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Abstract. e.g., [4]) problems. Our interest foniN-ONE, MIN-ONEc, MAX -
Propositional satisfiability (SAT) is a success story in ComputersaT andMAX -SATc problems are related to their applications in the
Science and Atrtificial Intelligence: SAT solvers are currently usedarea of planning and formal verification, as briefly discussed in the
to solve problems in many different application domains, includingrest of the paper. Besides these application domains, [8] shows that
planning and formal verification. The main reason for this success isnany important graph problems involving combinatorial optimiza-
that modern SAT solvers can successfully deal with problems havtion (such as Max-Cut, Max-Clique, and Min Vertex Cover) have
ing millions of variables. All these solvers are based on the Davisdinear-time reductions t®IN-ONE andMAX -SAT problems. Consid-
Logemann-Loveland procedurel(). DLL is a decision procedure: ering the procedures used to solve such problems, the standard ap-
Given a formulay, it returns whethery is satisfiable or not. Fur- proach is to modifypLL following a branch&bound schema. In the
ther, DLL can be easily modified in order to return an assignmentvIN-ONE case, whenever an assignment satisfying the input formula
satisfyingy, assuming one exists. However, in many cases it is notp and with costc,, is found, search continues looking for another
enough to compute a satisfying assignment: Indeed, the returned aassignment satisfying but with a lower cost: The drawback of such
signment has also to be “optimal” in some sense, e.g., it has to miniapproaches is that they may generate, at least in principle, all the
mize/maximize a given objective function. assignments satisfying. Analogously fomAX -SAT problems.
In this paper we show thatLL can be very easily adapted in order  In this paper we show thatLL can be very easily adapted in order
to solve optimization problems likeAx -SAT andMIN-ONE. In par-  to solve optimization problems likeIN-ONE, MAX -SAT and their
ticular these problems are solved by simply imposing an ordering owariants. In particular these problems are solved by simply impos-
a set of literals, to be followed while branching. Other popular prob-ing an ordering on a set of literals, to be followed while branch-
lems, likeDISTANCE-SAT andWEIGHTED-MAX -SAT, can be solved ing. With such modification —differently from what happens for
in a similar way. We implemented these ideaz®HAFF and the  branch&bound approaches— the first discovered assignment satis-
experimental analysis show that the resulting system is competitiveying the input formula, is guaranteed to be “optimal”: This assumes
with respect to other state-of-the-art systems. we are given aMIN-ONE/MIN-ONEc problem, but analogous con-
. siderations hold for th®AX -SAT/MAX -SAT- case. Other optimiza-
1 Introduction tion problems, likeDISTANCE-SAT andWE&;HTED-MAx-SAT, can
Propositional satisfiability (SAT) is a success story in Computerbe solved in a similar way. We implemented these ideaORAFF
Science and Artificial Intelligence: SAT solvers are currently usedand the experimental analysis we conductedion-ONE andMAX -
to solve problems in many different application domains, includ-SAT problems shows that:
ing planning [11], formal verification [6], and many others such as
RNA folding, hand-writing recognition, graph isomorphism and su-
doku problems. The main reason for this success is that modern
SAT solvers can successfully deal with problems having millions of |
variables [5]. All these solvers are based on the Davis-Logemann-
Loveland proceduren( L) [9]. DLL is a decision procedure: Given a
formulay, it returns whethep is satisfiable or not; FurthepLL can
be easily modified in order to return an assignment satisfyinas-
suming one exists. However, in many cases it is not enough to com-
pute a satisfying assignment: Indeed, the returned assignment has
also to be “optimal” in some sense, e.g., it has to minimize/maximize
a given objective functionMIN-ONE and MAX -SAT are two opti-
mization versions of SAT. I'MIN-ONE (resp.MIN-ONEc), given
a satisfiable instance, the goal is to find a satisfying assignment in
which the set of variables assigned to true is of minimal cardinality
(resp. minimal). INMAX -SAT (resp.MAX -SATc), given an unsatis-
fiable instance, the goal is to find an assignment in which the set
of satisfied clauses is of maximal cardinality (resp. maximaii - The paper is structured as follows. In Section 2, we give the ba-
ONE andMAX -SAT problems have been studied, e.g., in [8, 16], andsic terminology and notation. We then presemT-DLL, i.e., DLL
are particular cases @fiSTANCE-SAT [3] and Pseudo-Boolean (see modified in order to solve optimization problems (Section 3). How
to model and solve optimization problems witl?T-DLL is showed
in Section 4. The last two sections are devoted to the experimental
analysis and the conclusions.

