
Look-Back Techniques and Heuristics in DLV:
Implementation and Evaluation⋆

Wolfgang Faber1, Nicola Leone1, Marco Maratea1,2, and Francesco Ricca1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{faber,leone,maratea,ricca}@mat.unical.it

2 DIST, University of Genova, 16145 Genova, Italy
marco@dist.unige.it

Abstract. Answer Set Programming (ASP) is a purely-declarative programming
paradigm based on logic rules, allowing for both disjunction in the head of the
rules and nonmonotonic negation in the body. ASP can express any property whose
complexity is in the second level of the polynomial hierarchy, thus it is strictlymore
powerful than propositional logic under standard complexity conjectures. DLV is
the state-of-the-artdisjunctiveASP system, and it is based on an algorithm using
backtracking search, like the vast majority of the currently available ASP systems.
Despite its efficiency, until recently, DLV did not incorporate any “backjumping”
techniques (neither did other disjunctive ASP systems). Related, DLV could not use
“look-back” information accumulated for backjumping in its heuristics, which have
been shown in related research areas to be crucial on large benchmarks stemming
from applications. In this paper, we focus on the experimental evaluationof the
look-back algorithms and heuristics that have been implemented in DLV. Wehave
conducted a wide experimental analysis considering both randomly-generated and
structured instances of the 2QBF problem (the canonical problem for thecomplex-
ity classesΣP

2 andΠP

2). The results show that the new look-back techniques sig-
nificantly improve the performance of DLV, being performance-wise competitive
even with respect to “native” QBF solvers.

1 Introduction

Answer Set Programming (ASP) [1, 2] is a purely-declarativeprogramming paradigm
based on nonmonotonic reasoning and logic programming. Theidea of answer set pro-
gramming is to represent a given computational problem by a logic program whose an-
swer sets correspond to solutions, and then use an answer setsolver to find such solutions
[3]. The language of ASP is very expressive, allowing for both disjunction in the head of
the rules and nonmonotonic negation in the body, and able to represent every property in
the second level of the polynomial hierarchy. Therefore, ASP is strictly more powerful
than propositional logic unlessP = NP .

DLV is the state-of-the-artdisjunctiveASP system, and it is based on an algorithm
relying on backtracking search, like most other competitive ASP systems. Until recently,

⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni dellaProgrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione di conoscenza:
estensioni e tecniche di ottimizzazione.”

DLV did not incorporate any “look-back” techniques, like “backjumping” procedures and
“look-back” heuristics. By “backjumping” [4] we refer to anoptimized recovery upon
inconsistency during the search where, instead of restoring the state of the search up to
the previous choice and then “flipping” its value, we try to “jump over” choices that are
not relevant for the inconsistency we met. This is done by means of a reason calculus,
which records information about the literals (“reasons”) whose truth has caused the truth
of other derived literals.

Look-back heuristics [5] further strengthen the potentialof backjumping by using
the information made explicit by the reasons. The idea of such family of heuristics is
to preferably choose atoms which frequently caused inconsistencies, thus focusing on
“critical” atoms. This significantly differ from classicalASP heuristics that use informa-
tion arising from the simplification part (“look-head”) of the algorithm. Such look-back
optimization techniques and heuristics have been shown, onother research areas, to be
very effective on “big” benchmarks coming from applications, like planning and formal
verification.

In this paper, we report on the analysis, implementation andevaluation of the back-
jumping technique and look-back heuristics in DLV, and ultimately, about their efficiency
in the disjunctive ASP setting. Such methods have been already used in other ASP sys-
tems which(i) do not allow for disjunction in the head of the rules [6, 7], or(ii) apply
such methods only indirectly after a transformation to a propositional satisfiability prob-
lem [8]. The resulting system, called DLVLB, is therefore the first implementation of
disjunctive ASP featuring backjumping and look-back heuristics. Importantly, our sys-
tem provides several options regarding the initializationof the heuristics and the truth
value to be assigned to an atom chosen by the heuristics. In our experimental analysis,
we provide a comprehensive comparison of the impact of theseoptions, and demon-
strate how the new components of DLVLB enhances the efficiency of DLV. Moreover,
we also provide a comparison to the other competitive disjunctive ASP systems GnT and
Cmodels, which are generally outperformed considerably byDLV LB on the considered
benchmarks. Finally, we also present a comparison with respect to QBF solvers, which
also allow for solving problems within the second level of the polynomial hierarchy.

2 Answer Set Programming Language

A (disjunctive) ruler is a formula

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

wherea1, · · · , an, b1, · · · , bm are function-free atoms andn ≥ 0, m ≥ k ≥ 0. The
disjunctiona1 ∨ · · · ∨an is theheadof r, while b1, · · · , bk, not bk+1, · · · , not bm is the
body, of whichb1, · · · , bk is thepositive body, andnot bk+1, · · · , not bm is thenegative
bodyof r.

An (ASP) programP is a finite set of rules. An object (atom, rule, etc.) is called
groundor propositional, if it contains no variables. Given a programP, let theHerbrand
UniverseUP be the set of all constants appearing inP and theHerbrand BaseBP be
the set of all possible ground atoms which can be constructedfrom the predicate symbols
appearing inP with the constants ofUP .

Given a ruler, Ground(r) denotes the set of rules obtained by applying all possible
substitutionsσ from the variables inr to elements ofUP . Similarly, given a programP,
theground instantiationGround(P) of P is the set

⋃
r∈P Ground(r).

