-6.gph 0.15 0.15 0.15 N

rand-256-1120-b1472-7.gph 0.16 0.16 0.16 N

rand-256-1120-b1472-8.gph 5.57 0.20 0.21 Y

rand-256-1120-b1472-9.gph 0.15 0.16 0.16 N

rand-256-1160-b1600-0.gph 0.17 0.18 0.17 N

rand-256-1160-b1600-1.gph 0.18 0.17 0.17 N

rand-256-1160-b1600-2.gph 0.17 0.16 0.16 N

rand-256-1160-b1600-3.gph 6.40 0.21 0.21 Y

rand-256-1160-b1600-4.gph 5.97 0.21 0.21 Y

rand-256-1160-b1600-5.gph 0.16 0.16 0.16 N

rand-256-1160-b1600-6.gph 0.18 0.17 0.18 N

rand-256-1160-b1600-7.gph 0.16 0.16 0.16 N

rand-256-1160-b1600-8.gph 6.76 0.21 0.22 Y

rand-256-1160-b1600-9.gph 0.17 0.17 0.17 N

rand-280-1104-b1984-0.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-1.gph 0.16 0.16 0.17 N

rand-280-1104-b1984-2.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-3.gph 0.15 0.14 0.14 N

rand-280-1104-b1984-4.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-5.gph 0.14 0.13 0.14 N

rand-280-1104-b1984-6.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-7.gph 0.16 0.15 0.14 N

rand-280-1104-b1984-8.gph 0.16 0.16 0.16 N

rand-280-1104-b1984-9.gph 0.15 0.15 0.16 N

rand-360-1104-b2496-0.gph 0.16 0.15 0.15 N

rand-360-1104-b2496-1.gph 0.15 0.16 0.15 N

rand-360-1104-b2496-2.gph 0.16 0.17 0.17 N

rand-360-1104-b2496-3.gph 0.15 0.15 0.16 N

rand-360-1104-b2496-4.gph 0.17 0.16 0.16 N

rand-360-1104-b2496-5.gph 0.17 0.16 0.17 N

rand-360-1104-b2496-6.gph 0.15 0.14 0.14 N

rand-360-1104-b2496-7.gph 0.16 0.17 0.16 N

rand-360-1104-b2496-8.gph 0.16 0.16 0.15 N

rand-360-1104-b2496-9.gph 0.16 0.17 0.16 N

Table 5. Instances of the WeightedSpanningTree domain. rand-V -E-bW -i.gph indicates thei-th graph withV
vertexes,E edges and boundW .

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ

magic-square-2by2 0.00 0.00 0.00

magic-square-3by3 0.01 0.02 0.01

magic-square-4by4 9.75 TIME 7.34

Table 6. Instances of the MagicSquares domain.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 35

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ

knightTour.in1 0.20 0.10 0.10

knightTour.in2 0.52 0.10 0.11

knightTour.in3 2.22 0.13 0.12

knightTour.in4 6.11 0.17 0.20

knightTour.in5 14.00 0.21 0.36

knightTour.in6 51.76 0.62 0.46

Table 7. Instances of the KnightTour domain.

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ

time-tabling.dat.1 0.08 0.03 0.03

time-tabling.dat.2 0.28 50.17 0.06

time-tabling.dat.3 0.58 TIME 0.10

time-tabling.dat.4 0.98 TIME 0.15

time-tabling.dat.5 1.62 TIME 0.18

time-tabling.dat.6 2.04 TIME 0.25

time-tabling.dat.7 2.85 TIME 0.32

time-tabling.dat.8 4.25 TIME 0.38

time-tabling.dat.9 5.98 TIME 0.50

Table 8. Instances of the TimeTabling domain.

36 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ

laby-17-17-07 16.83 4.88 4.83

laby-18-18-04 112.46 289.38 289.80

laby-18-18-13 TIME 30.51 40.63

laby-18-18-14 18.16 3.86 3.86

laby-19-19-14 TIME 105.03 105.03

laby-19-19-16 TIME 11.21 11.13

laby-19-19-19 448.95 TIME TIME

laby-20-20-04 TIME 7.35 7.25

laby-20-20-16 TIME 5.60 5.57

laby-21-21-05 46.96 TIME TIME

laby-21-21-15 45.04 TIME TIME

Table 9. Instances of the Labyrinth domain.

W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates 37

instance DLV DLV. BJA.VS.SIZE DLV. BJA.VS.EQ AS?