e On MIN-ONE andMAX -SAT problems, our system is competitive
with respect to other dedicated solvers and state-of-the-art systems
used in the last Pseudo-Boolean evaluation [12].
ConsideringvIN-ONEc problems, our solver is the fastest. In par-
ticular, our solver is much faster in solvingN-ONEc instances
than the correspondingIN -ONE instances, while this is not the
case foMAX -SATc with respect to theAX -SAT.

Related to the previous point, comparing the cardinajty’
(resp. #Cc) of the set of true variables returned when solv-
ing aMIN-ONE and amIN-ONEc problem, we see that for most
instances#C = #Cc. Comparing the analogous values for
MAX -SAT and MAX-SATc, these are equal on all instances but
three. Thus, provided we have an efficient solverMox -ONEc
(resp.MAX-SATC), it makes sense to use it also faiN-ONE
(resp.MAX -SAT) problems, at least for computing a “good” up-
per (resp. lower) bound.
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2 Formal preliminaries

Given a sefS, arelation <C S x S” is a (strict or irreflexive) partial
order on S if it has the following properties:

1. Irreflexivity: a £ a, for eacha € S.
2. Antisymmetry: a < bandb < a impliesa = b.
3. Transitivity: a < bandb < cimpliesa < c.

If for each two distincla, b € S, a < borb < athen< is said to
be atotal order. It is common to call the paif, < a partially ordered
set.

Consider a seP of variables. A literal is a variable or the negation
7 of a variablez. In the following,7 is the same as.

A clause is a finite set of literals, and formula is a finite set of
clauses. Amussignment is a consistent set of literals.

Consider an assignmentand formulap.

A literal [ is assigned by . if eitherl or [ is in p.. We say thaj

e is total if each variable inP is assigned by;
e satisfies a formulay if for each claus&” € ¢, C N # 0.

A formula is satisfiable if there exists an assignment satisfying it.

Consider a partial ordek on the set of total assignments. Intu-
itively speaking,u” < p means thap' is preferred tqu. Thus, for
us, atotal assignment j is optimal (with respect to <) if

1. u satisfiesp; and
2. there is no total assignmemnt satisfyinge and withy' < .

An assignment (. is optimal (with respect to <) if p satisfiesp and
there exists a total and optimal assignment extending

3 OPT-DLL

As we anticipated in the introductiompTDLL is like the standard
DLL except for the heuristic. Given a formula the basic idea of

function OPTDLL (,,<)

1 if (0 € o) return FALSE;

2 if (o = () return ;

3 if ({I} € ) return oPT=DLL (assigrl, ), u U {1}, <);
4 | := ChooseLiteral(p, pt, <);

5 v = OPT-DLL(assignl, ), un U {1}, <);

6 if (v # FALSE) return v;

7 return oPTDLL (assigr{l, ), u U {I}, <).

Figure 1. The algorithm ofoPT-DLL.

— is an arbitrary literal occurring i, otherwise.

OPTDLL has to be invoked witly andy set to the input formula and
the empty set respectively. It is easy to see that if the&S'9etempty,
OPT-DLL is the same aBLL.

Assuming < is (1), oPTDLL checks the existence of an as-
signment satisfyingy and extending one ofz1,Zo}, {Z1,%0},
{z1,To}, {z1, zo}, following the order in which they are listed. As-
sumingz1, zo are two variables encoding the values fronto 3,
OPT-DLL will return

e an assignment with minimal corresponding valuep ifs satisfi-
able, and
e FALSE otherwise.