For every programP, its answer sets are defined using its ground instantiationGround(P)
in two steps: First answer sets of positive programs are defined, then a reduction of gen-
eral programs to positive ones is given, which is used to define answer sets of general
programs. A setL of ground literals is said to beconsistentif, for every atomℓ ∈ L, its
complementary literalnot ℓ is not contained inL. An interpretationI for P is a consis-
tent set of ground literals over atoms inBP .3 A ground literalℓ is true w.r.t. I if ℓ ∈ I; ℓ
is falsew.r.t. I if its complementary literal is inI; ℓ is undefinedw.r.t. I if it is neither true
nor false w.r.t.I. InterpretationI is total if, for each atomA in BP , eitherA or not A is
in I (i.e., no atom inBP is undefined w.r.t.I). A total interpretationM is amodelfor P
if, for everyr ∈ Ground(P), at least one literal in the head is true w.r.t.M whenever all
literals in the body are true w.r.t.M . X is ananswer setfor a positive programP if it is
minimal w.r.t. set inclusion among the models ofP.

The reductor Gelfond-Lifschitz transformof a general ground programP w.r.t. an
interpretationX is the positive ground programPX , obtained fromP by (i) deleting all
rulesr ∈ P the negative body of which is false w.r.t. X and (ii) deletingthe negative body
from the remaining rules. An answer set of a general programP is a modelX of P such
thatX is an answer set ofGround(P)X .

3 Answer Set Computation Algorithms

In this section, we describe the main steps of the computational process performed by
ASP systems. We will refer particularly to the computational engine of the DLV system,
which will be used for the experiments, but also other ASP systems, employ a similar pro-
cedure. In general, an answer set programP contains variables. The first step of a com-
putation of an ASP system eliminates these variables, generating a ground instantiation
ground(P) of P.4 The subsequent computations, which constitute the non-deterministic
hearth of the system, are then performed onground(P) by the so called Model Generator
procedure.

In the following paragraphs, we illustrate the original model generation algorithm of
DLV (which is based on chronological backtracking); then, we briefly describe a back-
jumping technique that has been implemented in the system[10]; and, we detail how the
model generation algorithm has been changed to introduce it. Finally, we report a de-
scription of all the heuristics, including the new ones based look-back techniques, that
have been implemented in the DLV system, so far.

The Standard Model Generator Algorithm. The computation of answer sets is per-
formed by exploiting the Model Generator Algorithm sketched in Figure 1.5

3 We represent interpretations as set of literals, since we have to deal with partial interpretations
in the next sections.

4 Note thatground(P) is usually not the fullGround(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sets asP [9]

5 Note that for reasons of presentation, the description here is quite simplified w.r.t. the “real”
implementation. A more detailed description can be found in [11].

bool ModelGenerator (Interpretation& I){
I = DetCons (I);
if (I == L) then

return false;
if (“no atom is undefined in I”)then return IsAnswerSet(I);
Select an undefined atomA using a heuristic;
if (ModelGenerator (I ∪ {A}) then return true ;

else returnModelGenerator (I ∪ {not A}); };

Fig. 1.Computation of Answer Sets

This function is initially called with parameterI set to the empty interpretation.6

If the programP has an answer set, then the function returns True, settingI to the
computed answer set; otherwise it returns False. The Model Generator is similar to the
DPLL procedure employed by SAT solvers. It first calls a function DetCons, which re-
turns the extension ofI with the literals that can be deterministically inferred (or the set
of all literalsL upon inconsistency). This function is similar to a unit propagation proce-
dure employed by SAT solvers, but exploits the peculiarities of ASP for making further
inferences (e.g., it exploits the knowledge that every answer set is a minimal model). If
DetCons does not detect any inconsistency, an atomA is selected according to a heuristic
criterion and ModelGenerator is called onI ∪ {A} and onI ∪ {not A}. The atomA
plays the role of a branching variable of a SAT solver. And indeed, like for SAT solvers,
the selection of a “good” atomA is crucial for the performance of an ASP system. In
the following, we will describe some heuristic criteria forthe selection of such branching
atoms.

If no atom is left for branching, the Model Generator has produced a “candidate” an-
swer set, the stability of which is subsequently verified byIsAnswerSet(I). This function
checks whether the given “candidate”I is a minimal model of the programGround(P)I

obtained by applying the GL-transformation w.r.t.I, and outputs the model, if so.IsAn-
swerSet(I)returns True if the computation should be stopped and False otherwise.

Note that the algorithm described above computes one answerset for simplicity, how-
ever it can be straightforwardly modified to compute all orn answer sets.

Backjumping and Reason for Literals. If during the execution of the ModelGenerator
function described in previous paragraph a contradiction arises, or the stable model can-
didate is not a minimal model, ModelGenerator backtracks and modifies the last choice.
This kind of backtracking is called chronological backtracking.

We now describe a technique in which the truth value assignments causing a conflict
are identified and backtracking is performed “jumping” directly to a point so that at least
one of those assignments is modified. This kind of backtracking technique is called non-
chronological backtracking or backjumping. To give the intuition on how backjumping is
supposed to works, we exploit the following example.

Consider the program of Figure 2(a) and suppose that the search tree is as depicted in
Figure 2(b).

According to this tree, we first assumea to be true, derivingb to be false (fromr1 to
ensure the minimality of answer sets). Then we assumec to be true, derivingd to be false

6 Observe that the interpretations built during the computation are 3-valued,that is, a literal can
be True, False or Undefined w.r.t.I.

