
 

 
Abstract—As part of NURC maritime surveillance research 

activities, there is a need to characterize the performance of HF 
radar vessel-detection processing, in support of subsequent 
automatic tracking as well as fusion with other available sensor 
data.  In particular, HF radar detection and localization 
performance for a given contact SNR threshold must be 
determined.  This paper examines two approaches to do so: one 
based on the maximum-likelihood criterion, the other using a 
localization threshold on target-originated contacts.  The 
differences in and merits of the two approach are discussed with 
simulated and real maritime HF radar data.  We introduce a 
multi-stage track-extract-track approach to HF radar tracking 
that is effective in a heavily-cluttered environment.  Finally, we 
introduce scalar information metric for sensor characterization 
and discuss its relevance to sensor selection and detection 
threshold determination. 
 

Index Terms—Detection, localization, target tracking, 
maritime surveillance, HF radar 

I. INTRODUCTION 
In the absence of precise characterization for the quality of 

detection-level data, it is of interest to characterize its quality 
for effective subsequent tracking and fusion.  Our interest in 
doing so is in the context of HF radar maritime surveillance 
data.  Thus, we will first address the problem more generally, 
and then apply our approach to HF radar data from recent at-
sea experimental activities. 

Sections 2-3 introduce the precise problem formulation and 
the localization-based and maximum likelihood approaches to 
determining target probability of detection and the 
corresponding localization error.  Sections 4 examines these 
approaches in the context of one-dimensional simulated data, 
and section 5 examines the multi-dimensional case.  Sections 
6-7 present the results of our methodology with sea-trial HF 

radar data that includes range, bearing, and range-rate 
measurements, as well as an illustration of preliminary HF 
radar target tracking results.  Sections 8-9 study a information-
based scalar metric for quantifying sensor quality.  
Concluding remarks and future directions are in section 10. 

A recent overview of NURC research in maritime 
surveillance is provided in [1].  In the context of target 
tracking, the maximum likelihood (ML) approach is generally 
applied to determine the target position and velocity states 
under non-maneuvering target assumptions; this approach and 
an extension to dynamic (maneuvering-target) scenarios are 
discussed in [2].   

II. PROBLEM FORMULATION AND THRESHOLDING APPROACH  
Let a sequence of sets of measurements { }NiZZ i ≤≤= 1,  

be given, with each set further described by 
{ }iiji mjZZ ,...,1, == , and let the corresponding sequence of 

true target states { }NiXX i ≤≤= 1,  be given as well.  The 
relationship between target states and measurement sets is 
given by the following.  With probability DP , the set iZ  
contains a target-induced measurement jiZ ′ , imj ≤′≤1  of the 
true target state, given by: 

 
( ) iiji WXfZ +=′ , ( )Σ,0~ NWi .       (1) 

 
All other measurements are false.  The number of false 
measurements is Poisson distributed with known parameter 
λ , and these are uniformly distributed in measurement space.   

It is of interest to estimate the detection probability DP  and 
the measurement error covariance Σ  in equation (1).  The 
parameter λ  is known as it can be estimated from the data. 
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Recently, in [3] we introduced the system operating 
characteristics (SOC) curve that generalizes the well known 
receiver operating characteristics (ROC) curve.  The former 
replaces the probability of detection by the probability of 
localization: that is, the probability that there exists a sensor 
measurement within a specified Mahalanobis distance in 
measurement space from the error-free measurement.  We 
argue in [3] that the SOC curve may be more operationally 
relevant that the ROC curve; interestingly, the probability of 
localization is a function of the probability of detection, 
localization accuracy, and false alarm statistics. 

We take a related approach to the problem of estimating DP  
and Σ  for the dataset Z .  Given a distance threshold, a 
simple estimate for DP  is given by the fraction of 
measurement sets in Z  with at least one valid (i.e. close-
enough) sensor measurement; the closest valid measurement is 
tagged as target originated.  Assuming uncorrelated 
measurement errors, the RMS error between target-originated 
and error-free measurements1  provides standard deviations of 
all measurement components, in turn leading to a (diagonal) 
estimate for the measurement covariance matrix Σ . 

As we will see in section 4, a weakness in this first 
approach is that it relies on a distance threshold to define valid 
measurements, and thus the estimates for DP  and Σ  require 
an effective approach for its selection. 

