SAT-based planning with minimal-#actions plans
and “soft” goals

Enrico Giunchiglia and Marco Maratea

DIST, University of Genova, Viale F. Causa 15, Genova, Italy
{enrico, marco}@li st.unige.it

Abstract. Planning as Satisfiability (SAT) is the best approach folimally
solving classical planning problems. The SAT-based plasagPLAN has been
the winner in the deterministic track for optimal plannershe 4th International
Planning Competition (IPC-4) and the co-winner in the last IPC (together
with another SAT-based planner). Given a planning problénsATPLAN works
by (i) generating a SAT formulal,, with a fixed “makespan#, and(ii) check-
ing I7,, for satisfiability. The algorithm stops 7, is satisfiable, and thus a plan
has been found, otherwiseis increased.

Despite its efficiency, and the optimality of the makesar,PLAN has signifi-
cant deficiency related in particular to “plan quality”, e lpe number of actions
in the returned plan, and the possibility to express ancbrean “soft” goals.

In this paper, we presestATPLAN™, a system, modification afATPLAN, which
makes a significant step towards the eliminatios afPLAN'’s limitations. Given
the optimal makespasATPLAN™ returns plans with minimal number of actions
and maximal number of satisfied “soft” goals, with respecbéth cardinality
and subset inclusions. We selected several benchmarksdifterent domains
from all the IPCs: on these benchmarks we show that the plalitgteturned by
SATPLAN™ is often significantly higher than the one returnedsayPLAN.

Quite surprisingly, this is often achieved without saciificefficiency while ob-
taining results that are competitive with the winning systef the "SimplePref-
erences” domain in the satisfying track of the last IPC.

1 Introduction

Planning as Satisfiability (SAT) [1] is the best approachdptimally solving classical
planning problems. The SAT-based planearPLAN [2, 3] has been the winner in the
deterministic track for optimal planners in the 4th Intdio@al Planning Competition
(IPC-4) [4] and the co-winner in the recent IPC-5 (togeth@éhwanother SAT-based
planner, MaxPLAN [5]). Given a planning problendl, SATPLAN works by (i) gen-
erating a SAT formuldI,, with a fixed “makespanh, and(ii) checkinglI,, for sat-
isfiability. The algorithm stops if7,, is satisfiable, and thus the plan has been found,
otherwisen is increased.

Despite its efficiency, and the optimality of the makesmaT,PLAN has significant
deficiency related in particular to “plan quality”, e.g.ethumber of actions in the re-
turned plan, and the possibility to express and reason dit’ ‘goals. The issues are
related with the following facts: iISATPLAN, when solving the propositional formula

11,,, there is no indication of what propositional variablesespond to actions, and the
SAT solver does not perform any kind of optimization on thenber of actions in the
plan, treating each propositional variable in the same vwagpendently from what it
indicates. The makespan is fixed, but multiple, mutuallylesige (mutex) actions can
take place simultaneously, even if often not all actiongelevant to reach the goal. On
the other hand, “soft” goals arise in planning problems wtieme is no possibility to
satisfy simultaneously all the goals, and/or when it is sigfit (from the view point of
the user) that only some of them are satisfied.

In this paper, we preseBRTPLAN™, a system, modification gfATPLAN [3], which
makes a significant step towards the eliminatiorsafPLAN’s limitations. Given the
optimal makesparsATPLAN™ returns plans with the minimal number of actions and
maximal number of the satisfied “soft” goals, with respedidth cardinality and subset
inclusions. This is achieved by integrating theTSATsolver iNSATPLAN. OPTSAT(6,

7] is a tool for solving SAT related optimization problemsbéd on the state-of-the-art
SAT solvermINISAT . Besides other features, given a SAT formillaand a subsef of
the variables in1,,, OPTSATreturns an “optimal” solution, i.e., a satisfying assigmine
that minimize/maximize the atom il assigned ta RUE.

We selected several domains of benchmarks from all the I®Cthiese benchmarks
we show that the plan quality returned bxTPLAN™ is often significantly higher than
the one ofSATPLAN using bothsIEGEandMINISAT. In particular

— SATPLAN™ is usually able to satisfy a number of soft goals which is mhicjiner
than the one OBATPLAN, e.g., there are instances with several soft goals where
SATPLAN™ satisfy all (or almost all) soft goals whileaTPLAN is able to satisfy
just a few of them.