Fig. 2.Backtracking vs Backjumping.

(from r2 for minimality). Third, we assumee to be true and derivef to be false (from
r3 for minimality) andg to be true (fromr4 by forward inference). This truth assignment
violates constraintr5 (whereg must be false), yielding an inconsistency. We continue
the search by inverting the last choice, that is, we assumee to be false and we derivef
to be true (again fromr3 to preserve minimality) andg to be true (fromr6 by forward
inference), but obtain another inconsistency (because constraint r7 is violated, hereg
must also be false).

At this point, ModelGenerator goes back to the previous choice point, in this case
inverting the truth value ofc (cf. the arc labelled BK in Fig. 2(b)).

Now it is important to note that the inconsistencies obtained are independent of the
choice ofc, and only the truth value ofa ande are the “reasons” for the encountered
inconsistencies. In fact, no matter what the truth value ofc is, if a is true then any truth
assignment fore will lead to an inconsistency. Looking at Fig. 2(b), this means that in
the whole subtree below the arc labelleda no stable model can be found. It is therefore
obvious that the chronological backtracking search explores branches of the search tree
that cannot contain a stable model, performing a lot of useless work.

A better policy would be to go back directly to the point at which we assumeda to
be true (see the arc labelled BJ in Fig. 2(b)). In other words,if we know the “reasons”
of an inconsistency, we can backjump directly to the closestchoice that caused the in-
consistent subtree. In practice, once a literal has been assigned a truth value during the
computation, we can associate a reason for that fact with theliteral. For instance, given a
rulea :–b, c, not d., if b andc are true andd is false in the current partial interpretation,
thena will be derived as true (by Forward Propagation). In this case, we can say thata is
true “because”b andc are true andd is false. A special case arechosenliterals, as their
only reason is the fact that they have been chosen. The chosenliterals can therefore be
seen as being their own reason, and we may refer to them as elementary reasons. All other
reasons are consequences of elementary reasons, and hence aggregations of elementary
reasons. Each literall derived during the propagation (i.e., DetCons) will have anasso-
ciated set of positive integersR(l) representing the reason ofl, which are essentially the
recursion levels of the chosen literals which entaill. Therefore, for any chosen literalc,
|R(c)| = 1 holds. For instance, ifR(l) = {1, 3, 4}, then the literals chosen at recursion
levels 1, 3 and 4 entaill. If R(l) = ∅, thenl is true in all answer sets.

The process of defining reasons for derived (non-chosen) literals is calledreason cal-
culus. The reason calculus we employ defines the auxiliary concepts of satisfying literals

and orderings among satisfying literals for a given rule. Italso has special definitions for
literals derived by the well-founded operator. Here, for lack of space, we do not report
details of this calculus, and refer to [10] for a detailed definition.

When an inconsistency is determined, we use reason information in order to under-
stand which chosen literals have to be undone in order to avoid the found inconsistency.
Implicitly this also means that all choices which are not in the reason do not have any
influence on the inconsistency. We can isolate two main typesof inconsistencies:(i) De-
riving conflicting literals, and(ii) failing stability checks. Of these two, the second one
is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, that DetCons determines that an
atoma and its negationnot a should both hold. In this case, the reason of the incon-
sistency is – rather straightforward – the combination of the reasons fora andnot a:
R(a) ∪R(not .a).

Inconsistencies from failing stability checks are a peculiarity of disjunctive ASP, as
non-disjunctive ASP systems usually do not employ a stability check. This situation oc-
curs if the function IsAnswerSet(I) of ModelGenerator returns false, hence if the checked
interpretation (which is guaranteed to be a model) is not stable. The reason for such an
inconsistency is always based on an unfounded set, which hasbeen determined inside
IsAnswerSet(I) as a side-effect. Using this unfounded set,the reason for the inconsis-
tency is composed of the reasons of literals which satisfy rules which contain unfounded
atoms in their head (the cancelling assignments of these rules). The information on rea-
sons for inconsistencies can be exploited for backjumping by going back to the closest
choice which is a reason for the inconsistency, rather than always to the immediately
preceding choice.

In the next paragraph, we will describe a modified version of the ModelGenerator
algorithm which implements the above-sketched backjumping technique.

The Model Generation Algorithm with Backjumping. In this paragraph we describe
ModelGeneratoBJ (shown in Fig. 3) a modification of the ModelGenerator function,
which is able to perform non-chronological backtracking.

It extends ModelGenerator by introducing additional parameters and data structures,
in order to keep track of reasons and to control backtrackingand backjumping. In par-
ticular, two new parametersIR andbj level are introduced, which hold the reason of
the inconsistency encountered in the subtrees of which the current recursion is the root,
and the recursion level to backtrack or backjump to. When going forward in recursion,
bj level is also used to hold the current level.

The variablescurr level, posIR, andnegIR are local to ModelGeneratoBJ and used
for holding the current recursion level, and the reasons forthe positive and negative re-
cursive branch, respectively.

