
SAT-based planning with minimal-#actions plans
and “soft” goals

Enrico Giunchiglia and Marco Maratea

DIST, University of Genova, Viale F. Causa 15, Genova, Italy
{enrico,marco}@dist.unige.it

Abstract. Planning as Satisfiability (SAT) is the best approach for optimally
solving classical planning problems. The SAT-based planner SATPLAN has been
the winner in the deterministic track for optimal planners in the 4th International
Planning Competition (IPC-4) and the co-winner in the last 5th IPC (together
with another SAT-based planner). Given a planning problemΠ , SATPLAN works
by (i) generating a SAT formulaΠn with a fixed “makespan”n, and(ii) check-
ing Πn for satisfiability. The algorithm stops ifΠn is satisfiable, and thus a plan
has been found, otherwisen is increased.
Despite its efficiency, and the optimality of the makespan,SATPLAN has signifi-
cant deficiency related in particular to “plan quality”, e.g., the number of actions
in the returned plan, and the possibility to express and reason on “soft” goals.
In this paper, we presentSATPLAN≺, a system, modification ofSATPLAN, which
makes a significant step towards the elimination ofSATPLAN’s limitations. Given
the optimal makespan,SATPLAN≺ returns plans with minimal number of actions
and maximal number of satisfied “soft” goals, with respect toboth cardinality
and subset inclusions. We selected several benchmarks fromdifferent domains
from all the IPCs: on these benchmarks we show that the plan quality returned by
SATPLAN≺ is often significantly higher than the one returned bySATPLAN.
Quite surprisingly, this is often achieved without sacrificing efficiency while ob-
taining results that are competitive with the winning system of the ”SimplePref-
erences” domain in the satisfying track of the last IPC.

1 Introduction

Planning as Satisfiability (SAT) [1] is the best approach foroptimally solving classical
planning problems. The SAT-based plannerSATPLAN [2, 3] has been the winner in the
deterministic track for optimal planners in the 4th International Planning Competition
(IPC-4) [4] and the co-winner in the recent IPC-5 (together with another SAT-based
planner, MAX PLAN [5]). Given a planning problemΠ , SATPLAN works by (i) gen-
erating a SAT formulaΠn with a fixed “makespan”n, and(ii) checkingΠn for sat-
isfiability. The algorithm stops ifΠn is satisfiable, and thus the plan has been found,
otherwisen is increased.

Despite its efficiency, and the optimality of the makespan,SATPLAN has significant
deficiency related in particular to “plan quality”, e.g., the number of actions in the re-
turned plan, and the possibility to express and reason on “soft” goals. The issues are
related with the following facts: inSATPLAN, when solving the propositional formula

Πn, there is no indication of what propositional variables correspond to actions, and the
SAT solver does not perform any kind of optimization on the number of actions in the
plan, treating each propositional variable in the same way,independently from what it
indicates. The makespan is fixed, but multiple, mutually exclusive (mutex) actions can
take place simultaneously, even if often not all actions arerelevant to reach the goal. On
the other hand, “soft” goals arise in planning problems whenthere is no possibility to
satisfy simultaneously all the goals, and/or when it is sufficient (from the view point of
the user) that only some of them are satisfied.

In this paper, we presentSATPLAN≺, a system, modification ofSATPLAN [3], which
makes a significant step towards the elimination ofSATPLAN’s limitations. Given the
optimal makespan,SATPLAN≺ returns plans with the minimal number of actions and
maximal number of the satisfied “soft” goals, with respect toboth cardinality and subset
inclusions. This is achieved by integrating theOPTSATsolver inSATPLAN. OPTSAT [6,
7] is a tool for solving SAT related optimization problems based on the state-of-the-art
SAT solverMINISAT . Besides other features, given a SAT formulaΠn and a subsetS of
the variables inΠn, OPTSATreturns an “optimal” solution, i.e., a satisfying assignment
that minimize/maximize the atom inS assigned toTRUE.

We selected several domains of benchmarks from all the IPCs:on these benchmarks
we show that the plan quality returned bySATPLAN≺ is often significantly higher than
the one ofSATPLAN using bothSIEGEandMINISAT . In particular

– SATPLAN≺ is usually able to satisfy a number of soft goals which is muchhigher
than the one ofSATPLAN, e.g., there are instances with several soft goals where
SATPLAN≺ satisfy all (or almost all) soft goals whileSATPLAN is able to satisfy
just a few of them.