505.6.1976043347.dat.data 160.28 TIME 6.33 N

505.6.1976043746.dat.data 313.57 TIME 1.66 N

505.6.1976049584.dat.data 267.15 TIME 34.72 N

505.6.1976055607.dat.data 490.32 TIME 2.79 N

505.6.1976056195.dat.data 426.55 TIME 173.44 N

505.6.1976048051.dat.data 59.31 TIME 0.02 Y

505.6.1976089585.dat.data 3.43 5.86 0.02 Y

505.6.1976090993.dat.data 230.87 TIME 77.41 N

505.6.1976095999.dat.data 476.51 1.07 0.02 Y

505.6.1976097106.dat.data TIME 0.02 0.04 Y

505.6.1976097683.dat.data 107.60 TIME 488.43 Y

505.6.1976102161.dat.data 378.58 TIME 20.22 N

505.6.1976103815.dat.data 246.21 TIME 0.03 N

505.6.1976128002.dat.data TIME 645.10 33.53 Y

505.6.1976128122.dat.data 0.15 TIME 0.03 Y

505.6.1976131149.dat.data 31.30 0.99 0.01 Y

505.6.1976135316.dat.data 420.92 TIME 94.67 N

505.6.1976148351.dat.data TIME TIME 0.16 Y

505.6.1976153426.dat.data 46.85 42.80 0.02 Y

505.6.1976164056.dat.data TIME TIME 1.17 Y

505.6.1976164284.dat.data 0.09 558.48 0.07 Y

511.6.1162362547.dat.data 64.69 3.84 0.02 Y

511.6.1162368434.dat.data 70.96 204.38 0.02 Y

511.6.1162583044.dat.data 0.07 0.44 0.03 Y

511.6.1162586028.dat.data 184.04 TIME 0.02 Y

512.6.1669104030.dat.data 22.26 423.10 0.02 Y

512.6.1669117391.dat.data 0.08 4.23 0.03 Y

512.6.1669132369.dat.data 11.31 TIME 0.02 Y

512.6.1669131750.dat.data 3.37 450.98 0.01 Y

512.6.1669245041.dat.data 24.21 TIME 0.03 Y

512.6.1669208235.dat.data 0.08 TIME 0.02 Y

512.6.1669316059.dat.data 29.62 487.31 0.01 Y

512.6.1669326545.dat.data 10.39 TIME 0.05 Y

513.6.2014058873.dat.data 241.45 0.03 0.02 Y

Table 10. Instances of the WeightedLatinSquares domain.

38 W. Faber, N. Leone, M. Maratea, F. Ricca / Look-back Techniques for ASP Programs with Aggregates

instance DLV DLV.BJA.VS.SIZE DLV.BJA.VS

dom-rand-70-300-1155482584-3 424.70 1.03 2.09

rand-70-300-1155482584-0 0.10 0.03 0.28

rand-70-300-1155482584-3 0.09 0.06 1.17

rand-70-300-1155482584-4 0.11 0.03 0.31

rand-70-300-1155482584-5 0.11 0.04 0.30

rand-70-300-1155482584-7 0.10 0.07 0.46

rand-70-300-1155482584-8 0.09 0.03 0.29

rand-70-300-1155482584-9 0.09 0.04 0.28

rand-70-300-1155482584-11 0.11 0.03 0.30

rand-70-300-1155482584-12 0.13 0.06 0.30

rand-70-300-1155482584-14 0.11 0.04 1.05

rand-80-340-1159656267-0 0.12 0.06 0.39

rand-80-340-1159656267-4 0.12 0.04 0.63

rand-80-340-1159656267-6 0.13 0.11 0.38

rand-80-340-1159656267-10 0.12 0.05 0.56

rand-80-340-1159656267-11 0.18 0.10 0.70

rand-80-340-1159656267-13 0.12 0.07 1.28

rand-80-340-1159656267-15 0.16 0.44 0.35

rand-80-340-1159656267-16 0.13 0.05 1.00

rand-80-340-1159656267-17 0.14 0.51 0.99

rand-80-340-1159656267-18 0.14 0.04 11.19

tsp-rand-70-300-1155482584-0 0.46 0.04 0.56

tsp-rand-70-300-1155482584-4 85.97 0.88 60.76

tsp-rand-70-300-1155482584-5 0.11 0.24 2.30

tsp-rand-70-300-1155482584-7 1.26 0.08 TIME

tsp-rand-70-300-1155482584-8 0.15 0.03 0.28

tsp-rand-70-300-1155482584-9 2.82 28.30 0.48

tsp-rand-70-300-1155482584-11 540.09 10.75 TIME

tsp-rand-70-300-1155482584-12 0.14 0.16 0.39

tsp-rand-70-300-1155482584-14 0.12 0.04 1.50

Table 11. Instances of the TravelingSalesperson domain.