III. THE MAXIMUM LIKELIHOOD APPROACH 
It can be shown that the likelihood function for the dataset 

Z  is the following [4]: 
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In equation (2), ( )⋅λμ  is the Poisson pmf with parameter λ , 
( )⋅⋅⋅ ,|p  is the Gaussian pdf conditioned on a given mean and 

covariance, and u is the volume of the surveillance region. 
 The maximum likelihood estimates DP  and Σ  are then: 
 

( ) ( )ΣΛ=Σ
>Σ≤≤

,maxarg,
0,10 DPD PP

D

 .      (3) 

 
 A limitation in this second approach to sensor 
characterization is a numerical one: the maximum likelihood 
function is not always amenable to simple optimization 
approaches, and may require a good initial guess for the 
parameters to be estimated.  (In practice, for numerical 
stability it is best to utilize the log-likelihood function.) 

IV. THE ONE-DIMENSIONAL CASE 
Before examining the HF radar setting, it is instructive to 

 
1 The error-free measurement is obtained by transforming the true target 

state into measurement space. 

focus on the scalar case with simple positional measurements.  
The scenario details are listed in table 1.  The target is fixed 
and located at the measurement space origin. 

 
Table 1. Parameters in one-dimensional example. 

Number of scans N 150 
Detection probability DP  0.8 

Measurement covariance Σ  1m2 

False alarm rate λ  5 
Measurement space [-30m, 30m] 

 
Figure 1 illustrates a realization of Z .  Recall that our task 

is to extract estimates of DP  and Σ  from the data Z  and the 
target ground truth trajectory X .   

Applying a distance threshold as described in section 2 over 
a range of settings yields the curves illustrated in figure 2.  As 
we see, a clear choice of distance threshold is not apparent 
from the curves.  Further, in general there does not exist a 
choice that leads to accurate estimates for both DP  and Σ . 
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Figure 1. Scenario realization; red crosses denote measurements and blue 

crosses denote true target locations. 
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Figure 2. Threshold-based estimation of detection and localization 
performance (red), as a function of a distance threshold (true values in blue). 



 

 
Next, we consider the likelihood function formalism 

according to equation (2) and apply two optimization 
approaches to solving equation (3): a brute-force approach 
that evaluates the likelihood over a grid of values, and 
numerical optimization using the FMINSEARCH function in 
MATLAB.  For the simple example that we examine here, the 
latter approach is fast, and succeeds in matching the brute-
force solution.  Figure 3 illustrates the results based on an 
initial guesses of 633.0=DP  and 518.0=Σ  that correspond 
to a distance threshold of 1=ξ  in figure 2. 
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Figure 3. Close match between log-likelihood function maximization with 

numerical optimization (‘x’) and brute-force evaluation (‘o’). 
 
It is interesting to note that the likelihood function 

evaluated at the true values of DP  and Σ  does not precisely 
achieve the maximum.  Indeed, the data Z  may not always be 
sufficiently rich to support accurate determination of sensor 
data quality.   

A further point worth noting is that, when employing a 
numerical optimization technique like FMINSEARCH, it is 
helpful to have a good enough initial guess of parameter 
values to ensure fast convergence.  This points to the 
usefulness of the threshold-based curves in figure 2 in 
providing self-consistent initial guesses for DP  and Σ  to be 
used in subsequent maximum likelihood processing. 

In using FMINSEARCH for (unconstrained) numerical 
optimization, it is important to introduce a penalty for non-
meaningful DP  values, i.e. less than zero or greater than unity.  
Additionally, it is important not to include the second term in 
eqn. (2) for those data scans that have no measurements, i.e. 
for every scan i with 0=im . 

As illustrated in figures 4-5, we find consistent, rapid 
convergence to the maximum likelihood solution with one-
dimensional data, for a number of expected false contact rates 
and initial guesses for DP  and Σ . 

 

 
Figure 4. DP  convergence for different values of λ . 

 

 
Figure 5. Σ  convergence for different values of λ . 

V. THE MULTI-DIMENSIONAL CASE 
Having completed simulation-based validation of the 

maximum likelihood approach to sensor performance 
characterization, it is of interest to confirm that the 
methodology is effective with multi-dimensional measurement 
data.  In particular, it is important to examine convergence in 
examples with significant dynamic range in measurement 
error statistics.  We perform this study with a generalization to 
the data simulation described in the previous case; in 
particular, the measurement space is set to [-10σ,10σ] in each 
measurement component dimension. 

Figure 6 illustrates normalized convergence results with 
three-dimensional data, with initial guesses for DP  and Σ  of 
half the true values and error statistics of σ1 = 1, σ2 = 10, and 
σ3  = 100.  Likewise, we find correct convergence to the true 
value of DP  as well. 