Assumingzo, 1 represent the actions of going by car and by plane
respectively, (1) encodes the fact that we prefer to not perform these
actions, and that not going by plane is preferred to not going by car.
ConsequentlyppPTDLL will first look for an assignment where both
actions are false, then one in which we use only the car, then one in
which we use only the plane, and only finally for assignments where
we have to use both the car and the plane.

As the example makes clear, the partial order on thé sétliter-
als induces a partial order on the set of total assignments. In the case

OPT-DLL is to first explore the search space where there can be a ngf the example (1), ifuo = {Zo,Z1} U So, i1 = {Z1, 20} U S,

yet ruled-out optimal assignment. in.L, assuming that the current

w2 = {x1,To} US2, us = {x1, 0} U Ss are four total assignments,

assignment ig: and that it is not the case that all the assignmentsye have

extendingy are equally good, this amounts to knowing on which

literal we have to branch.

To make these notions precise, consider a partially ordered sé’¥

S, < in which S is a set of literals anek is such that for each lit-
erall € S, eitherl < lorl < I: If < satisfies this condition, we
say that< is DLL -compatible (with respect to S). For example, the
partial order on{Zo, xo, T1, 1} such that

ZTo < X0, T1 < T1,ZT1 < To, 1)
is bLL-compatible with respect t¢xo, To, z1, T1}. Notice that the
condition that for eachh € S, either! < [ orl < [ ensures that
bothi € S andl € S. Given this, the se§ can be omitted from the
specification of aLL-compatible partially ordered sét <.

The pseudo-code @PT-DLL is represented in Figure 1, where:

e ¢ is a formula;p is an assignmentx is a partial ordemDLL-
compatible with respect to a s&tof literals;

e assignl, ) returns the formula obtained from by (i) deleting
the clause€’ € ¢ with I € C, and(i4) deletingl from the other
clauses inp;

e ChooseLiteral(¢p, 11, <) returns an unassigned litedaduch that

— if there exists a variable iy which is not assigned by, then
each literal’ with I < I has to be assigned hy and

po < p1 < p2 < U3, (2
hile, if 4 andu’ are two total assignments assigning in the same
way bothzo andz1, u £ 1/, i.e., andy’ are equally good.

Assuming< is a given partial order oy, < is extended to the
set of total assignments as followsdfand” are total assignments,
w =<y if and only if

1. there exists a literdlc S with [ €  andl € u'; and
2. foreachliteral’ € SN(p'\p), there exists aliterdle SN(p\p')
such that < [’

The first condition says that two total assignments are not in partial
order if they assign in the same way the literalsSinThe second
condition says that: is preferred tqu’ if for each literall’ € S with
U € i andl’ € u, p contains a literal € S with I € g andl € 1/,
and! is preferred td’ (i.e.,l < I).

In the case of (1), the above definition leads to the partial order on
the set of total assignment satisfying (2).

We can now state the formal result th@®DLL returns an opti-
mal assignment, assuming the input formula is satisfiable.

Theorem 1 Let ¢ be a formula and< a DLL-compatible partial
order on a set of literalsoPDLL (¢, (), <) returns an optimal (with
respect to< extended to the set of total assignments) assignment if
 is satisfiable, and returnBALSE otherwise.



4 Solving optimization problems with oPT-DLL (b) p andv assign in the same way the variablesSin.e.,uNS =
vNS;

© lvnS| =371 v(b;) x 2¢, wherev(b;) is 1 if v assigns; to
true, and ig) otherwise.

ConsideringopTDLL and our definition of optimality given in Sec-
tion 2, it is clear thatoPT-DLL can solve only those optimization
problems in which the partial order on the set of total assignments

can be obtained as the extension abla -compatible partial order . . I .
adder(S) can be realized in polynomial time in many ways, see,

on a set of literals. Indeed, this is not always possible: Assumin o -
we have only two variables,, z1, the total order on the set of total geg [17]. If the above conditions are satisfied, we sayatider(5)

assignmentsz, 7o} < {z1,%0} < {1, 20} < {T1,70} is not is anadder of S with output b,,_1, . .., bo.
obtainable as the result of the extension af.a -compatible partial
order on a set of literals. Still, many important optimization problems .