— SATPLANT™ usually returns plans with fewer number of actions teamPLAN.

Quite surprisingly, this results are often achieved wittsarificing efficiency while
the obtained results are competitive with the winning systé the "SimplePrefer-
ences” domain in the satisfying track of the last IPC, i. & PBAN [8], as shownin [11].

Moreover, a closer look at the performance in terms of mefacwhichsATPLAN™
is optimized, i.e., makespan and number of actions in the, facomparison to both
SATPLAN and SGRAN, on benchmarks where each of the solvers satisfies all the sof
goals, reveals thdi) SATPLAN andSATPLAN™ often return plans with a much better
makespan than SGRN; (i7) on some benchmarks the reduction in terms of number of
actions in the plan returned IBATPLANT is very significant; but also thétii) there are
particular instances in which SGEN returns plans with fewer actions. Because this
is due to the non-optimal makespan returngdf, suggests that is could be useful, in
order to further improvesATPLAN™’s performance, to “trade-off” between optimality
of the makespan and optimality of the plan quality.

The paper is structured as follows. In Sec 2 some basic gredies about planning
(as satisfiability) are presented. Sec. 3 is devoted to ttaélsien how the new features
of SATPLAN™ are implemented. In Sec. 4 is then shown how to SISEPLANT, its
command line and options. Sec. 5 shows the results we haamebtwithsaTPLANT,
and finally Sec. 6 draws some conclusions and possible tépiésture research.

2 Preliminaries

Let F and.A be the set ofluentsandactions respectively. Astateis an interpretation
of the fluent signature. ZAomplex actioris an interpretation of the action signature.
Intuitively, a complex actiomx models the concurrent execution of the actions satisfied
by a.

A planning problemnis a triple(I, tr, G) where

— I is a Boolean formula oveF and represents the setiaftial states

— tr is a Boolean formula oveF U AU F' whereF’ = {f': f € F}is acopy of the
fluent signature and represents thansition relationof the automaton describing
how (complex) actions affect states (we assufe 7' = 0);

— (G is a Boolean formula oveF and represents the setgdal states

The above definition of planning problem differs from thalitisnal ones in which the
description of actions’ effects on a state is described ihigh-level action language
like STRIPS or PDDL. We preferred this formulation because techniques we are
going to describe are largely independent of the actiondagg used, at least from
a theoretical point of view. The only assumption that we miakiat the description
is deterministic: there is only one state satisfyihgnd the execution of a (complex)
actiona in a states can lead to at most one state More formally, for each stateand
complex actioru there is at most one interpretation extending « and satisfyingr.
Consider a planning probledi = (I, tr, G). In the following, for any integei

— if F'is a formulain the fluent signaturé; is obtained fron¥' by substituting each
f € Fwith f;,

— tr; is the formula obtained frorntr by substituting each symbel € F U A with
p;_1 and eachy € F’ with f;.

If nis an integer, th@lanning problenil with makespam. is the Boolean formuld’,,
defined as
IO A\ /\?:1157’1' A Gn (n Z O) (1)

and aplan for IT,, is an interpretation satisfying (1).

For example, considering the planning problem of going tokficom home. As-
suming that we can use the car or the bus or the bike, this Soarem be easily for-
malized using a single fluent variab¥Workand three action variablé3ar, Busand
Bikewith the obvious meaning. The problem with makespaan be expressed by the
conjunction of the formulas:

—-AtWorlg,
AtWork = -AtWorky = (Cary V Bug V Bike)), (2)
AtWorlg ,

in which the first formula corresponds to the initial statee second to the transition
relation, and the third to the goal state. (2) figdans (i.e., satisfying interpretations),
each corresponding to a non-empty subseit@iry, Bus), Bikey }. For instance, in the
plan corresponding t§Cary, Bug } both the car and the bike are used to get to work.

If we want to avoid any two actions ifiCary, Bug), Bikey} to occur in parallel, the
following mutex axioms are to be added as part of the formaife®ding the transition
relation

—(Carg A Bug), —(Carg A Bikey), —(Bug) A Bikey).