 

 
Figure 6. Convergence for  multi-dimensional data with very different 

measurement component error statistics. 

VI. APPLICATION TO REAL HF RADAR DATA 
In May 2008, the N.R.V. Alliance participated in an 

experimental campaign in conjunction with the French 
company ACTIMAR, based in Brest, France.  In particular, 
ACTIMAR acquired roughly 6hrs of HF radar data using its 
two shore-based radars.   

Using Automatic Identification System (AIS) transponder 
data collected by the Alliance, it is possible to compare large-
vessel traffic with the HF radar contact data that results from 
ship-detection processing [5].  Overlays of AIS tracks and HF 
radar contacts are illustrated in figures 7-8.   

A quick inspection illustrates the difficulty in assessing the 
quality of the HF radar detection data.  Our approach is to rely 
on N.R.V. Alliance navigational information as ground truth, 
and to apply the maximum likelihood methodology introduced 
in this paper.  Note that the measured data is a nonlinear 
function of the target kinematic state, and includes range, 
bearing, and Doppler.  A further note is that, for the purposes 
of this analysis, detections on other vessels are treated as false 
contacts. 

 We have limited the analysis to a time window for which 
the Alliance and a bounding region around her are fully 
contained in the footprint of a given HF radar.  In particular, 
we have 111 detection files for each sensor, and the special 
window is given by 20km in range, 30deg in bearing, and 
10m/s in Doppler.   Further, the maximum likelihood (ML) 
processing assumes known false contact statistics.  Thus, as a 
first step, we compute the average number of returns, i.e. λ  in 
eqn. (2).  Of course, there is variability in the number of 
returns per scan: see figure 9 for scans from 100 to 210.  We 
perform our analysis for those contacts with SNR>25dB. 

The HF radar performance characteristics as estimated with 
our maximum likelihood methodology are summarized in 
table 2.  We note that the FAR is directly related to the spatial 
window defined above.  The remaining statistics in principle 
are independent of the spatial window, though we have noted 
some statistical fluctuations as we vary its size, an issue that 
will require further analysis. 

 
Figure 7. AIS tracks (red) and HF radar contacts from Brezellec. 

 

Figure 8. AIS tracks (red) and HF radar contacts from Garchine. 
 

 
Figure 9. Number of contacts per scan from one of the sensors; relevant 

scans are 100 to 210, the time period during which bounding region around 
N.R.V. Alliance is fully within the sensor footprint. 

 
Table 2. Estimated HF radar performance characteristics: measurement 

error standard deviations, and detection statistics. 
sensor range bearing Doppler DP  FAR 

Brezellec 1.05km 2.5deg 0.17m/s 0.28 13.0 
Garchine 818m 2.1deg 0.11m/s 0.51 9.0 
 

We note that the two sensors do not yield the same 
performance characteristics.  This is not surprising, as we 
have focused on a specific vessel of opportunity and detection 



 

performance is known to depend on target range and aspect.  
It is important to note that we have consistent results in terms 
of the relative quality of detection and localization 
performance, as these are known to be coupled: higher contact 
SNR leads to improved localization performance [6]. 

VII. A FIRST LOOK AT TRACKING PERFORMANCE 
From a maritime surveillance perspective, it is of interest to 

generate HF radar tracks for subsequent correlation with AIS 
and other available sensor feeds.  To do so, we have extended 
the NURC distributed multi-hypothesis tracker (DMHT) that 
was first developed for active sonar tracking [7].  The salient 
extensions that enable maritime surveillance are the following: 

 
• Inclusion of RADAR, SAR, and AIS sensor models; 
• Track-specific tangential coordinate system allowing 

for global surveillance; 
• Track management logic to handle cooperative 

sensor data, like AIS, that exhibits persistent identity 
information. 

 
A discussion of multi-sensor maritime surveillance is 

beyond the scope of this paper, and will be documented in a 
forthcoming publication.  Here, we provide a first illustration 
of HF radar tracking performance with the data acquired in 
Brest.  The high-confidence radar tracks (those containing at 
least 40 radar contacts) are shown in figure 10. 

 

 
Figure 10. AIS tracks (red) and HF radar tracks (purple). 

