The SAT-based Approach to Separation Logic

Alessandro Armando, Claudio Castellini, Enrico Giunchiglia and

Marco Maratea
DIST, University of Genova
Viale F. Causa, 18 — 16145 Genova, Italy

{ armando, druwho, enrico, marco}@ dist. unige. it

Abstract. The SAT-based approach to the decision problem for expressive, decid-
able, quantifier-free first-order theories has been investigated with remarkable results
at least since 1993. One such theory, successfully employed in the formal verification
of complex, infinite state systems, is Separation Logic (SL), which combines Boolean
logic with arithmetic constraints of the form = — y < ¢, where 1 is <, <, >, >, =,
or #. The SAT-based approach to SL was first proposed and implemented in 1999:
the results in terms of performance were good and since then a number of other
systems for SL have appeared. In this paper we focus on the problem of building
efficient SAT-based decision procedures for SL. We present the basic procedure and
four optimizations that improve dramatically its effectiveness in most cases: (a) I.52
preprocessing, (b) early pruning, (¢) model reduction, and (d) best reason detection.
For each technique we give an example of how it might improve the performance.
Furthermore, for the first three techniques, we give a pseudo-code representation and
formally state the soundness and completeness of the resulting optimized procedure.
We also show how it is possible to check the satisfiability of valuations involving
constraints of the form x — y < ¢ using the Bellman-Ford algorithm. Lastly, we
present an extensive comparative experimental analysis, showing that our solver
TSAT++, built along the lines described in this paper, is currently the state-of-the-
art on various classes of problems, including randomly generated, hand-made, and
real-world instances.

Keywords: SAT-based decision procedures, Separation Logic.

1. Introduction

The SAT-based approach to satisfiability problems beyond proposi-
tional logic dates back to at least the early 90s (Armando and Giunchiglia,
1993), when it was noted that, under some suitable conditions, the
problem of determining the satisfiability of any decidable, quantifier-
free first-order theory can be reduced to Boolean search coupled with
a satisfiability procedure (i.e. procedure capable of deciding whether
any given set of literals in satisfiable or not w.r.t. the given theory). In
more detail, the SAT-based approach to the satisfiability problem of a
formula ¢ in a theory T" amounts to using:

— a SAT solver to generate a valuation u entailing ¢ in propositional
logic, and

';:‘ © 2005 Kluwer Academic Publishers. Printed in the Netherlands.

O5jar-final.tex; 16/05/2005; 15:17; p.1

2 Armando, Castellini, Giunchiglia, Maratea

— a satisfiability procedure to test whether u is satisfiable in the
theory T,

till a satisfiable p is found (in which case also ¢ is satisfiable), or a
set of valuations whose disjunction is logically equivalent to ¢ has been
generated and tested (in which case ¢ is unsatisfiable). Along the years,
the SAT-based approach has been applied to more theories and even
to different problems, such as propositional modal logics (Giunchiglia
and Sebastiani, 1996; Giunchiglia et al., 2002), conformant planning
(Castellini et al., 2003), and combination of expressive theories (Stump
et al., 2002), with remarkable results. As the research proceeded, it
became clear that the approach could harvest the technological im-
provements achieved in propositional satisfiability. See (Armando et al.,
2005) for a unifying perspective on the SAT-based approach.

Many verification and scheduling problems involve arithmetic con-
straints of the form z —y < ¢, where = and y are variables ranging over
the reals or the integers and < is <, <, >, >, =, or #. These constraints
are called separation terms by Pratt (Pratt, 1977), and Separation Logic
(from now on, SL) is the name now used to denote the logic allowing for
arbitrary Boolean combination of separation terms.! SL is also called
“difference logic” by some authors (see, e.g., (Cotton et al., 2004)) and
can be seen as a generalization of a well-known framework for temporal
reasoning, the Temporal Constraint Network, introduced by Decther,
Meiri and Pearl (Dechter et al., 1989). SL is the logic we focus on in
this paper.

The first application of the SAT-based approach to a significant
fragment of SL was given in (Armando et al., 1999). In this case, as well
as with modal logics and conformant planning, excellent results were
obtained. Since then, a number of other systems for SL have appeared
(see, e.g., (Oddi and Cesta, 2000; Audemard et al., 2002; Strichman
et al., 2002; Armando et al., 2004b; Cotton et al., 2004)).

In this paper we focus on the problem of building efficient SAT-based
decision procedures for SL. To this end, we present the basic procedure
and four optimizations that improve dramatically its effectiveness in
most cases: (a) 1Sy preprocessing, (b) early pruning, (c) model reduc-
tion, and (d) best reason detection. Optimizations (a) and (b) were first
proposed in (Armando et al., 1999), whereas (c) and (d) have been pre-
sented for the first time in (Armando et al., 2004b). For each technique
we give an example of how it might improve performance. Furthermore,
for the first three techniques, we give a pseudo-code representation and

! Unfortunately, the name Separation Logic is also used to denote an extension
of Hoare logic. (Strichman et al., 2002) is the first reference we are aware of where
the name is resumed from Pratt’s paper.

05jar-final.tex; 16/05/2005; 15:17; p.2

The SAT-based Approach to Separation Logic 3

formally state the soundness and completeness of the corresponding
procedure. We also show how it is possible to check the satisfiability of
valuations involving constraints of the form =z — y < ¢ using the well
known Bellman-Ford algorithm (from now on, BF).