– SATPLAN≺ usually returns plans with fewer number of actions thanSATPLAN.

Quite surprisingly, this results are often achieved without sacrificing efficiency while
the obtained results are competitive with the winning system of the ”SimplePrefer-
ences” domain in the satisfying track of the last IPC, i.e., SGPLAN [8], as shown in [11].

Moreover, a closer look at the performance in terms of metrics for whichSATPLAN≺

is optimized, i.e., makespan and number of actions in the plan, in comparison to both
SATPLAN and SGPLAN , on benchmarks where each of the solvers satisfies all the soft
goals, reveals that(i) SATPLAN andSATPLAN≺ often return plans with a much better
makespan than SGPLAN ; (ii) on some benchmarks the reduction in terms of number of
actions in the plan returned bySATPLAN≺ is very significant; but also that(iii) there are
particular instances in which SGPLAN returns plans with fewer actions. Because this
is due to the non-optimal makespan returned,(iii) suggests that is could be useful, in
order to further improveSATPLAN≺’s performance, to “trade-off” between optimality
of the makespan and optimality of the plan quality.

The paper is structured as follows. In Sec 2 some basic preliminaries about planning
(as satisfiability) are presented. Sec. 3 is devoted to the details on how the new features
of SATPLAN≺ are implemented. In Sec. 4 is then shown how to useSATPLAN≺, its
command line and options. Sec. 5 shows the results we have obtained withSATPLAN≺,
and finally Sec. 6 draws some conclusions and possible topicsfor future research.

2 Preliminaries

Let F andA be the set offluentsandactions, respectively. Astateis an interpretation
of the fluent signature. Acomplex actionis an interpretation of the action signature.
Intuitively, a complex actionα models the concurrent execution of the actions satisfied
by α.

A planning problemis a triple〈I, tr, G〉 where

– I is a Boolean formula overF and represents the set ofinitial states;
– tr is a Boolean formula overF ∪A∪F ′ whereF ′ = {f ′ : f ∈ F} is a copy of the

fluent signature and represents thetransition relationof the automaton describing
how (complex) actions affect states (we assumeF ∩ F ′ = ∅);

– G is a Boolean formula overF and represents the set ofgoal states.

The above definition of planning problem differs from the traditional ones in which the
description of actions’ effects on a state is described in anhigh-level action language
like STRIPS or PDDL. We preferred this formulation because the techniques we are
going to describe are largely independent of the action language used, at least from
a theoretical point of view. The only assumption that we makeis that the description
is deterministic: there is only one state satisfyingI and the execution of a (complex)
actionα in a states can lead to at most one states′. More formally, for each states and
complex actionα there is at most one interpretation extendings ∪ α and satisfyingtr.

Consider a planning problemΠ = 〈I, tr, G〉. In the following, for any integeri

– if F is a formula in the fluent signature,Fi is obtained fromF by substituting each
f ∈ F with fi,

– tri is the formula obtained fromtr by substituting each symbolp ∈ F ∪ A with
pi−1 and eachf ∈ F ′ with fi.

If n is an integer, theplanning problemΠ with makespann is the Boolean formulaΠn

defined as
I0 ∧ ∧n

i=1tri ∧ Gn (n ≥ 0) (1)

and aplan forΠn is an interpretation satisfying (1).
For example, considering the planning problem of going to work from home. As-

suming that we can use the car or the bus or the bike, this scenario can be easily for-
malized using a single fluent variableAtWorkand three action variablesCar, Busand
Bikewith the obvious meaning. The problem with makespan1 can be expressed by the
conjunction of the formulas:

¬AtWork0,
AtWork1 ≡ ¬AtWork0 ≡ (Car0 ∨ Bus0 ∨ Bike0),

AtWork1,
(2)

in which the first formula corresponds to the initial state, the second to the transition
relation, and the third to the goal state. (2) has7 plans (i.e., satisfying interpretations),
each corresponding to a non-empty subset of{Car0, Bus0, Bike0}. For instance, in the
plan corresponding to{Car0, Bus0} both the car and the bike are used to get to work.