3 SATPLAN™ implementation

SATPLAN™ is a modification of thesaATPLAN system. When constructing the SAT for-
mula IT,,, a number of information are added to the formula (whictreATPLAN is
specified in CNF format), in order to cope with the specifichpeo. If minimization

on the number of actions in thE is considered, the total number of actions and the
list of the propositional variables corresponding to atdiare specified in the comment
lines of (the CNF file related tdY,,. The comment lines also specify if the minimization
has to be computed under cardinality or subset inclusion.

Otherwise, if we are dealing with maximization of the numbgfsoft” goals to be
satisfied, some of the clausesiih), have to be modified, resulting in a new formula
IT),. Each claus& € II,, that represents the i-th goal is modified by adding a “goal
selectors’s;, i.e., by substituting” with C’ :=5; U C. Intuitively, the clause selectors
tell us how many soft goals are satisfied, i.e., assur@lhig satisfied, ifs; is assigned
by TRUE this means that claus@’ is satisfied byC, thus the related soft goal holds;
otherwise, ifs; is assigned byALSE, this means that it could be the case thats only
satisfied by the clause selector. For the soft goals, in thewand line it is only needed
to specify the problem, and the type of minimality.

Now we explain how optimality is obtained. Consider the deitomsS to be the
set that should be optimized, i.e., the set of actiond,jror the set of the goal selectors.
If the optimality is to be performed under subset inclusibsuiffices to “preferentially”
splits on the atom irf, and assign it tALSE (resp.TRUE). The resulting satisfying
assignment: of I1,, (resp.I1)) is guaranteed to contain the minimal number of atoms
assigned by RUE (resp. the maximal number of goal selectors assignerking), thus
resulting in a plan with the minimal number of actions (rethg maximal number of
soft goals satisfied).

On the other hand, if the minimality is by cardinality, we bae compute an aux-
iliary boolean encodin®ool(S) of S whose implementation depends on whether we
rely on(a) a binary or(b) a unary encoding. For any satisfying assignmewf I7,,,
there exists a unique interpretatiph to the variables in7,, A Bool(S) such thaty’
extendsy and satisfiedZ,, A Bool(S). Given an atonp, consider thaj:(p) is 1 if u
assigns to true, and i9) otherwise.Bool(.S) containsk new variabledy_1, ..., bg
such that

(a) if k= [loga(|S| + 1)1, s i(p) = iy u(b) x 2%, or
(b) if k=S|, Y, es (D) = S0y ulbe)-

Intuitively, the goal of pointga) and (b) is to encode an optimization function
(in our case related to the cardinality| of the atoms in S assigned toRUE) as a
boolean formul®ool(.S) which contains a set of atorhs_1, . . . , b that “characterize”
the optimization function.

We considered Warners' [9] and Bailleux and Boufkhad'’s [@@¢odings oBool(S),
denoted with W-encoding and B-encoding respectively, presentative encodings for
(a) and(d), respectively.

1. Warners. It uses a binary representation of integers i$td linear time and space
encoding, that relies on sums via adder circuits and wonlectly with objective
functions with weights. IrOPTSAT, and thus insATPLAN, the encoding is op-
timized for the non-weighted case, and the size of the engodi approximately
halved.

Example 1.ConsiderS = {p1, p2, p3 }. Bool(.S) is the set of clauses corresponding
to the sum of three variables, i.¢{p7, ps, ~p1}, {p7, P4, 01}, {07, P41, 01},
{=p7, 4,1}, {P6, P4, ~p1}, {=P6,Pa}, {—P6, P1}, {Ps; P5, “P6 }, {Ps; ~Ps5, D6}
{—ps, 05, ~p6 }, {—Ps, Ps5: P6 }, {P4, P2, ~P3}, {P4, P2, P3}, { P4, P2, ~p3},
{ﬁp4,p2,p3}, {p57 P2, ﬁp3}7 {ﬁp5,p2}, {ﬁp5,p3}}-

Theb; variables are; andps, and this corresponds @:f’zl w(ps) = 2 u(ps) +
2% (p7), while py, ps andpg are added by the encoding.