Initially, the ModelGeneratorBJ function is invoked withI set to the empty interpre-
tation,IR set to the empty reason, andbj level set to−1 (but it will become 0 immedi-
ately). Like the ModelGenerator function, if the programP has an answer set, then the
function returns true and setsI to the computed answer set; otherwise it returns false.
Again, it is straightforward to modify this procedure in order to obtain all or up ton an-
swer sets. Since these modification gives no additional insight, but rather obfuscates the
main technique, we refrain from presenting it here.

bool ModelGeneratorBJ (Interpretation& I, Reason& IR,
int& bj level){

bj level ++;
int curr level = bj level;

I = DetConsBJ (I, IR);
if (I == L) return false;
if (“no atom is undefined in I”)

if IsAnswerSetBJ(I, IR);return true ;
else

bj level = MAX (IR);
return false;

Reason posIR, negIR;

Select an undefined atomA using a heuristic;

R(A)= { curr level};
if (ModelGeneratorBJ(I ∪ {A}, posIR, bjlevel) return true ;
if (bj level< curr level)

IR = posIR;return false;

bj level = curr level;
R(not A) = { curr level};
if (ModelGeneratorBJ (I ∪ {not A}, negIR, bjlevel) return true ;

if (bj level< curr level)
IR = negIR;return false;

IR = trim(curr level, Union (posIR, negIR));
bj level = MAX (IR);
return false;

};

Fig. 3.Computation of Answer Sets with Backjumping

ModelGeneratorBJ first calls DetConsBJ, an enhanced version of the DetCons pro-
cedure. In addition to DetCons, DetConsBJ computes the reasons of the inferred literals,
as pointed out in the paragraph for reasons. Moreover, if at some point an inconsistency
is detected (i.e. the complement of a true literal is inferred to be true), DetConsBJ (re-
turns the set of all literalsL, and) builds the reason of this inconsistency and stores it
in its new, second parameterIR. If an inconsistency is encountered, ModelGeneratorBJ
immediately returns false and no backjumping is done. This is an optimization, because
it is known that the inconsistency reason will contain the previous recursion level. There
is therefore no need to analyze the levels.

If no undefined atom is left, ModelGeneratorBJ invokes IsAnswerSetBJ, an enhanced
version of IsAnswerSet. In addition to IsAnswerSet, IsAnswerSetBJ computes the incon-
sistency reason in case of a stability checking failure, andsets the second parameterIR
accordingly. If this happens, it might be possible to backjump, and we setbj level to the
maximal level of the inconsistency reason (or 0 if it is the empty set) before returning from
this instance of ModelGeneratorBJ. Indeed, the maximum level in IR corresponds to the
nearest (chronologically) choice causing the failure. If the stability check succeeded, we
just return true.

Otherwise, an atomA is selected according to a heuristic criterion. We set the reason
of A to be the current recursion level and invoke ModelGeneratorBJ recursively, using
posIR andbj level to be filled in case of an inconsistency. If the recursive callreturned
true, ModelGeneratorBJ just returns true as well. If it returned false, the corresponding
branch is inconsistent,posIR holds the inconsistency reason andbj level the recursion
level to backtrack or backjump to.

Now, if bj level is less than the current level, this indicates a backjump, and we return
from the procedure, setting the inconsistency reason appropriately before. If not, then we
have reached the level to go to. We set the reason fornot A, and enter the second re-
cursive invocation, this time usingnegIR and reusingbj level (which is reinitialized
before). As before, if the recursive call returns true, ModelGeneratorBJ immediately re-
turns true also, while if it returned false, we check whetherwe backjump, settingIR and
immediately returning false. If no backjump is done, this instance of ModelGeneratorBJ
is the root of an inconsistent subtree, and we set its inconsistency reasonIR to the union
of posIR andnegIR, deleting all (irrelevant) integers which are greater or equal than the
current recursion level (this is done by the function trim).We finally setbj level to the
maximum of the obtained inconsistency reason (or 0 if the setis empty) and return false.

The actual implementation in DLV is slightly more involved,but only due to technical
details. Since we do not believe that these technical issuesgive any particular insight, but
are instead rather lengthy in description, we have opted to not include them.

The information provided by reasons can be further exploited in a backjumping-based
solver. In particular, in the following paragraph we describe how reasons for inconsisten-
cies can be exploited for defining look-back heuristics.

Heuristics. In this paragraph we will first describe the two main heuristics for DLV
(based on look-ahead), and subsequently define several new heuristics based on reasons
(or based on look-back), which are computed as side-effectsof the backjumping tech-
nique. We assume that a ground ASP programP and an interpretationI have been fixed.
We first recall the “standard” DLV heuristichUT [12], which has recently been refined to
yield the heuristichDS [13], which is more “specialized” for hard disjunctive programs
(like 2QBF). These are look-ahead heuristics, that is, the heuristic value of a literalQ
depends on the result of takingQ true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the application of DetCons on
I ∪ {Q}; w.l.o.g., we assume thatext(Q) is consistent, otherwiseQ is automatically set
to false and the heuristic is not evaluated onQ at all.

Standard Heuristic of DLV (hUT). This heuristic, which is the default in the DLV
distribution, has been proposed in [12], where it was shown to be very effective on many
relevant problems. It exploits a peculiar property of ASP, namelysupportedness: For each
true atomA of an answer setI, there exists a ruler of the program such that the body of
r is true w.r.t.I andA is the only true atom in the head ofr. Since an ASP system must
eventually converge to a supported interpretation,hDS is geared towards choosing those
literals which minimize the number ofUnsupportedTrue (UT)atoms, i.e., atoms which
are true in the current interpretation but still miss a supporting rule. The heuristichUT is
“balanced”, that is, the heuristic values of an atomQ depends on both the effect of taking
Q andnot Q, the decision betweenQ andnot Q is based on the UT atoms criteria.