If we want to avoid any two actions in{Car0, Bus0, Bike0} to occur in parallel, the
following mutex axioms are to be added as part of the formulasencoding the transition
relation

¬(Car0 ∧ Bus0),¬(Car0 ∧ Bike0),¬(Bus0 ∧ Bike0).

3 SATPLAN≺ implementation

SATPLAN≺ is a modification of theSATPLAN system. When constructing the SAT for-
mula Πn, a number of information are added to the formula (which inSATPLAN is
specified in CNF format), in order to cope with the specific problem. If minimization
on the number of actions in theΠ is considered, the total number of actions and the
list of the propositional variables corresponding to actions are specified in the comment
lines of (the CNF file related to)Πn. The comment lines also specify if the minimization
has to be computed under cardinality or subset inclusion.

Otherwise, if we are dealing with maximization of the numberof “soft” goals to be
satisfied, some of the clauses inΠn have to be modified, resulting in a new formula
Π ′

n. Each clauseC ∈ Πn that represents the i-th goal is modified by adding a “goal
selectors”si, i.e., by substitutingC with C′ := si ∪ C. Intuitively, the clause selectors
tell us how many soft goals are satisfied, i.e., assumingC′ is satisfied, ifsi is assigned
by TRUE this means that clauseC′ is satisfied byC, thus the related soft goal holds;
otherwise, ifsi is assigned byFALSE, this means that it could be the case thatC′ is only
satisfied by the clause selector. For the soft goals, in the command line it is only needed
to specify the problem, and the type of minimality.

Now we explain how optimality is obtained. Consider the set of atomsS to be the
set that should be optimized, i.e., the set of actions inΠn or the set of the goal selectors.
If the optimality is to be performed under subset inclusion,it suffices to “preferentially”
splits on the atom inS, and assign it toFALSE (resp.TRUE). The resulting satisfying
assignmentµ of Πn (resp.Π ′

n) is guaranteed to contain the minimal number of atoms
assigned byTRUE (resp. the maximal number of goal selectors assigned byTRUE), thus
resulting in a plan with the minimal number of actions (resp.the maximal number of
soft goals satisfied).

On the other hand, if the minimality is by cardinality, we have to compute an aux-
iliary boolean encodingBool(S) of S whose implementation depends on whether we
rely on (a) a binary or(b) a unary encoding. For any satisfying assignmentµ of Πn,
there exists a unique interpretationµ′ to the variables inΠn ∧ Bool(S) such thatµ′

extendsµ and satisfiesΠn ∧ Bool(S). Given an atomp, consider thatµ(p) is 1 if µ

assignsp to true, and is0 otherwise.Bool(S) containsk new variablesbk−1, . . . , b0

such that

(a) if k = ⌈log2(|S| + 1)⌉,
∑

p∈S µ(p) =
∑k−1

i=0
µ(bi) × 2i, or

(b) if k = |S|,
∑

p∈S µ(p) =
∑k−1

i=0
µ(bi).

Intuitively, the goal of points(a) and (b) is to encode an optimization function
(in our case related to the cardinality|S| of the atomsp in S assigned toTRUE) as a
boolean formulaBool(S) which contains a set of atomsbk−1, . . . , b0 that “characterize”
the optimization function.

We considered Warners’ [9] and Bailleux and Boufkhad’s [10]encodings ofBool(S),
denoted with W-encoding and B-encoding respectively, as representative encodings for
(a) and(b), respectively.

1. Warners. It uses a binary representation of integers. This is a linear time and space
encoding, that relies on sums via adder circuits and works directly with objective
functions with weights. InOPTSAT, and thus inSATPLAN≺, the encoding is op-
timized for the non-weighted case, and the size of the encoding is approximately
halved.

Example 1.ConsiderS = {p1, p2, p3}. Bool(S) is the set of clauses corresponding
to the sum of three variables, i.e.,{{p7, p4,¬p1}, {p7,¬p4, p1}, {¬p7,¬p4,¬p1},
{¬p7, p4, p1}, {p6,¬p4,¬p1}, {¬p6, p4}, {¬p6, p1}, {p8, p5,¬p6}, {p8,¬p5, p6},
{¬p8,¬p5,¬p6}, {¬p8, p5, p6}, {p4, p2,¬p3}, {p4,¬p2, p3}, {¬p4,¬p2,¬p3},
{¬p4, p2, p3}, {p5,¬p2,¬p3}, {¬p5, p2}, {¬p5, p3}}.