2. Bailleux/Boufkhad (B). In this encoding a unary reprdaaéaon of integers is used:
aninteger: s.t.0 < z < zis represented usingpropositional variable§p;, ..., p. }
with (the first) “z” variables assigned to TRUE), and the others to GFALSE). This
representation has the property that when a varjaples valuerRUE, all the vari-
ablesp,, with 1 < w < j, areTRUE as well; and similarly ifp;, has valuerALSE.
The encoding is efficient with respect to unit-propagatiohibadds a quadratic
number of new clauses.

Example 2.Consider the same Example used iBapl(.5) is now{{—ps, p1,p4},
{pe, pa}, {=p7,p1, 05}, {p7. ~ws}, {=ps, 1}, {pe, 1}, {=p7, pa}, {P7. —p1, ~ps},
{=ps,ps}, {ps, 1, =ps}, { =4, p2, ps}, {pa, ~ps}, {=ws, p2}, {pa, —p2}. {-ps, ps},
{ps, —p2, —p3}}, in which theb; variables areg, p; andps, Z?:l w(pi) = p(ps)+
u(pz) + u(ps), with pg being the most significant variable (i.&s), while p, and
ps are introduced by the encoding.

We also exploited a further alternative, modification of Bxencoding, leveraging
on its representation. We noticed that the encoding dogsikeinto full account the re-
lations among the resultirig variables, e.g., itis safe to enforce that wiheis assigned
to FALSE (resp.TRUE), alsob; 11 (resp.b;—1) is assigned tGALSE (resp.TRUE) by unit
propagation. This is easily done by adding the clayd$es-b; 1}, = 0,...,v — 1
to the above encoding. Given that this modification did nawskignificant enhance-
ment over B-encoding, we will not consider it in the desigrsafPLAN™ and in the
experimental evaluation.

Despite the difference in the size of the encodings, the &dimg has better com-
putational properties and it has been consistently reganteéhe literature to lead to
good results [10, 12].

Givenby_1, ..., by, preferentially and in-order splitting frof,_; to by and assign
it with the “needed” value (i.e., the one resulting from ttembination of optimiza-
tion and minimality, following the schema of assignment wediwhen dealing with a
subset inclusion minimality) leads to an “optimal” soluti(see [7] for more details).

As we noticed before, this is achieved by using drersaT system, instead of in-
voking a basic SAT solver, lik®IINISAT or SIEGE.

A final, important consideration has to be made. We have $eziirtthe last IPC-5
SATPLAN was the winner together with MK PLAN. The question is whether the new
features we have proposed can be simply integrated imtg RIAN. MAX PLAN works
by firstly estimating an upper boumdof the optimal makespan, and théngenerating
a SAT formulall,, for the fixed makespan, and(ii) checkinglI,, for satisfiability,
by using a modified version afiiNISAT. The algorithm stops if7,, is unsatisfiable,
otherwisen is decreased. Given this, it should be relatively easy tegirate the new
features oEATPLAN™ into MAX PLAN.

4 SATPLAN™ command line and options
SATPLANT has to be invoked as follows:
JSATPLANT -solver< > -opt <> -minimality <> -enc<> -problem< > -domain< >

The command line o§ATPLANT is thus very similar to the one &fATPLAN. Indeed,
SATPLAN™ accepts all the options &fATPLAN (here we report only the mandatories
“-problem” and “-domain”), and adds new options in order ¢abtwith the new features
of SATPLANT.

Going in more details,

-solver: indicates the solver to be used for solving the S®Wbfem. Among others,
the most important arePTSAT, MINISAT and SIEGE (“optsatl1.0”, “minisatl.14”
and “siege”are the specific strings to be specified in place:sf. If the goal is to
use the new features eATPLANT, it is mandatory to rely oPTSAT, otherwise
all the modifications explained in the Section above are igthoandSATPLAN™
behaves like the standasdTPLAN.

-opt: specifies if the optimization is related to the numbleadions, or to “soft”
goals (“action” or “goal”).

-minimality: specifies the type of optimization, i.e., igloptimization is subject to
cardinality or subset inclusion (“card” or “subset”).