Enhanced Heuristic of DLV (hDS). The heuristichDS [14] is based onhUT , and is
different fromhUT only for pairs of literals which are not ordered byhUT . The idea of the
additional criterion is that interpretations having a “higher degree of supportedness” are
preferred, where the degree of supportedness is the averagenumber of supporting rules
for the true atoms. Intuitively, if all true atoms have many supporting rules in a model
M , then the elimination of a true atom from the interpretationwould violate many rules,
and it becomes less likely finding a subset ofM which is a model ofPM (which would

disprove thatM is an answer set). Interpretations with a higher degree of supportedness
are therefore more likely to be answer sets. Just likehUT , hDS is “balanced”.

The Look-back Heuristics (hLB). We next describe a family of new look-back heuris-
tics hLB . Different tohUT andhDS , which provide a partial order on potential choices,
hLB assigns a number (V (L)) to each literalL (thereby inducing an implicit order). This
number is periodically updated using the inconsistencies that occurred after the most re-
cent update. Whenever a literal is to be selected, the literalwith the largestV (L) will be
chosen. If several literals have the sameV (L), then negative literals are preferred over
positive ones, but among negative and positive literals having the sameV (L), the order-
ing will be random. In more detail, for each literalL, two values are stored:V (L), the
current heuristic value, andI(L), the number of inconsistenciesL has been a reason for
since the most recent heuristic value update. After having chosenk literals,V (L) is up-
dated for eachL as follows:V (L) := V (L)/2 + I(L). The motivation for the division
(which is assumed to be defined on integers by rounding the result) is to give more impact
to more recent values. Note thatI(L) 6= 0 can hold only for literals that have been chosen
earlier during the computation.

A crucial point left unspecified by the definition so far are the initial values ofV (L).
Given that initially no information about inconsistenciesis available, it is not obvious
how to define this initialization. On the other hand, initializing these values seems to
be crucial, as making poor choices in the beginning of the computation can be fatal for
efficiency. Here, we present two alternative initializations: The first, denoted byhMF

LB , is
done by initializingV (L) by the number of occurrences ofL in the program rules. The
other, denoted byhLF

LB , involves ordering the atoms with respect tohDS , and initializing
V (L) by the rank in this ordering. The motivation forhMF

LB is that it is fast to compute
and stays with the “no look-ahead” paradigm ofhLB . The motivation forhLF

LB is to try
to use a lot of information initially, as the first choices areoften critical for the size of
the subsequent computation tree. We introduce yet another option forhLB , motivated by
the fact that answer sets for disjunctive programs must be minimal with respect to atoms
interpreted as true, and the fact that the checks for minimality are costly: If we preferably
choose false literals, then the computed answer set candidates may have a better chance to
be already minimal. Thus even if the literal, which is optimal according to the heuristic, is
positive, we will choose the corresponding negative literal first. If we employ this option
in the heuristic, we denote it by addingAF to the superscript, arriving athMF,AF

LB and
hLF,AF

LB respectively.

4 Experiments

We have implemented the above-mentioned look-back techniques and heuristics in DLV;
in this section, we report on their experimental evaluation.

Compared Methods. For our experiments, we have compared several versions of DLV
[15], which differ on the employed heuristics and the use of backjumping. For having a
broader picture, we have also compared our implementationsto the competing systems
GnT and CModels3, and with the QBF solver Ssolve. The considered systems are:
• dlv.ut: the standard DLV system employinghUT (based on look-ahead).
• dlv.ds: DLV with hDS , the look-ahead based heuristic specialized forΣP

2 /ΠP
2 hard

disjunctive programs.
• dlv.ds.bj: DLV with hDS and backjumping.
• dlv.mf : DLV with hMF

LB .7

• dlv.mf.af: DLV with hMF,AF
LB .

• dlv.lf : DLV with hLF
LB .

• dlv.lf.af : DLV with hLF,AF
LB .

• gnt [16]: The solver GnT, based on the Smodels system, can deal with disjunctive ASP.
One instance of Smodels generates candidate models, while another instance tests if a
candidate model is stable.
• cm3 [8]: CModels3, a solver based on the definition of completionfor disjunctive pro-
grams and the extension of loop formulas to the disjunctive case. CModels3 uses two
SAT solvers in an interleaved way, the first for finding answerset candidates using the
completion of the input program and loop formulas obtained during the computation, the
second for verifying if the candidate model is indeed an answer set.
• ssolve[17]: is a search based native QBF solver that won the QBF Evaluation in 2004
on random (or probabilistic) benchmarks (performing very well also on non-random, or
fixed, benchmarks), and performed globally (i.e., both on fixed and probabilistic bench-
marks) well in the last two editions.

Note that we have not taken into account other solvers like Smodelscc [6] or Clasp [7]
because our focus is on disjunctive ASP.

Benchmark Programs and Data. The proposed heuristic aims at improving the per-
formance of DLV on disjunctive ASP programs. Therefore we focus on hard programs
in this class, which is known to be able to express each problem of the complexity class
ΣP

2 /ΠP
2 . All of the instances that we have considered in our benchmark analysis have

been derived from instances for 2QBF, the canonical problemfor the second level of the
polynomial hierarchy. This choice is motivated by the fact that many real-world, struc-
tured (i.e., fixed) instances in this complexity class are available for 2QBF on QBFLIB
[18], and moreover, studies on the location of hard instances for randomly generated
2QBFs have been reported in [19–21].