. . y1mp P P of S with outputb,_1,...,bo. Let ¢ be a formula. Let< be
can be easily modeled viara L -compatible partial order on a set of the DLL-compatible partial order onfb bt such that for
literals, and thus solved withP=DLL. Given a formulayp, we first ) P par n nobee o} such |

X eachi € [0,n — 1], by < b;, and, ifi # 0, by < bi_1. If
considemMIN-ONE/MIN-ONEc and thermAX -SAT/MAX -SAT¢ prob- !

) = . : = OPT-DLL (pUadder(S), 0, <) returns an assignmenithenpN P €
lems: These problems are very interesting from an application per';/IIN ONES If OPTDLL (9, 0, <) returnsFALSE theng is unsat
spective, as briefly described below. We also show beswTANCE- (). 0,<) s

Theorem 3 Let S be a subset ofP. Let adde(S) be an adder

SAT/DISTANCE-SATc problems can be solved viaPDLL. isfiable.

Intuitively speaking, assuming no literal ib,_1,...,bo} is as-
4.1 MIN-ONE and MIN -ONEC signed as unitpPTDLL first explores the branches with the vari-
Let S be a subset of the sétof variables. Consider a satisfiable for- @P1€Sbn—1, ..., bo assigned to false; If all such branches fail, then
mulag. DefineMIN-ONE® () (resp.MIN-ONES (¢)) to be the setof ~ OPTDLL ex_plorgs the_branches in whidh_1,...,b; are aSS|g_ned
assignmentg satisfyingy and havinge N S of minimal cardinality to false whileb, is assigned to trut_e; If al_so these branches fail, then
(resp. minimal). Itis clear thasin-ONE® () C MIN-ONES (¢0). oPT-DLL explores the branches in whidh,_1,...,b2,bo are as-

In MIN-ONE (resp.MIN -ONEC ), the goal is to find an assignment signed to false whilé, is assigned to true; and so on and so forth.

© in MIN-ONE” () (resp.MIN-ONEE ()). As pointed out in [8],

MIN-ONE problems are interesting because various graph problemg 2 MAX -SAT and MAX -SATc

involving combinatorial optimization can be converted in linear time -

into them. In planning, ifp is a formula encoding a planning as sat- Consider a formula. Let S be a subset of the clausesn Intu-

isfiability problem, any assignment satisfyipgcorresponds to a se-  itively speaking, we consider the problem of satisfyificand “as

guence of (possibly parallel) actions achieving the goafi I§ the ~ many as possible” clauses¢n\ S. Formally, definauax -sat® ()
set of action variables ip, (resp. MAX-SAT‘E(L,O)) to be the set of assignments satisfying
each clause ir5 and such that the siC’ : C € ¢\ S,C N

1. if we want that as few as possible actions are executed, then wg £ ¢} is of maximal cardinality (resp. maximal). It is clear that
have to find an assignmentinN-oNE® (¢); MAX -SAT? (p) C MAX -SATE ().

2. if we want that no redundant sequence of (possibly parallel) |n max-sAT (resp.MAX-SATC), the goal is to find an assignment
actions is executed, then we have to find an assignment i, in Mmax -sat?(p) (resp.MAX-SATZ (). The problem of deter-
MIN-ONEZ (). mining an assignment iMAX -SAT® (¢)/MAX -SATS () can be eas-

ily reduced to aMIN-ONE/MIN-ONEC problem by considering the

ormula x(y, S), obtained fromy by adding a newly created vari-

iblev; to thei-th clause inp \ S.

Theorem 2 Let S be a subset of?, and lety be a formula. Let For example, ifp = {{Zo, 71}, {To, 21}, {z0}} and 5 =
~ be theDLL-compatible partial order such thdt < I iff | = 7,  11%0}} X(#, S) is {{v1, To, T1}, {v2, To, 21}, {20} }

I =z, € S.If oPFDLL(ip, (), <) returns an assignment then
[ € MIN-ONEZ (¢). If OPEDLL (¢, (), <) returns FALSE theny is
unsatisfiable.