-enc: if minimality is by cardinality, this option specifigghat encoding has to be
used (“w” or “b")

-problem: is the planning problem in (propositional) STRH#®rmat

-domain: is the domain specification in (propositional) $H#& format

It should be noted that only the last two options are mangatar., if only the
problem and domain parameters are specified the other spdienset by default to
their first choice (“optsat1.0”, “action”, “card”, and “w'espectively).

Otherwise, a command line like the following:
/SATPLAN™ -opt goal -minimality subset -problem log.pddl -domain domlog.pddl

specifies that a logistic planning problem is subject to aimepation (under subset
inclusion) of the “soft” goals to be satisfied. Given that mzeding is involved, the
related specification (i.e., “-enc”) is in this case usel@ég OPTSATSystem is used as
a back-end solver fasATPLAN™.

5 Experimental evaluation

We remind thasATPLAN can only handle propositional STRIPS domains, and, among
them, we considered the pipesworld, satellite, airpodppla philosophers and opti-
cal, psr, depots, driverLog, zenoTravel, freeCell, ldagjdtlocks, mprime and mistery
domains from the first 4 IPCs, and pathway, storage, tpp arcétsrfrom IPC-5 (notice
that we do not consider the domains in the “simple prefergitcack in IPC-5 because
they are not handled byaATPLAN). These are standard planning problems in which the
goal corresponds to a sét of goals and without soft goals. We modified these prob-
lems in order to interpret all the goals @ as soft goals, following what is explained
in Section 3 forsATPLAN™ about goal selectors, and by encoding the problems in the
language PDDL3 [13] for SGRAN. Note that our proposed modification exactly en-
codes the fact that the goals @ are now “soft” in the sense that it is desirable but
not necessary to achieve them. Since there are no “hards gbal various versions of
SATPLAN/SATPLAN™ would always find a valid plan, even when the makespaD (in
which case the returned plan would be the empty one). In dodavoid this situation,
we added a constraint stating that at timat least one of the soft goals has to be sat-
isfied. Because of this, we discarded the problems whos@aligersion has only one
goal because they would have no soft gb#i. the following, we uUSeSATPLANT(S),
SATPLANT™ (W) andsATPLAN™(b) to denotesATPLAN™ when is subject to subset in-
clusion optimality, and to cardinality (with W-encodingdhB-encoding, respectively).
We also usesATPLAN and SATPLAN(mM) to denote basiSATPLAN employingSIEGE
and MINISAT respectively. We considered both SAT solvers becatiselEGE is the
default solver forsSATPLAN, but (ii) MINISAT is used inSATPLAN™ andOPTSAT be-
CausesIEGES code is not available, and, most importantiyNISAT is the winner of
the last SAT Competition, in 2005together with the SAT/CNF minimizersS ELITE,
and the winner of the SAT race 208én any case, in our experiments, we have seen no
significant differences iSATPLAN’s performances when employing the two solvers.

In [11] we showed thasATPLAN™ is competitive with respect to SGRN in terms
of both metric (in this case the number of soft goals satijfi@ed number of problem
solved, i.e., with respect to the first two parameters usexvatuate planning systems
in the “SimplePreferences”-track of the last IPC-5. Mommowun the same paper, it
is shown that this is achieved without sacrificing efficierigy., that only in a small

! Note that also SGIAN does not accept problems with only one goal.
2http://ww. sat conpetition. org/ 2005/
Shttp://fnv.|ku. at/sat-race- 2006/

fraction of the hundreds of problems analyzad PLAN™ (with the W-encoding in case
of optimality by cardinality) can have performances siguaifitly worse tharsATPLAN
when minimizing the number of actions in the plan.

On the contrary, in this paper we focus on:

— the reduction in the number of actions in the plan returnedsByPLAN™ over
SATPLAN (and SGRAN);

— the number of soft goals satisfied in the plarsaf PLAN™ oversATPLAN;

— a comparison betweeBATPLAN™, SATPLAN and SGRAN on the makespan re-
turned, on problem instances in which all the systems gaistoft goals.

Even if the real contribution of the analysis we will be shogis oversaTPLAN,
we decided also to include SGRN as a reference, taking into account that it uses a
different approach, and that it is not targeted for optimgzihe number of actions and
makespan in the returned plan.