The problem 2QBF is to decide whether a quantified Boolean formula (QBF)Φ =
∀X∃Y φ, whereX andY are disjoint sets of propositional variables andφ = D1 ∧ . . . ∧
Dk is a CNF formula overX ∪ Y , is valid.

The transformation from 2QBF to disjunctive logic programming is a slightly altered
form of a reduction used in [22]. The propositional disjunctive logic programPφ pro-
duced by the transformation requires2 ∗ (|X| + |Y |) + 1 propositional predicates (with
one dedicated predicatew), and consists of the following rules. Rules of the formv∨v̄. for
each variablev ∈ X ∪Y . Rules of the formy ← w. ȳ ← w. for eachy ∈ Y . Rules of the
formw ← v̄1, . . . , v̄m, vm+1, . . . , vn. for each disjunctionv1∨...∨vm∨¬vm+1∨...∨¬vn

in φ. The rule← not w. The 2QBF formulaΦ is valid iff PΦ has no answer set [22].
We have selected both random and structured QBF instances. The random 2QBF

instances have been generated following recent phase transition results for QBFs [19–
21]. In particular, the generation method described in [21]has been employed and the
generation parameters have been chosen according to the experimental results reported
in the same paper. First, we have generated 10 different setsof instances, each of which

7 Note that all systems withhLB heuristics exploit backjumping.

is labelled with an indication of the employed generation parameters. In particular, the
label “A-E-C-ρ” indicates the set of instances in which each clause hasA universally-
quantified variables andE existentially-quantified variables randomly chosen from aset
containingC variables, such that the ratio between universal and existential variables is
ρ. For example, the instances in the set “3-3-70-0.8” are 6CNFformulas (each clause
having exactly 3 universally-quantified variables and 3 existentially-quantified variables)
whose variables are randomly chosen from a set of 70 containing 31 universal and 39
existential variables, respectively. In order to compare the performance of the systems in
the vicinity of the phase transition, each set of generated formulas has an increasing ratio
of clauses over existential variables (from 1 to maxr). Following the results presented
in [21], maxr has been set to 21 for each of the sets 3-3-70-*, and 12 for eachof the 2-3-
80-*. We have generated 10 instances for each ratio, thus obtaining, in total, 210 and 120
instances per set, respectively. Then, because such instances do not provide information
about the scalability of the systems w.r.t. the total numberof variables, we generated other
sets. We took the “2-3-80-0.8” and “3-3-70-1.0” sets, we fixed the ratio of clauses over
existential variables to the “harder” value for the DLV versions and vary the number of
variablesC (from 5 to maxC, step 5), where maxC is 80 and 70, respectively. We have
generated 10 instances for each point, thus obtaining, in total, 160 and 140 instances per
set, respectively.

About the structured instances, we have analyzed:

– Narizzano-Robot - These are real-word instances encoding the robot navigation
problems presented in [23], as used in the QBF Evaluation 2004 and 2005.

– Ayari-MutexP - These QBFs encode instances to problems related to the formal
equivalence checking of partial implementations of circuits, as presented in [24].

– Letz-Tree - These instances consist of simple variable-independent subprograms
generated according to the pattern:∀x1x3...xn−1∃x2x4...xn(c1 ∧ . . .∧ cn−2) where
ci = xi ∨ xi+2 ∨ xi+3, ci+1 = ¬xi ∨ ¬xi+2 ∨ ¬xi+3, i = 1, 3, . . . , n− 3.

The benchmark instances belonging to Letz-tree, Narizzano-Robot, Ayari-MutexP have
been obtained from QBFLIB [18], including the 32 (resp. 40) Narizzano-Robot instances
used in the QBF Evaluation 2004 (resp. 2005), and all the∀∃ instances from Letz-tree
and Ayari-MutexP.

Results. All the experiments were performed on a 3GHz PentiumIV equipped with 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using thetime command shipped with the system, counting total CPU time
for the respective process.

We start with the results of the experiments with random 2QBFformulas. For every
instance, we have allowed a maximum running time of 20 minutes. In Table 1 we report,
for each system, the number of instances solved in each set within the time limit. Looking
at the table, it is clear that the new look-back heuristic combined with the ”mf” initializa-
tion (corresponding to the system dlv.mf) performed very well on these domains, being
the version which was able to solve most instances in most settings, particularly on the
3-3-70-* sets. Also dlv.lf, in particular when combined with the “af” option, performed
quite well, while the other variants do no seem to be very effective. Considering the
look-ahead versions of DLV, dlv.ds performed reasonably well. Considering GnT and

dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolve

2-3-80-0.4 119 120 120 120 120 120 120 3 57 120
2-3-80-0.6 91 102 99 103 83 101 96 4 62 120
2-3-80-0.8 88 99 99 99 79 97 92 5 73 120
2-3-80-1.0 81 95 96 106 80 95 95 10 81 120
2-3-80-1.2 84 99 101 109 85 101 102 6 93 120

3-3-70-0.6 159 174 168 172 157 164 166 4 76 210
3-3-70-0.8 128 138 135 150 123 132 140 2 82 210
3-3-70-1.0 114 128 127 149 112 128 125 7 96 205
3-3-70-1.2 123 131 133 156 115 129 140 9 117 209
3-3-70-1.4 124 139 142 161 117 142 141 9 131 210

#Total 1111 1225 1220 1325 1071 1209 1217 59 868 1644

Table 1.Number of solved instances within timeout for Random 2QBF.