An assignment imIN -ONEE (¢) can be easily computed vizP T
DLL, as stated by the following theorem, consequence of Theorem

Theorem 4 Let ¢ be a formula. LetS be a subset op. Let V' be
the set of variables in(y, S) and not iny. The following equalities
hold:
Intu_itivgly speakingpLL is forced to split first on the variables &) MAX-SATS(Lp) —{(uNP:pue MIN_ONEV(X(% ),
assigning them to false.

An assignment inIN-ONE® () can be computed vi@PTDLL,  gnd
assuming we have a formula encoding the objective function. This

s ) v
amounts to define a formutadder(S) such that MAX-SATC (@) = {uN P : p € MIN-ONEC (X(¢, 5))}-

1. the only variables in common &alderS) andy are those irf; MAX -SAT is arguably the most studied problem in the SAT litera-
2. if n = [log2(]S| + 1)], adderS) containsn new variables ture after the SAT problem itselfiAX -SATc problems arise in many
bn-1,...,bo;and settings. For instance, in formal verificationgfis a formula encod-

3. for any total assignment to the variables inp, there exists a  ing an initial specification of a system, and4fencodes a refinement
unique total assignmentto the variables imdder(.S) such that of the initial specification, a standard verification task is to prove that
(a) v satisfiesadder(S); the refinsarnemo/ i§ cgmpatible withp,_i.e., t_hatgpuu ' is satisfiable_. )
If ¢ U " is unsatisfiable, one goal is to find “as large as possible
3 The specification o&dder(S) will be used also in Section 4.3, whefeis parts of the refinement which are consistent with the initial design:
assumed to be an assignment. Such parts correspond to the assignmentsAn -SATE (o U ¢').




4.3 DISTANCE-SAT and DISTANCE-SATc [

[instanc¢l #C | BF [orBDP PBS4[MsAT+[optsat[[#Cc [ optsat |

barrel3]] 941 ] 0.23] 2.04] 0.88] 0.12] 0.9 [[ 941 ] 0.09

DISTANCE-SAT [3] is another optimization problem in which, given

barrel4|[ 2034| 0.65 | 47.59| 11.67| 0.34 | 21.19]| 2034| 1.03

aformulay and an assignmenpt, the goal is to find an assignmeuit

barrel5[[ 5382] 21.42] MEM | MEM | 24.01[177.11] 5382] 122.76

barrel6][ 8930{213.60 MEM | — | 95.56[896.45] 8930(1438.08

satisfyingp and differing “as little as possible” from. Here we con-

barrel7|[{13764 SF | MEM 285.55435.44 TIME

sider also its variarISTANCE-SATc . Formally: Letu, be an assign-

ImultO || 1205] 0.39 | 13.05| 1.45| 0.16 | 7.35 || 1205] O

ment. DefineDISTANCE-SAT(y, i) (resp.DISTANCE-SATC (¢, 1))

Imult2 [[ 3524 57.11| TIME [TIME| 6.7 [16.46[] 3524] 0.1

to be the set of assignments satisfying o and having the set

Imult4 || 6068[261.74 MEM 35.34| 98.05]| 6068| 27.56

©[ 00| N[ O] U1 B W[N] |

Imult6 || 8852[774.08 MEM 157.02609.07 TIME

{l : 1 € p,l € p'} of minimal cardinality (resp. minimal). It is
clear thaDISTANCE-SAT® () C DISTANCE-SAT‘E(QO).