Thebi variables arep7 andp8, and this corresponds to
∑3

i=1
µ(pi) = 21µ(p8) +

20µ(p7), while p4, p5 andp6 are added by the encoding.

2. Bailleux/Boufkhad (B). In this encoding a unary representation of integers is used:
an integerx s.t.0 ≤ x ≤ z is represented usingz propositional variables{p1, . . . , pz}
with (the first) “x” variables assigned to 1 (TRUE), and the others to 0 (FALSE). This
representation has the property that when a variablepj has valueTRUE, all the vari-
ablespw with 1 ≤ w < j, areTRUE as well; and similarly ifpk has valueFALSE.
The encoding is efficient with respect to unit-propagation but it adds a quadratic
number of new clauses.

Example 2.Consider the same Example used in 1,Bool(S) is now{{¬p6, p1, p4},
{p6,¬p4}, {¬p7, p1, p5}, {p7,¬p5}, {¬p8, p1}, {p6,¬p1}, {¬p7, p4}, {p7,¬p1,¬p4},
{¬p8, p5}, {p8,¬p1,¬p5}, {¬p4, p2, p3}, {p4,¬p3}, {¬p5, p2}, {p4,¬p2}, {¬p5, p3},

{p5,¬p2,¬p3}}, in which thebi variables arep6, p7 andp8,
∑3

i=1
µ(pi) = µ(p6)+

µ(p7) + µ(p8), with p8 being the most significant variable (i.e.,b2), while p4 and
p5 are introduced by the encoding.

We also exploited a further alternative, modification of theB-encoding, leveraging
on its representation. We noticed that the encoding does nottake into full account the re-
lations among the resultingbi variables, e.g., it is safe to enforce that whenbi is assigned
to FALSE (resp.TRUE), alsobi+1 (resp.bi−1) is assigned toFALSE (resp.TRUE) by unit
propagation. This is easily done by adding the clauses{bi,¬bi+1}, i = 0, . . . , v − 1
to the above encoding. Given that this modification did not show significant enhance-
ment over B-encoding, we will not consider it in the design ofSATPLAN≺ and in the
experimental evaluation.

Despite the difference in the size of the encodings, the B-encoding has better com-
putational properties and it has been consistently reported in the literature to lead to
good results [10, 12].

Givenbk−1, . . . , b0, preferentially and in-order splitting frombk−1 to b0 and assign
it with the “needed” value (i.e., the one resulting from the combination of optimiza-
tion and minimality, following the schema of assignment we used when dealing with a
subset inclusion minimality) leads to an “optimal” solution (see [7] for more details).

As we noticed before, this is achieved by using theOPTSAT system, instead of in-
voking a basic SAT solver, likeMINISAT or SIEGE.

A final, important consideration has to be made. We have seen that in the last IPC-5
SATPLAN was the winner together with MAX PLAN . The question is whether the new
features we have proposed can be simply integrated into MAX PLAN . MAX PLAN works
by firstly estimating an upper boundn of the optimal makespan, and than(i) generating
a SAT formulaΠn for the fixed makespann, and(ii) checkingΠn for satisfiability,
by using a modified version ofMINISAT . The algorithm stops ifΠn is unsatisfiable,
otherwisen is decreased. Given this, it should be relatively easy to integrate the new
features ofSATPLAN≺ into MAX PLAN .

4 SATPLAN≺ command line and options

SATPLAN≺ has to be invoked as follows:

./SATPLAN≺ -solver<> -opt<> -minimality<> -enc<> -problem<> -domain<>

The command line ofSATPLAN≺ is thus very similar to the one ofSATPLAN. Indeed,
SATPLAN≺ accepts all the options ofSATPLAN (here we report only the mandatories
“-problem” and “-domain”), and adds new options in order to deal with the new features
of SATPLAN≺.