All the tests have been run on a Linux box equipped with a BentV 2.4GHz
processor and 512MB of RAM. The timeout has been set to 300sdoch problem
instance. In the plots, a point is missed if a system runs btitn@ or memory in the
given problem instance.

The first results are shown in Figure 1. The left plot showspgedormances of
SATPLAN, SATPLAN(M), SATPLAN™ (W) andsSATPLAN™(S) on the problems considered,
ordered according teATPLAN'’s performances. The plot shows the number of soft goals
each planner does not satisfy. This way of presenting treetds the feature that results
about the same problem are not lost, i.e., the results fahalkystems at a given x-
coordinate refer to the same problem.

As expectedATPLAN does not satisfy many of the soft goals, in particular when
using MINISAT, while SATPLAN™(w)/(s) manage to satisfy all of them in many cases.
Interestingly, the number of soft goals not satisfiedbyrPLAN(wW)/(S) are in most cases
equal, while in theory this is not necessary the case. In libie for sake of readabil-
ity, we have not includedATPLAN=(b): its plot would be exactly the same to the one
of SATPLAN=(w), given that they manage to solve all the benchmarks ptedeand
with similar performances. Moreover, the performancesafPLAN= (w)/(b) are very
similar to the ones o6ATPLANT(S), SATPLAN andSATPLAN(M). The explanation for
the CPU performances sfaTPLAN=(w)/(b) is that all the problems considered have at
most 30 soft goals and the burden introduced by the Booleandémgs is negligible.
We will see that, when considering minimal #actions-plais ts no longer the case.
Another interesting observation can be drawn from the usbeBAT solvers irsAT-
PLAN: MINISAT manages to always satisfy very few soft goals (almost alveae.
Given this, and given thaATPLAN™ is based omINISAT, the results orSATPLAN™
are made even stronger by this point.

Considering the “quality” of the plan returned in terms ofmher of actions, the
results are in Figure 1, right plot. The results are agaiei@ad according tSATPLAN'S
performances.

Inthe plot, for sake of readability, we do not show the resfdt the airport, promela
philosophers and optical, and psr domains: for each prolifethese domainsAT-
PLAN, SATPLAN(M) andsATPLAN=/(w)/(b)/(s) return plans with the same length. Sim-

SATPLAN —+—
SATPLAN(m)] SATPLAN(m)
SATPLANP(W) -] SATPLANP(w) — %
SATPLANP(S) &] 80 [SATPLANP(s) - © 51

SATRLAN —+—

#unsaigoals
&

X e
el IR T
LU]

n L L L L L L
80 40 50 60 70 80 90 100
#benchmarks #benchmarks

Fig. 1. Left: Number of unsatisfied soft goals BATPLAN, SATPLAN(M), andSATPLAN ™ (W)/(S).
Right: Number of actions in the returned plan S®#TPLAN, SATPLAN(M), andSATPLAN™(W)/(S).

ilarly to the case of soft goals, the quality of the plan read by SATPLAN(S) is in
most cases equal to that ®kTPLAN(W), and in many cases both return plans of better
guality thansATPLAN. Again, in the plot we do not include results ferRTPLAN™(b):
when it manages to solve a problem, it obviously returns a pfahe same quality of
SATPLANT (W), but in several cases it runs out of time or memory whermiems are
big. Thus, its representative line would be exactly the safsTPLAN™ (W), but with

a significant portion of the line missing.

We remind that in [11] we showed thahTPLAN™ is competitive with respect to
SGR.AN interms of both number of soft goals satisfied and numberaiflpm solved,
i.e., with respect to the first two parameters used to ewvalpkinning systems in the
“SimplePreferences”-track of the last IPC-5, without gagng efficiency.

Now, we want to evaluate what is the behavior, and the regigrformance, of
SGR.AN with respect tasATPLAN™ on the metrics for whiclsATPLAN™ is optimized,
i.e., number of actions and makespan of the returned plan.