10| Imult8 [|11876§ SF | MEM 297.32/704.08 TIME

11| qvar8 || 2272| 0.62 | MEM | 17.67| 2.95 | 36 || 2272] 3.58

12| gqvarl0|| 5621 2.21 | MEM 55.54[156.44| 5621| 48.25

Theorem 5 Lety be aformula. Lej: be an assignment. The follow-

234.97

13| gqvarl2|| 7334| 6.2 | MEM 36.8 | 74.49]| 7334| 238.36

ing two facts hold:

14 9312 SF | MEM 117.25815.66| 9312| 942.48

gvarl4

15| gqvarl6|| 6495| SF | MEM 51.33[117.3]] 6495] 261.83

16| c432 || 1114|131.06 TIME| 7.22 | 0.24 | 7.6 || 1114] 0.74

1. Let < be theDLL-compatible partial order such that < 1
if | € p. If OPTDLL(p, 0, <) returns an assignment’ then

17| c499 || 1869|TIME | TIME [100.41 0.8 | 4.59 || 1869| 4.3

18| ¢880 || 2589| TIME | TIME |320.96 5.54 | 38.91|| 2589| 16.72

1’ € DISTANCE-SATC (¢, ). If OPTDLL (¢, @, <) returnsFALSE

19| c1355 (| 3661| TIME | TIME | TIME | 80.09| 21.2 || 3661| 30.86

theny is unsatisfiable.

20| 1908 || 5095| TIME | MEM | TIME | 58.01[165.99| 5095] 129.95

2. Let addefu) be an adder of. with outputb,—1,...,bo. Let <

21| ¢2670 || 6755|TIME | MEM 63.64100.31]| 6755| 359.52

be thepLL-compatible partial order o{b,,—1, ..., bo} such that

22| ¢3540 || 9325| TIME | MEM 242.02/786.33 TIME

23] u-bw.af[ 3290] 7.81 [TIME | 249 [209.03178.18] 3288] 0.04

for eachi € [0,n — 1], b; < b;, and, ifi # 0, b; < b;—1.

24| u-bw.b TIME | MEM TIME | TIME [[11487 87.61

If OPTDLL (¢ U adder(p),, <) returns an assignment’ then

25| u-log.af| 5783 TIME | MEM [TIME | 59.65| 179.3]| 5782| 1.35

u' N P € DISTANCE-SAT(ip, u). If OPTFDLL (9 Uadder(p), 0, <)

26| u-log.b][ 6428 TIME | MEM 35.37(144.83| 6428| 19.68

returnsFALSE theny is unsatisfiable.

27| u-log.c[| 9506 | TIME | MEM 383.65/731.871| 9506 76.89

28|u-rock.g| 1691| 13.29| TIME | 41.29|206.5¢ 6.26 || 1690| 4.79

5 Implementation and experimental results

[ [instance][ #C [orBDP| PBS4[MSAT+ [optsat [ #Cc [optsat |
1] bcomp5]] 39 | 0.95 | 887 | 04 | 7.08 || 85 0
2| bmax6 || 61 |120.05] TIME | 8.42 |274.13] 131 | O
3| bm2 || 940 | TIME | TIME | 19.73 | TIME || 1054 | 0.03
4| bm3 |[6356| TIME | — | TIME | 79.17]| 6422 | 0.65
5] gal8 MEM | — SF | TIME || 14207 2.87
6] 3blocks || 56 | 282.03] 0.10 | 0.29 | 2.2 58 | 0.06
7 | 4blocksbj| 66 | TIME | 0.61 | 0.24 | 5.81 || 66 | 0.09
8| 4blocks || 108 | TIME | 115.96| 50.94 | TIME || 116 | 0.39
9| Targe.c || 265 | TIME | 0.94 | 096 | 1.5 || 272 | 0.3
10| Targe.d || 431 | TIME | - 771 | 99.75| 443 | 1.1
11| loga || 135| TIME | TIME | 1.39 | 7.53 || 135 | 0.04
12| Tog.b || 138 | TIME | TIME | 8.99 | TIME || 138 | 0.04
13| rocka || 65 | TIME | 1.21 | 0.2 | 939 || 65 | 0.01
14| tockb || 69 | TIME | 0.14 | 0.27 | 5.0 69 | 0.01
15] r2b3.1 || 141] 32.76] 0.04 | 0.2 | 0.17 || 141 | 0.04
16| 12b3.2 || 138 | 67.14| 0.03 | 0.08 | 0.14 || 138 | 0.03
17| r3bL.1 || 119 | TIME | 857 | 1.3 | 6.73 || 119 | 1.29
18| r3bl.2 || 126 | TIME | 7.09 | 0.82 | 8.49 || 126 | 0.21
19| r3b2.1 || 217 | TIME | 0.33 | 0.46 | 0.71 || 217 | 0.09
20[ r3b2.2 [ 206 | TIME | 0.25 | 053 | 0.73 || 206 | 0.08
21] qol-8 || 64 | TIME | 81.46] 31.06 | 85.67] 64 | 6.87
22| qu2-7 || 49 | 75.03| 023 | 027 | 0.72 || 49 | 0.16
23] qg2-8 || 64 | MEM | 54.26| 21.83 | 29.56|| 64 | 20.83
24| qg3-8 || 64 | 1962| 024 | 01 | 061 64 | 0.02
25 qg4-9 || 81 | TIME | 53.12| 19.36 |250.69] 81 | 0.2
26| qg5-11 || 121 | MEM | 0.25 | 0.43 | 0.86 || 121 | 0.15