Going in more details,

-solver: indicates the solver to be used for solving the SAT problem. Among others,
the most important areOPTSAT, MINISAT and SIEGE (“optsat1.0”, “minisat1.14”
and “siege”are the specific strings to be specified in place of<>). If the goal is to
use the new features ofSATPLAN≺, it is mandatory to rely onOPTSAT, otherwise
all the modifications explained in the Section above are ignored, andSATPLAN≺

behaves like the standardSATPLAN.
-opt: specifies if the optimization is related to the number of actions, or to “soft”
goals (“action” or “goal”).
-minimality: specifies the type of optimization, i.e., if the optimization is subject to
cardinality or subset inclusion (“card” or “subset”).
-enc: if minimality is by cardinality, this option specifieswhat encoding has to be
used (“w” or “b”)
-problem: is the planning problem in (propositional) STRIPS format
-domain: is the domain specification in (propositional) STRIPS format

It should be noted that only the last two options are mandatory, i.e., if only the
problem and domain parameters are specified the other options are set by default to
their first choice (“optsat1.0”, “action”, “card”, and “w” respectively).

Otherwise, a command line like the following:

./SATPLAN≺ -opt goal -minimality subset -problem log.pddl -domain domain-log.pddl

specifies that a logistic planning problem is subject to a maximization (under subset
inclusion) of the “soft” goals to be satisfied. Given that no encoding is involved, the
related specification (i.e., “-enc”) is in this case useless. TheOPTSATsystem is used as
a back-end solver forSATPLAN≺.

5 Experimental evaluation

We remind thatSATPLAN can only handle propositional STRIPS domains, and, among
them, we considered the pipesworld, satellite, airport, promela philosophers and opti-
cal, psr, depots, driverLog, zenoTravel, freeCell, logistic, blocks, mprime and mistery
domains from the first 4 IPCs, and pathway, storage, tpp and trucks from IPC-5 (notice
that we do not consider the domains in the “simple preferences” track in IPC-5 because
they are not handled bySATPLAN). These are standard planning problems in which the
goal corresponds to a setG of goals and without soft goals. We modified these prob-
lems in order to interpret all the goals inG as soft goals, following what is explained
in Section 3 forSATPLAN≺ about goal selectors, and by encoding the problems in the
language PDDL3 [13] for SGPLAN . Note that our proposed modification exactly en-
codes the fact that the goals inG are now “soft” in the sense that it is desirable but
not necessary to achieve them. Since there are no “hard” goals, the various versions of
SATPLAN/SATPLAN≺ would always find a valid plan, even when the makespann is 0 (in
which case the returned plan would be the empty one). In orderto avoid this situation,
we added a constraint stating that at timen at least one of the soft goals has to be sat-
isfied. Because of this, we discarded the problems whose original version has only one
goal because they would have no soft goal.1 In the following, we useSATPLAN≺(s),
SATPLAN≺(w) andSATPLAN≺(b) to denoteSATPLAN≺ when is subject to subset in-
clusion optimality, and to cardinality (with W-encoding and B-encoding, respectively).
We also useSATPLAN and SATPLAN(m) to denote basicSATPLAN employingSIEGE

and MINISAT respectively. We considered both SAT solvers because(i) SIEGE is the
default solver forSATPLAN, but (ii) MINISAT is used inSATPLAN≺ andOPTSAT be-
causeSIEGE’s code is not available, and, most importantly,MINISAT is the winner of
the last SAT Competition, in 2005,2 together with the SAT/CNF minimizer SATELITE,
and the winner of the SAT race 2006.3 In any case, in our experiments, we have seen no
significant differences inSATPLAN’s performances when employing the two solvers.

In [11] we showed thatSATPLAN≺ is competitive with respect to SGPLAN in terms
of both metric (in this case the number of soft goals satisfied), and number of problem
solved, i.e., with respect to the first two parameters used toevaluate planning systems
in the “SimplePreferences”-track of the last IPC-5. Moreover, in the same paper, it
is shown that this is achieved without sacrificing efficiency, i.e., that only in a small

1 Note that also SGPLAN does not accept problems with only one goal.
2 http://www.satcompetition.org/2005/
3 http://fmv.jku.at/sat-race-2006/

fraction of the hundreds of problems analyzedSATPLAN≺ (with the W-encoding in case
of optimality by cardinality) can have performances significantly worse thanSATPLAN

when minimizing the number of actions in the plan.
On the contrary, in this paper we focus on:

– the reduction in the number of actions in the plan returned bySATPLAN≺ over
SATPLAN (and SGPLAN);

– the number of soft goals satisfied in the plan ofSATPLAN≺ overSATPLAN;
– a comparison betweenSATPLAN≺, SATPLAN and SGPLAN on the makespan re-

turned, on problem instances in which all the systems satisfy all soft goals.