CModels3, we can note that they could solve few instances, while it is clear that Ssolve
is very efficient, being able to solving almost all instances.

Figures 4 (resp. 5) show the results for the “2-3-80-0.8” (resp. “3-3-70-1.0”) set,
regarding scalability. For sake of readability, only the instances with an high number
of variables are presented: GnT, Cmodels3, Ssolve and all the DLV versions solve all
instances not reported. The left (resp. right) plot of each Figure contains the cumulative
number of solved instances about all the DLV versions (resp.GnT, CModels3, Ssolve
and the best version of DLV). Overall, on these particular sets, we can see that all the
“look-back” versions of DLV scaled much better than GnT and CModels3, with very
similar results among them (dlv.lf.af just solve one more instance (Fig. 5 left)). Ssolve
managed to solve all instances, and in less time (not reported).

In Tables 2, 3 and 4, we report the results, in terms of execution time for finding
one answer set, and/or number of instances solved within 20 minutes, about the groups:
Narizzano-Robot, Ayari-MutexP and Letz-Tree, respectively. The last columns (AS?) in-
dicate if the instance has an answer set (Y), or not (N), but for Table 2 where it indicates
how many instances have answer sets. A “–” in these tables indicates a timeout. ForhLB

heuristics, we experimented a few different values for “k”,and we obtained the best re-
sults fork=100. However, it would be interesting to analyze more thoroughly the effect
of the factork.

 110

 115

 120

 125

 130

 135

 140

 145

 150

807570656055

#s
ol

ve
d

in
st

an
ce

s

#variables

2-3-80-0.8 - hard region

dlv.ut
dlv.ds

dl.ds.bj
dlv.mf

dlv.mf.af
dlv.lf

dlv.lf.af

 80

 90

 100

 110

 120

 130

 140

 150

 160

807570656055504540

#s
ol

ve
d

in
st

an
ce

s

#variables

2-3-80-0.8 - hard region

dlv.mf
gnt

cm3
ssolve

Fig. 4. Left: Number of solved instances by all DLV versions. Right: Number ofsolved instances
by dlv.mf, GnT, CModels3 and Ssolve.

 100

 102

 104

 106

 108

 110

 112

 114

7065605550

#s
ol

ve
d

in
st

an
ce

s

#variables

3-3-70-1.0 - hard region

dlv.ut
dlv.ds

dl.ds.bj
dlv.mf

dlv.mf.af
dlv.lf

dlv.lf.af

 70

 80

 90

 100

 110

 120

 130

 140

7065605550454035

#s
ol

ve
d

in
st

an
ce

s

#variables

3-3-70-1.0 - hard region

dlv.lf.af
gnt

cm3
ssolve

Fig. 5. Left: Number of solved instances by all DLV versions. Right: Number ofsolved instances
by dlv.lf.af, GnT, CModels3 and Ssolve.

In Table 2 we report only the instances from the QBF Evaluation 2004 and 2005, re-
spectively, which were solved within the time limit by at least one of the compared meth-
ods. In Table 2, dlv.mf was the only ASP and QBF solver able to solve all the reported 63
(23 for QBF Evaluation 2004 and 40 for QBF Evaluation 2005) instances, followed by
Ssolve (60), CModels3 (58) and dlv.lf (47). Moreover, dlv.mf was always the fastest ASP
system on each instance (sometimes dramatically, even if for lack of space we consider
the instances on which it took more than 1 sec, and often faster than Ssolve, especially
on the QBF Evaluation 2004 instances. On the QBF Evaluation 2005 instances, dlv.mf,
Cmodels3 and Ssolve solved all of them, with a mean executiontime of 228.07s, 189.74s
and 76.91s, respectively. The “traditional” DLV versions could solve 10 instances, while
dlv.ds.bj solved 21 instances, and took less execution time. This indicates the advantages
of using a backjumping technique on these robot instances.

In Table 3, we then report the results for Ayari-MutexP. In that domain all the versions
of DLV and Ssolve were able to solve all 7 instances, outperforming both CModels3 and
GnT which solved only one instance. Comparing the executiontimes required by all the
variants of dlv we note that, also in this case, dlv.mf is the best-performing version, while
Ssolve scaled up much better. About the Letz-Tree domain, the DLV versions equipped
with look-back heuristics solved a higher number of instances and required less CPU time
(up to two orders of magnitude less) than all ASP competitors.

In particular, the look-ahead based versions of DLV, GnT andCModels3 could solve
only 3 instances, while dlv.mf and dlv.lf solved 4 and 5 instances, respectively. Inter-
estingly, here the ”lf” variant is very effective in particular when combined with the “af”
option, like in the random instances for testing scalability. It could solve the same number
of instances as Ssolve, with Ssolve having better scaling capabilities.

dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolve AS?

QBF Eval. 2004 10 10 11 23 12 15 12 5 18 20 5
QBF Eval. 2005 0 0 10 40 34 32 22 0 40 40 0

#Total 10 10 21 63 46 47 34 5 58 60 5

Table 2.Number of solved instances on Narizzano-Robot instances as selectedin the QBF Evalu-
ation 2004 and 2005. The last column indicates how many instances have answer sets.

dlv.ut dlv.dsdlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolve AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.890.65 0.03 N
mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – 0.04 N
mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – 0.07 N
mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – 0.13 N
mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – 0.3 N
mutex-64-s 15.3816.08 17.64 14.97 15.04 18.08 16.97 – – 0.81 N
mutex-128-s69.0779.39 90.92 62.97 62.97 92.92 93.05 – – 2.83 N

#Solved 7 7 7 7 7 7 7 1 1 7

Table 3.Execution time (seconds) and number of solved instances on Ayari-MutexP instances.