Table 1. MIN-ONE (columns 3-7) anahiN-ONEC (columns 8-9) problems.

The implementation of a solver based on our ideas requires th
modification of the heuristic of a DLL based SAT solver. In our case
we selecteCHAFF [13], the 2004 version. Such choice is moti-

vated by our interest in solving large problems coming from applica-

Table 2. MAX-SAT andMAX -SATc problems, columns 3-8 and 9-10 resp.

For MIN-ONE- problems, the heuristicgsibs of ZCHAFF has
been modified by simply selecting the unassigned litevath high-
estvsIDS score, and then assigning the variablen [ to false. For
MAX -SAT, if there exists an unassigned litetah x(i, S) and not
in ¢, the one with the highestsibs score is selected and the variable
initis assigned to false. Otherwise, the unassigned litavith high-
estvsiDS score is selected and assigned to true. Analogous modifica-
tions have been done as1DS in order to solvevIN -ONE/MAX -SAT
problems.

The solution ofMIN-ONE/MAX -SAT problems also required the
implementation of a functioadder(S) as specified in Section 4.1.
As we already said, there are various ways to implement such func-
tion. We used the method described in [17] which takes linear time
in the size ofS. We call optsat the resulting systerhBeside the
modification in the heuristic, we had also to moddfZHAFF pre-
processor in order to disable the assignment of pure literals.

About the other solvers, we initially considered both dedicated

solvers forMAX -SAT problems —likeBF [7], MAX SOLVER [18],
wcsP[14]— and generic Pseudo-Boolean solvers —likesDpPver.
1.1.1 [4], PBS ver. 2.1 and ver. 4 [1)SAT+ (abbreviation of MN-
ISAT+) based omMINISAT ver. 1.13 [10].MSAT+ was the solver
able to prove unsatisfiability and optimality to a larger number of
instances than all the other solvers that entered into the last Pseudo-
Boolean evaluation [12]. Considering the dedicated solvens fot-
SAT, we discardediax SOLVER andwcsp after an initial analysis
because they seem to be tailored for relatively small typically ran-
domly generated problems, and are thus not suited to deal with prob-
lems coming from applications. About the Pseudo-Boolean solvers,
e do not show the results for PBS ver 2.1 because it is almost al-
ways slower than ver 4.0.

Each solver has been run using its default settings. All the ex-

tions, and by the fact that we already had some experience in hacking Available at http://www.star.dist.unige.it" marco/

zCHAFF code.

OPTSAT/.