Even if the real contribution of the analysis we will be showing is overSATPLAN,
we decided also to include SGPLAN as a reference, taking into account that it uses a
different approach, and that it is not targeted for optimizing the number of actions and
makespan in the returned plan.

All the tests have been run on a Linux box equipped with a Pentium IV 2.4GHz
processor and 512MB of RAM. The timeout has been set to 300s for each problem
instance. In the plots, a point is missed if a system runs out of time or memory in the
given problem instance.

The first results are shown in Figure 1. The left plot shows theperformances of
SATPLAN, SATPLAN(m),SATPLAN≺(w) andSATPLAN≺(s) on the problems considered,
ordered according toSATPLAN’s performances. The plot shows the number of soft goals
each planner does not satisfy. This way of presenting the data has the feature that results
about the same problem are not lost, i.e., the results for allthe systems at a given x-
coordinate refer to the same problem.

As expectedSATPLAN does not satisfy many of the soft goals, in particular when
usingMINISAT , while SATPLAN≺(w)/(s) manage to satisfy all of them in many cases.
Interestingly, the number of soft goals not satisfied bySATPLAN(w)/(s) are in most cases
equal, while in theory this is not necessary the case. In the plot, for sake of readabil-
ity, we have not includedSATPLAN≺(b): its plot would be exactly the same to the one
of SATPLAN≺(w), given that they manage to solve all the benchmarks presented, and
with similar performances. Moreover, the performances ofSATPLAN≺(w)/(b) are very
similar to the ones ofSATPLAN≺(s), SATPLAN andSATPLAN(m). The explanation for
the CPU performances ofSATPLAN≺(w)/(b) is that all the problems considered have at
most 30 soft goals and the burden introduced by the Boolean encodings is negligible.
We will see that, when considering minimal #actions-plan, this is no longer the case.
Another interesting observation can be drawn from the use ofthe SAT solvers inSAT-
PLAN: MINISAT manages to always satisfy very few soft goals (almost alwaysone).
Given this, and given thatSATPLAN≺ is based onMINISAT , the results onSATPLAN≺

are made even stronger by this point.
Considering the “quality” of the plan returned in terms of number of actions, the

results are in Figure 1, right plot. The results are again ordered according toSATPLAN’s
performances.

In the plot, for sake of readability, we do not show the results for the airport, promela
philosophers and optical, and psr domains: for each problemin these domainsSAT-
PLAN, SATPLAN(m) andSATPLAN≺/(w)/(b)/(s) return plans with the same length. Sim-

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

#u
ns

at
go

al
s

#benchmarks

SATPLAN
SATPLAN(m)

SATPLANP(w)
SATPLANP(s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

#a
ct

io
ns

#benchmarks

SATPLAN
SATPLAN(m)

SATPLANP(w)
SATPLANP(s)

Fig. 1.Left: Number of unsatisfied soft goals bySATPLAN, SATPLAN(m), andSATPLAN≺(w)/(s).
Right: Number of actions in the returned plan forSATPLAN, SATPLAN(m), andSATPLAN≺(w)/(s).

ilarly to the case of soft goals, the quality of the plan returned bySATPLAN(s) is in
most cases equal to that ofSATPLAN(w), and in many cases both return plans of better
quality thanSATPLAN. Again, in the plot we do not include results forSATPLAN≺(b):
when it manages to solve a problem, it obviously returns a plan of the same quality of
SATPLAN≺(w), but in several cases it runs out of time or memory when problems are
big. Thus, its representative line would be exactly the sameof SATPLAN≺(w), but with
a significant portion of the line missing.

We remind that in [11] we showed thatSATPLAN≺ is competitive with respect to
SGPLAN in terms of both number of soft goals satisfied and number of problem solved,
i.e., with respect to the first two parameters used to evaluate planning systems in the
“SimplePreferences”-track of the last IPC-5, without sacrificing efficiency.

Now, we want to evaluate what is the behavior, and the relative performance, of
SGPLAN with respect toSATPLAN≺ on the metrics for whichSATPLAN≺ is optimized,
i.e., number of actions and makespan of the returned plan.