This analysis is performed on those instances in which allsystems satisfy all
the soft goals (when greater than ofig¢)e., we posed SGRN and all the versions
of SATPLAN/SATPLAN™ on the same conditions. Table 1 shows the results obtained
and is structured as follows: the first column contains theeje instance (where sat,
air, driv, zeno, free, log, block, and stor stay for sate|lixirport, driverLog, zeno-
Travel, freeCell, logistics, blocks-world and storage dim respectively); columns
2-6 contain the number of actions in the returned plansf@rPLAN, SATPLAN(M),
SATPLAN= (W), SATPLANT(S) and SGPAN, respectively, while the last two columns
contain the makespan for all the modificationssfTPLAN/SATPLAN™ and SGRAN,

4We also could not consider some domains, e.g., promelaguplers, because SGAN
time outs or returns segmentation faults on all instandesJdtter due to the high number
of grounded operators in the problems. The last informati@npersonal communication with
the authors.

#actions Makespan

PB [SATPLAN[SATPLAN(M)[SATPLAN=(W)|SATPLAN(S)|SGR.AN[SATPLAN["][SGR.AN
log4-0 24 24 20 20 20 9 20
log4-1 24 26 19 21 19 9 19
log4-2 24 19 15 15 15 9 15
log5-0 31 32 27 27 31 9 31
log5-1 29 26 17 19 17 9 17
log6-0 33 30 25 25 26 9 26
log6-1 28 21 14 16 15 9 15
log6-9 41 39 24 28 28 11 28
block4-2 6 6 6 6 6 6 6
block5-2 16 16 16 16 26 16 26
block6-Q 12 12 12 12 12 12 12
block6-1 10 10 10 10 16 10 16
block6-2 20 20 - 20 32 20 32
storb 11 9 9 9 8 6 8
stor6 11 9 9 9 10 6 10
stor7 14 14 14 14 14 14 14
stor8 16 14 12 12 13 8 13
stor9 14 14 12 12 11 7 11
storl0 — — — 18 18 18 18
storll — — — 18 17 11 17
storl2 22 25 — 20 17 9 17
satl 9 9 9 9 9 8 9
sat2 13 - - 13 13 12 13
psrls5 10 10 10 10 10 8 10
psrl9 25 25 25 25 31 15 31
psr25 9 9 - 9 9 9 9
psr33 21 21 21 21 21 16 21
psr40 20 20 20 - 20 15 20
psra2 30 30 30 30 30 16 30
divi | 14 | 18 | 8 | 8 [7 | 6 [7
zeno2 6 7 6 6 8 5 8
zeno3 13 11 6 6 6 5 6
zeno4 11 11 11 11 13 5 13
zeno5 15 14 14 14 11 5 11
zenob 14 13 12 12 13 5 13
zeno8 16 17 15 15 12 5 12
zeno9 29 29 - - 23 6 23
freel 9 11 9 11 10 5 10
free2 18 18 - 18 14 8 14
free3 21 21 21 21 19 7 19
tpp4 14 14 14 14 14 5 14
tpp5 19 21 19 19 19 7 19
air7 41 41 41 41 41 21 41
air9 71 71 — 71 73 27 73
airl2 39 39 39 39 39 21 39

Table 1.Number of actions and makespan SXTPLAN, SATPLAN™ and SGRAN.

respectively. An =" indicates that the corresponding instance has not beeeddah
the given time limit of memory limit. The results suggest thikbowing considerations:

— The makespan returned by SGH if often significantly higher than the one re-
turned by the various versions 8ATPLAN and SATPLAN™, up to a factor of 4
(zeno9 instance). Nonetheless, there are also (even ifjiesty) cases in which
SGR.AN returns the same, optimal makespan (namely psr25, blockibek6-0,
stor4 and stor10).

— When areduction on the number of action is possible (i.eergihe fixed makespan
and the “structure” of the planning instancedTPLAN™ can return plans with a
significant lower number of actions, with respect to bs#fTPLAN and SGRAN:
many of the logistics and blocks-world instances bettereulirte this behavior.
Interestingly, there are also instances where 8€Preturns plans with fewer ac-
tions thansATPLAN/SATPLANT, e.g., drivl, zeno5, free2, and storl11). This is due
to the usual non-optimal makespan returned by S8R and from the intuitive
consideration that on some instances, with a longer makesgigons can be easily
better “serialazable”, thus producing a plan with fewerarg. In fact, finally note
how in the instances where this happen, $G¥ returns a much higher makespan
thansSATPLAN/SATPLAN™ (but drivl).