 
It is clear that, from a first assessment, effective HF radar 

tracking is quite challenging.  The radars yield few tracks in 
the more distant vessel sea lane: analysis of the AIS data 
revealed that only large tankers are tracked.  There is greater 
success with the closer sea lane, though here again 
performance is limited.  Many near range vessels identified by 
AIS are not found in the HF radar tracks.  Interestingly, there 
is a significant HF radar track with a northeast heading, likely 
to be a large vessel, which is not present in the AIS data.  This 
illustrates the potential of multi-sensor coverage to reveal 
anomalous vessel behavior. 

We address next the potential advantages of a track-extract-
track multi-stage tracking architecture.  In this approach, we 
extract contact data from the first stage of tracking, and 
proceed with a second stage of tracking with the remaining 
contacts; the process can be iterated with a third stage of 

processing, and so on.  The key advantage of the approach is 
that it allows for additional, weaker target tracks to be 
extracted from the data.  This is accomplished by increasing 
the data correlation gates in the tracker, as well as lowering 
the track-confirmation criterion.  In principle, a similar result 
could be achieved with centralized processing, but with a 
much more complex adaptive-tracking methodology. 

We illustrate the track-extract-track processing approach in 
the context of HF radar data in figures 11-14, which provides 
a display of additional tracks beyond those identified in figure 
10.  Note that the superposition of all tracks (figure 15) yields 
a display that is heavily cluttered, yet comparable performance 
proved to be impossible to achieve with a single stage of (non-
adaptive) target tracking.   

In particular, the additional track extraction based on the 
track-extract-track multi-stage processing paradigm is as 
follows: previous tracks (fig. 6.1) included >40 contacts; the 
additional track shown here include >35 contacts (figure 11), 
>30 contacts (figure 12), >25 contacts (figure 13), and > 20 
contacts (figure 14). 

We recommend continued investigation into novel multi-
stage data fusion architectures for application in a variety of 
surveillance settings.  These approaches often hold 
considerable potential for dramatic performance 
improvements that are difficult to obtain with refinements in 
sensor data processing or nonlinear filtering algorithms, 
whether analytical or numerical. 
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Figure 11. AIS tracks (red) and 2nd iteration HF radar  tracks. 

 
 

 
Figure 12. AIS tracks (red) and 3rd iteration HF radar tracks. 



 

 

 
Figure 13. AIS tracks (red) and 4th iteration HF radar tracks. 

 
 

 
Figure 14. AIS tracks (red) and 5th iteration HF radar tracks. 

  

 
Figure 15. Consolidated HF radar adaptive tracking result based on an 

iterative track-extract-track scheme. 

VIII. INFORMATION-BASED SENSOR QUALITY 
As we have seen, subject to sufficient care in numerical 

optimization processing, the maximum likelihood criterion 
leads to statistically consistent estimates of sensor DP  and Σ .  
Combined with the false alarm rate λ , the parameter triple 
( )λ,,ΣDP  provides a complete characterization of sensor 
performance. 
 It is interesting to ask whether a single scalar measure of 
performance can be computed as a function of this parameter 
triple.  Such a metric would have direct applicability, for 
instance, to sensor selection and to detection threshold 

selection.  We wish to determine a simple answer to the 
question: is one triple better than another?   
 We proceed with a simple information-based approach.  
Assume for simplicity that the target is located at the 
measurement space origin.  We consider a mixture pdf that is 
achieved by appropriately weighing the target-induced 
measurement pdf ( )XN Σ,0  with the false-alarm induced 
measurement pdf ( )YU Σ,0 , where ( )YU Σ,0  is the zero-mean 
uniform distribution with covariance YΣ .  We assume 

XY Σ>Σ : indeed a target-originated measurement is more 
informative than a false alarm. 
 Let ( )XNX Σ,0~ , ( )YUY Σ,0~ , and ( )

D
D

P
PB +λγ ~ , where 

( )pB  is the Binomial pmf that equals one with probability p.  
Define the mixture random variable Z  as follows: 
 

( )YXZ γγ −+= 1 .        (4) 
 

Note that the weight given to X  in this mixture matches the 
(normalized) frequency of occurrence of target-induced 
measurements. 