This analysis is performed on those instances in which all the systems satisfy all
the soft goals (when greater than one),4 i.e., we posed SGPLAN and all the versions
of SATPLAN/SATPLAN≺ on the same conditions. Table 1 shows the results obtained
and is structured as follows: the first column contains the specific instance (where sat,
air, driv, zeno, free, log, block, and stor stay for satellite, airport, driverLog, zeno-
Travel, freeCell, logistics, blocks-world and storage domain, respectively); columns
2-6 contain the number of actions in the returned plan forSATPLAN, SATPLAN(m),
SATPLAN≺(w), SATPLAN≺(s) and SGPLAN , respectively, while the last two columns
contain the makespan for all the modification ofSATPLAN/SATPLAN≺ and SGPLAN ,

4 We also could not consider some domains, e.g., promela philosophers, because SGPLAN

time outs or returns segmentation faults on all instances, the latter due to the high number
of grounded operators in the problems. The last informationis a personal communication with
the authors.

#actions Makespan
PB SATPLAN SATPLAN(m) SATPLAN≺(w) SATPLAN≺(s) SGPLAN SATPLAN[≺] SGPLAN

log4-0 24 24 20 20 20 9 20
log4-1 24 26 19 21 19 9 19
log4-2 24 19 15 15 15 9 15
log5-0 31 32 27 27 31 9 31
log5-1 29 26 17 19 17 9 17
log6-0 33 30 25 25 26 9 26
log6-1 28 21 14 16 15 9 15
log6-9 41 39 24 28 28 11 28

block4-2 6 6 6 6 6 6 6
block5-2 16 16 16 16 26 16 26
block6-0 12 12 12 12 12 12 12
block6-1 10 10 10 10 16 10 16
block6-2 20 20 – 20 32 20 32

stor5 11 9 9 9 8 6 8
stor6 11 9 9 9 10 6 10
stor7 14 14 14 14 14 14 14
stor8 16 14 12 12 13 8 13
stor9 14 14 12 12 11 7 11
stor10 − − − 18 18 18 18
stor11 − − − 18 17 11 17
stor12 22 25 − 20 17 9 17

sat1 9 9 9 9 9 8 9
sat2 13 – – 13 13 12 13

psr15 10 10 10 10 10 8 10
psr19 25 25 25 25 31 15 31
psr25 9 9 – 9 9 9 9
psr33 21 21 21 21 21 16 21
psr40 20 20 20 – 20 15 20
psr42 30 30 30 30 30 16 30

driv1 14 18 8 8 7 6 7

zeno2 6 7 6 6 8 5 8
zeno3 13 11 6 6 6 5 6
zeno4 11 11 11 11 13 5 13
zeno5 15 14 14 14 11 5 11
zeno6 14 13 12 12 13 5 13
zeno8 16 17 15 15 12 5 12
zeno9 29 29 – – 23 6 23

free1 9 11 9 11 10 5 10
free2 18 18 – 18 14 8 14
free3 21 21 21 21 19 7 19

tpp4 14 14 14 14 14 5 14
tpp5 19 21 19 19 19 7 19

air7 41 41 41 41 41 21 41
air9 71 71 – 71 73 27 73
air12 39 39 39 39 39 21 39

Table 1.Number of actions and makespan forSATPLAN, SATPLAN≺ and SGPLAN .

respectively. An “−” indicates that the corresponding instance has not been solved in
the given time limit of memory limit. The results suggest thefollowing considerations:

– The makespan returned by SGPLAN if often significantly higher than the one re-
turned by the various versions ofSATPLAN and SATPLAN≺, up to a factor of 4
(zeno9 instance). Nonetheless, there are also (even if justa few) cases in which
SGPLAN returns the same, optimal makespan (namely psr25, block4-2, block6-0,
stor4 and stor10).

– When a reduction on the number of action is possible (i.e., given the fixed makespan
and the “structure” of the planning instance)SATPLAN≺ can return plans with a
significant lower number of actions, with respect to bothSATPLAN and SGPLAN :
many of the logistics and blocks-world instances better underline this behavior.
Interestingly, there are also instances where SGPLAN returns plans with fewer ac-
tions thanSATPLAN/SATPLAN≺, e.g., driv1, zeno5, free2, and stor11). This is due
to the usual non-optimal makespan returned by SGPLAN , and from the intuitive
consideration that on some instances, with a longer makespan actions can be easily
better “serialazable”, thus producing a plan with fewer actions. In fact, finally note
how in the instances where this happen, SGPLAN returns a much higher makespan
thanSATPLAN/SATPLAN≺ (but driv1).