The last point opens the way to an interesting research,issiggesting a possible
extension olATPLAN™ in order to further improve its plan quality. The idea would b
to “trade-off” between optimality of the makespan and nundfeactions in the plan.
We have seen that, on some instances, it is possible to cempfarts of better quality
by do not stop the search when the (first) plan is found, butggahead and increase the
makespan. It is interesting to note how the same trade-officalso help when trying
to maximize the number of soft goals satisfied.

6 Conclusions

In this paper we have presented a systeaT,PLAN=, which makes a significant step
toward the elimination of same deficiency ®ATPLAN related to plan quality, i.e., the
number of actions and the satisfied soft goals in the retypteed We have considered
a wide number of benchmarks from all previous IPCs, and éxyertally shown that
significant gain can be obtained witaTPLAN. Interestingly, this is often achieved
without sacrificing efficiency, and being competitive witeBLAN, the winner of the
“SimplePreferences”-track of the last IPC-5. As a futurekyave plan to analyze if the
results reported in this paper can be further strengthepedtconsidering a bounded
horizon, and what is the corresponding lost in the efficiesfaje system.

7 Availability of the system andSGR.AN benchmarks

The binary executable &faTPLAN™, together with the benchmarks used adapted to the
PDDL3 format in order to be processed by S@R, are available at
http://ww. star. dist.unige.it/~marco/ SATPLANP/ .

References

1. Kautz, Henry and Selman, Bart. Planning as satisfiabilityProc. ECAI-92 pages 359363,
1992.

2. Kautz, Henry and Selman, Bart. Unifying SAT-based andplgaased planning. In
Proc. IJCAI-99 pages 318-325, Morgan-Kaufmann, 1999.

3. Henry Kautz and Bart Selman. SATPLANO4: Planning as fialtidity, In Proc. of 5th Inter-
national Planning Competition, Internation ConferenceAutomated Planning and Schedul-
ing (ICAPS-06)pages 4547, 2006.

4. Hoffmann, Joerg and Edelkamp, Stefan. The determirpsticof IPC-4: An overviewJour-
nal of Artificial Intelligence Research (JAIR)4:519-579, 2005.

5. Z. Xing, Y. Chen and W. Zhang. MaxPlan: Optimal planningd®composed satisfiability
and backward reduction. Broc. of 5th International Planning Competition, Interiwat Con-
ference on Automated Planning and Scheduling (ICAPSg2f)es 53-55, 2006.

6. E. Giunchiglia and M. Maratea. OPTSAT: A Tool for SolvingTSrelated optimization prob-
lems. InProc. of the 10th European Conference on Logics in Artifiiaélligence (JELIA)
pages 485-489, LNCS 4160, Springer, 2006.

7. E. Giunchiglia and M. Maratea. Solving Optimization Resbs with DLL. InProc. of the
17th European Conference on Atrtificial Intelligence (ECABges 377-381, I0S Press, 2006.

8. C. Hsu and B. Wah and R. Huang and Y. Chen. Constraint Baitig for Solving Planning
Problems with Trajectory Constraints and Goal Prefererleg2roc. IJCA| pages 1924-1929,
2007.

9. J. P. Warners. A linear-time transformation of lineargu@lities into CNF. Information
Processing Letter$8(2):63—69, 1998.

10. Olivier Bailleux and Yacine Boufkhad. Efficient CNF Ewlng of Boolean Cardinality
Constraints. IrProc. 9th International Conference on Principles and Preetof Constraint
Programming (CP-03)LNCS, Springer, 2003.

11. E. Giunchiglia and M. Maratea. Planning as Satisfighiliith PreferencesProc. of 22th
National Conference of the American Association for Aitifintelligence (AAAI)to appear,
2007.

12. M. Bittner and J. Rintanen. Satisfiability planninghaibnstraints on the number of actions.
In Proc. ICAPS pages 292—-299, 2005.

13. A. Gerevini and D. Long. Plan constraints and prefereim@®DDL3. InProc. of 5th Inter-
national Planning Competition, Internation ConferenceAutomated Planning and Schedul-
ing (ICAPS-06)pages 7-13, 2006.