Summarizing, dlv.ds.bj showed (especially on same sets of the random programs, and
on the Narizzano-Robot instances) improvements w.r.t. the“traditional” DLV versions.
Moreover, if equipped with look-back heuristics, DLV showed very positive perfor-
mance, further strengthening the potential of look-back techniques. In all of the test cases
presented, both random and structured, DLV equipped with look-back heuristics obtained
good results both in terms of number of solved instances and execution time compared
to traditionals DLV, GnT and CModels3. dlv.mf, the “classic” look-back heuristic, per-
formed best in most cases, but good performance was obtainedalso by dlv.lf. The results
of dlv.lf.af on the some random and Letz-Tree instances showthat this option can be fruit-
fully exploited in some particular domains. We also included in the picture the QBF solver
Ssolve: while often it showed very good results, on same domains, i.e., the Narizzano-
Robot, dlv.mf performed better than Ssolve, both in terms ofnumber of instances solved
and CPU execution time. It should be also noted that the vast majority of the structured
instances presented do not have answer sets, while the bigger advantages of dlv.mf over
Ssolve on the Narizzano-Robot instances are obtained on theinstances with answer sets.

5 Conclusions

We have described a general framework for employing look-back techniques in disjunc-
tive ASP. In particular, we have designed a number of look-back based heuristics, ad-
dressing some key issues arising in this framework. We have implemented all proposed
techniques in the DLV system, and carried out a broad experimental analysis on hard in-
stances encoding 2QBFs, comprising both randomly generated instances and structured
instances. It turned out that the proposed heuristics outperform the traditional (disjunc-
tive) ASP systems DLV, GnT and CModels3 in most cases, and a rather simple approach

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 ssolve AS?

exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 0.01 N
exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 0.01 N
exa10-20278.01264.53 275.1 12.31 17.24 5.43 2.86 325.2667.56 0.02 N
exa10-25 – – – 303.67 432.32 44.13 19.15 – – 0.02 N
exa10-30 – – – – – 166.93 129.54 – – 0.05 N

#Solved 3 3 3 4 4 5 5 3 3 5

Table 4.Execution time (seconds) and number of solved instances on Letz-Treeinstances.

(“dlv.mf”) works particularly well, being performance-wise competitive with respect to
“native” QBF solvers. A possible topic for future research is to further expand the range
of look-back techniques in DLV by employinglearning(the ability to record reasons in
order to further avoid inconsistencies already encountered).

References

1. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic
Programming: Proc. Fifth Intl Conference and Symposium, MIT Press (1988) 1070–1080

2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
NGC 9 (1991) 365–385

3. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: ICLP’99, Las Cruces, New Mexico,
USA, The MIT Press (1999) 23–37

4. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intel-
ligence9 (1993) 268–299

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC 2001, ACM (2001) 530–535

6. Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. LPNMR-7. LNCS
2923

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07),(2007) 386–392

8. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. LPNMR05. LNCS 3662
9. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Techniques for

Nonmonotonic Reasoning. In DDLP’99, Prolog Association of Japan (1999) 135–139
10. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-

ming. AI Communications19(2) (2006) 155–172
11. Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems.

PhD thesis, TU Wien (2002)
12. Faber, W., Leone, N., Pfeifer, G.: Experimenting with Heuristics for Answer Set Programming.

In: IJCAI 2001, Seattle, WA, USA,(2001) 635–640
13. Faber, W., Ricca, F.: Solving Hard ASP Programs Efficiently. In:LPNMR’05. LNCS 3662
14. Faber, W., Leone, N., Ricca, F.: Solving Hard Problems for the Second Level of the Polynomial

Hierarchy: Heuristics and Benchmarks. Intelligenza Artificiale2(3) (2005) 21–28
15. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL7(3) (2006) 499–562
16. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctive logic programs. LPNMR-7. LNCS

2923
17. Feldmann, R., Monien, B., Schamberger, S.: A Distributed Algorithm to Evaluate Quantified

Boolean Formulae. In: AAAI(2000), AAAI Press (2000) 285–290
18. Narizzano, M., Tacchella, A.: QBF Solvers Evaluation page (2002) http://www.qbflib.

org/qbfeval/index.html/.
19. Cadoli, M., Giovanardi, A., Schaerf, M.: Experimental Analysis of the Computational Cost of

Evaluating Quantified Boolean Formulae. In: AI*IA 97. Italy, (1997) 207–218
20. Gent, I., Walsh, T.: The QSAT Phase Transition. In: AAAI. (1999)
21. Chen, H., Interian, Y.: A model for generating random quantifiedboolean formulas. In: Pro-

ceedings of IJCAI-05, Professional Book Center (2005) 66–71
22. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-

sitional Case. AMAI15(3/4) (1995) 289–323
23. Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based planning in complex domains: Con-

currency, constraints and nondeterminism. Artificial Intelligence147(1/2) (2003) 85–117
24. Ayari, A., Basin, D.A.: Bounded Model Construction for MonadicSecond-Order Logics. In:

Proc. of Computer Aided Verification, CAV 2000, Chicago, IL, USA, 15-19, 2000