It can be shown that, assuming independence of X , Y , and 
γ , the covariance of Z  is given by the following: 

 

( )XY
D

D
YZ P

P
Σ−Σ

+
−Σ=Σ
λ

 .      (5) 

 
At each sensor scan, the expected number of returns is 

DP+λ .  For each return, the determinant of the inverse of ZΣ  
provides an information measure that characterizes the value 
of the measurement concerning the target state.  Thus, the 
overall information measure is given by: 
 

( ) ( )
1
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−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ−Σ

+
−Σ+= XY

D

D
YD P

PPJ
λ

λ .   (6) 

  
As we expect from our intuition, analysis of equation (6) 

leads to the following: 
 
• For 0→ΣY  (and thus 0→Σ X ): ∞→J ; 
• For ∞→Σ X  (and thus ∞→ΣY ): 0→J ; 

• For 0→λ : 1det −Σ→ XDPJ ; 

• For 0→DP : 1det −Σ→ YJ λ . 
  

From a target tracking perspective, it is of interest to 
explore the implications of the simple metric discussed here 
compared to approaches to sensor selection based on tracking 
filter errors (see e.g. [8-9]). 

IX. OPTIMAL CHOICE OF DETECTION THRESHOLD 
Proceeding with the metric J introduced in the previous 

section, it is of interest to examine the optimal selection of 
detection threshold when the target SNR is known.  Assuming 
Rayleigh distributed returns, a fixed scaling parameter A, and 



 

a detection threshold DT, we have the following expressions 
for DP  and λ : 

 

⎟
⎠
⎞

⎜
⎝
⎛

+
−=

SNR
DTPD 1

exp ,       (7) 

( )DTA −= expλ .         (8) 
 
Substituting expressions (7-8) into equation (6), we have a 

simple objective function that, for known scenario parameters, 
may be optimized to determine the optimal sensor detection 
threshold optDT .   

Table 3 lists the parameter settings for a simple scalar 
illustrative example, and figures 11-12 plot 1det −ΣZ  and the 
information measure J for a range of detection thresholds.  
Interestingly, we find that 1det −ΣZ  increases monotonically 
with increasing detection threshold (i.e. measurements are on 
average more informative, as the mixture tends towards the 
target-induced pdf).  On the other hand, an increasing 
detection threshold reduces the expected number of returns 

DP+λ .   Overall, figure 12 suggests that there is an optimal 
choice of detection threshold that maximizes information on 
the target.  In the example, optimality is achieved at 

1.15=optDT , leading to  253.0=DP  and 51077.2 −⋅=λ . 
 
Table 3. Parameter settings for detection threshold optimization example. 

Target SNR 10 
Number of detection cells 100 

YΣ  1000m2 

XΣ  1m2 
 

It should be noted that degeneracy is observed for scenarios 
with a large number of detection cells (i.e. large scaling 
parameter A).  In this setting, optimality is achieved for a 
vanishingly small detection threshold, as illustrated in figure 
13.  The explanation for this phenomenon is that, with a finite 

YΣ , false returns do provide information, and a sufficient 
number of these is available with large A and low detection 
threshold to exceed the local maximum observed at a higher 
(non-degenerate) detection threshold. 

It will be of interest to compare the information-based 
analysis documented here with model-based tracker ROC 
curves [10] and, ultimately, with simulation-based and real-
data tracking results.  Note that the results in [10] exhibit a 
similar effect with non-monotonic tracker ROC curves. 
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Figure 11. Expected information per return as a function of sensor 

detection threshold. 
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Figure 12. (Aggregate) information as a function of sensor detection 

threshold. 
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Figure 13. The same example, with large number of detection cells: 

degeneracy observed whereby optimality is achieved at high contact rates. 



 

X. CONCLUSIONS AND FUTURE WORK 
This paper addresses the estimation of sensor detection and 

localization statistics.  We propose a maximum likelihood 
(ML) methodology, and validate the approach with simulated 
data.  A recent, related work of interest is [11].  In [11] the 
authors do not have target ground truth information, and 
estimate noise variances as a by-product of the tracking 
process. 

We apply our ML methodology to HF radar data from a 
recent sea trial, for which coincident AIS data is available, and 
provide a preliminary assessment of the quality of the data to 
support automatic tracking.  Our approach to tracking utilizes 
an iterative track-extract-track technique, which provides 
better performance than non-adaptive single-stage tracking 
and is simpler than a complex, adaptive track initiation 
schemes to identify weak and strong targets in a single 
processing stage. 

Finally, the paper proposes a scalar sensor-quality metric 
that is a function of detection and localization performance.  
We apply this metric to determine the optimal sensor SNR 
threshold.  It is of interest to investigate whether those 
thresholds that provide informative sensor data lead to good 
automatic tracking results.  Encouragingly, we know that 
tracker output ROC curves exhibit a similar non-monotonic 
behavior as found here with the proposed information metric. 
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