The last point opens the way to an interesting research issue, suggesting a possible
extension ofSATPLAN≺ in order to further improve its plan quality. The idea would be
to “trade-off” between optimality of the makespan and number of actions in the plan.
We have seen that, on some instances, it is possible to compute plans of better quality
by do not stop the search when the (first) plan is found, but going ahead and increase the
makespan. It is interesting to note how the same trade-off could also help when trying
to maximize the number of soft goals satisfied.

6 Conclusions

In this paper we have presented a system,SATPLAN≺, which makes a significant step
toward the elimination of same deficiency ofSATPLAN related to plan quality, i.e., the
number of actions and the satisfied soft goals in the returnedplan. We have considered
a wide number of benchmarks from all previous IPCs, and experimentally shown that
significant gain can be obtained withSATPLAN≺. Interestingly, this is often achieved
without sacrificing efficiency, and being competitive with SGPLAN , the winner of the
“SimplePreferences”-track of the last IPC-5. As a future work, we plan to analyze if the
results reported in this paper can be further strengthened by not considering a bounded
horizon, and what is the corresponding lost in the efficiencyof the system.

7 Availability of the system andSGPLAN benchmarks

The binary executable ofSATPLAN≺, together with the benchmarks used adapted to the
PDDL3 format in order to be processed by SGPLAN , are available at
http://www.star.dist.unige.it/∼marco/SATPLANP/.

References

1. Kautz, Henry and Selman, Bart. Planning as satisfiability. In Proc. ECAI-92, pages 359–363,
1992.

2. Kautz, Henry and Selman, Bart. Unifying SAT-based and graph-based planning. In
Proc. IJCAI-99, pages 318–325, Morgan-Kaufmann, 1999.

3. Henry Kautz and Bart Selman. SATPLAN04: Planning as satisfiability, In Proc. of 5th Inter-
national Planning Competition, Internation Conference onAutomated Planning and Schedul-
ing (ICAPS-06), pages 45–47, 2006.

4. Hoffmann, Joerg and Edelkamp, Stefan. The deterministicpart of IPC-4: An overview.Jour-
nal of Artificial Intelligence Research (JAIR), 24:519–579, 2005.

5. Z. Xing, Y. Chen and W. Zhang. MaxPlan: Optimal planning bydecomposed satisfiability
and backward reduction. InProc. of 5th International Planning Competition, Internation Con-
ference on Automated Planning and Scheduling (ICAPS-06), pages 53–55, 2006.

6. E. Giunchiglia and M. Maratea. OPTSAT: A Tool for Solving SAT related optimization prob-
lems. InProc. of the 10th European Conference on Logics in ArtificialIntelligence (JELIA),
pages 485–489, LNCS 4160, Springer, 2006.

7. E. Giunchiglia and M. Maratea. Solving Optimization Problems with DLL. In Proc. of the
17th European Conference on Artificial Intelligence (ECAI), pages 377–381, IOS Press, 2006.

8. C. Hsu and B. Wah and R. Huang and Y. Chen. Constraint Partitioning for Solving Planning
Problems with Trajectory Constraints and Goal Preferences. In Proc. IJCAI, pages 1924–1929,
2007.

9. J. P. Warners. A linear-time transformation of linear inequalities into CNF. Information
Processing Letters, 68(2):63–69, 1998.

10. Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. InProc. 9th International Conference on Principles and Practice of Constraint
Programming (CP-03), LNCS, Springer, 2003.

11. E. Giunchiglia and M. Maratea. Planning as Satisfiability with Preferences.Proc. of 22th
National Conference of the American Association for Artificial Intelligence (AAAI), to appear,
2007.

12. M. Büttner and J. Rintanen. Satisfiability planning with constraints on the number of actions.
In Proc. ICAPS, pages 292–299, 2005.

13. A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. InProc. of 5th Inter-
national Planning Competition, Internation Conference onAutomated Planning and Schedul-
ing (ICAPS-06), pages 7–13, 2006.