periments have been run on a Linux box equipped with a Penlterals to be used while branching. We specifically consid-
tium IV 2.4GHz processor and 1GB of RAM. The results fan - ered MIN -ONE/MIN -ONEc/MAX -SAT/MAX -SATc/DISTANCE-
ONE/MIN-ONEc andMAX -SAT/MAX -SATc problems are reported in - SAT/DISTANCE-SATc problems, but it is clear that any optimization
Tables 1 and 2 respectivel}CPU time is measured in seconds; time- problem where the ordering on the set of total assignments can
out has been set to 1800 seconds. In the tables, “TIME” indicates thdte obtained by extending a partial order on a set of literals can
the solver does not solve the instance within the time limit; “MEM” be handled byorPTDLL. In particular, all the problems where the
indicates that the solver exceeds all the available memory; “SF” inoptimality condition is expressed via an objective functifincan
dicates that the solver exits abnormally; “~" indicates that the solvebe handled byoPTDLL, provided we have a formula encoding the
returns an incorrect result. value of f. This is indeed the case, e.g., f®EIGHTED-MAX -SAT
Considering the results fariN-ONE problems in columns 4-7 of where the encoding is illustrated, e.g., in [17].
Table 1, we see that our solveptsat performs much better than all We implemented our ideas usiag@ HAFF as engine, and the en-
the other solvers except fasAT+. oPBDPsolves a few instances, coding of [17] to solveMIN-ONE/MAX -SAT problems. The results
PBS times out or outputs an incorrect result on large instances, oware positive and encouraging. We believe that even better perfor-
solver times out on four instances, whissAT+ times out on 1 in-  mances will be obtained by usingNISAT and, forMIN -ONE/MAX -
stance and on another instance it exits abnormally. SAT problems, using the encoding presented in [2, 15] of the objec-
ConsideringMIN-ONEc problems, the results of our solver are tive function. Some of these encoding produce formulas of a big-
shown in the last column of the table. Given that for any formulager size, but they should lead to better performances of the back-end

 in the tabled # MIN-ONE(¢) C MIN-ONEC () and that it is not
possible to codifyMIN-ONEc problems in the other solvers we con-

solver: See [2, 15] for more details.

sidered, it makes sense to compare the performances of our solv rCKNOWLEDGEMENTS

with the performances of the other solvers in columns 4-6. The firs

observation is thabptsat is much faster than all the other systems: This work is partially supported by MIUR.

Almost all the problems are solved in less than 1s. Two other obser-
vations are in order:

1. Comparingoptsat results in columns 7 and 9 we see that our [1]
solver is much faster in solvingIN-ONEc thanMIN-ONE prob-
lems. This could have been expected given that handlingoNE 2
problems requires the encoding of adders counting the number of3]
variables set to true, and many of the examples have more than a
thousand variables (the “gal8” instance Ba$8000 variables). [4]
2. comparing the cardinalit:Cc in column 8 (resp#C in column
3) of the optimal assignment returned bgtsat when solving a [5]
MIN-ONEc (resp.MIN-ONE) problem, we see that for most in-
stances#C = #Cc.
[6]
Considering the results foraX -SAT problems in Table 2, we see
that our solvepptsat performs much better than all the other solvers, 7]
including the dedicated ones, except fosAT+. In comparison to
MSAT+, our solver is slower of a factor on most instances, but is also[g]
faster on some instances. As in the previous case, the performances
of optsat on the same instances treatedves< -SATc problems are ol
shown in the last column. Differently from the previous caggsat
is slower in solvinguAX -SATc thanMAX -SAT problems except for
the planning instances (rows (23-28)). We do not yet have a clear un-
derstanding of why this happens. We believe that this is related to tHé1l
fact that for all the instances that we considergd;/#Cc (repre- [12]
senting the cardinality of the set returneddptsat when solving a
MAX -SAT/MAX -SATc problem) are very close to number of clauses
in the original SAT instance, but this is still subject of investigation. [13]

(10]

. [14]
6 Conclusions and future work
[15]
In this paper we showed thatLL can be used to solve op-
timization problems by simply imposing an ordering on the [16]

5 In Table 1 (1-5) are Formal Verification instances ((1-2) from the Bejing’96 (7]
competition, (3-5) by Ofer Shtrichman); (6-14) are planning problems from, 18]
SATPLAN; (15-20) are Data Encryption Standard problems; (21-26) are[
quasi group. In Table 2, (1-13) are Bounded Model Checking (BMC) prob-
lems used in the original BMC paper; (16-22) are miter-based circuit equiv-
alence benchmarks by Joao Marques-Silva; (23-28) are planning problems
from SATPLAN.
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