We then present an extensive comparative experimental analysis,
showing that our solver TSAT++, built along the theoretical lines of
the approach, is currently the state of the art on various classes of
problems, including randomly generated, hand-made, and real-world
instances.

The paper is structured as follows: Section 2 is about SL, and
presents its syntax, semantics and some other formal properties of SL;
Section 3 introduces the basic SAT-based procedure for SL, while the
optimizations are presented in Section 4; in Section 5 we present a
satisfiability algorithm for valuations based on BF; in Section 6 we
describe the actual implementation of our system and present a thor-
ough experimental evaluation; in Section 7 we outline the related work;
lastly, in Section 8 we have the conclusions.

2. Theoretical background

In this Section we give some theoretical background and fix the termi-
nology which will be used throughout the paper.

2.1. SEPARATION LOGIC

2.1.1. Syntaz

Let V and P be two disjoint sets of symbols, called variables and propo-
sitional letters respectively. A constraint is an expression of the form
z —y ¢ where z,y € V, € {<,<,>,>,=,#} and ¢ is a numeric
constant. The notations x > y+ ¢ and £ — ¢ < y will also be freely used
in place of £ — y > ¢. An atom is either a constraint or a propositional
letter. A formula is a combination of atoms via the unary connective
“=” for negation and the n-ary connectives “A” and “V” (n > 0) for
conjunction and disjunction respectively. We will write T and L for the
empty conjunction and the empty disjunction respectively. A literal is
either an atom or its negation. If ¢ is an atom, then @ abbreviates —a
and =a stands for a.

EXAMPLE 1. In (Bryant et al., 2002), the case-study is introduced
of a bounded model checking problem for the memory unit of the Mo-
torola Elf microprocessor. The unit is initially modeled as 20K lines of
VERILOG, with 80 integer-valued variables and 70 propositional let-
ters. After some translation stages, the problem is reduced to checking

05jar-final.tex; 16/05/2005; 15:17; p.3

4 Armando, Castellini, Giunchiglia, Maratea

satisfiability of a formula in SL, a fragment of which, call it ¢g;s, looks

like this:
(p1V ~(VPred = Igg))

A
(—|p1 V VPred = IRR) A
(mp2V VPred < Irp+1) A
(pQV—'(VPTed< IRR+1)) A
(p3 V pa) A
(p3 V —ps V = Venl’= Venl) A
(ps V(Venl’+2 = Venl)) A
(mps V VenI’+ 2 = Venl)

In the above formula, VPred, Irg, Venl, Venl’ are variables and p1, po,
Pp3, Pa, ps are propositional letters. VPred < Iggr + 1 is a constraint,
and ps and —(VenI’+ 2 = Venl) are literals. *

2.1.2. Semantics
Let the set D (domain of interpretation) be either the set of the real
numbers R, or the set of integers Z. An assignment is a total function
mapping variables to D and propositional letters to the truth values
false and true, standing for falsehood and truth respectively.

Let o be an assignment and ¢ be a formula. Then o |= ¢ (o satisfies
a formula ¢) is defined as follows.

oz —ywmcifand only if o(z) — o(y) e,
o = p with p € P if and only if o(p) = true,
o = ¢ if and only if it is not the case that o = ¢,
o = (A1) if and only if for each i € [1,n], 0 |= ¢;, and
o = (Vi) if and only if for some i € [1,n], o = ¢;.
If o = ¢ then o will also be called a model of ¢. We also say that

— a formula ¢ is satisfiable if and only if there exists an assignment
satisfying it;

— a formula ¢ is valid if and only if every assignment satisfies it;

— two formulae ¢ and 1 are logically equivalent if and only if the
formula (=¢ V 1) A (¢ V =) is valid.

Here we consider the problem of deciding whether a formula is sat-
isfiable or not in the given domain of interpretation . Notice that
satisfiability of a formula depends on D, eg., x —y > 0Az —y < 1

O5jar-final.tex; 16/05/2005; 15:17; p.4

The SAT-based Approach to Separation Logic 5

is clearly satisfiable if D is R but unsatisfiable if D is Z. However, the
problems of checking satisfiability in Z and R are closely related and
will be treated uniformly almost always. Therefore, from now on, we
will drop the distinction, and we will re-introduce it only when needed.

EXAMPLE 2. Consider Example 1. ¢gy is satisfiable, and a model
is 0 = {p1 — true, VPred — 12, Igg > 12,py > true,ps — true,ps —
true, ps — true, Venl — 10, VenlI’ — 8}. *

2.2. VALUATIONS

A waluation is a finite set u of literals such that for each atom a, if
a € p then —a & p. In the following if y is a valuation, then by u we
also denote the formula A;¢,l. Context will make clear what is intended.
Moreover, we say that

1. a valuation p propositionally entails a formula ¢ if (—p V ¢) can be
proved in propositional logic;

2. two formulae are propositionally logically equivalent if one formula
propositionally entails the other, and vice versa.

The following result shows the importance of valuations.

THEOREM 3. A formula ¢ is satisfiable if and only if there exists a
valuation p such that

1. p is satisfiable,
2. all atoms in u occur in ¢, and
3. u propositionally entails ¢.

Proof. The right to left direction is trivial. For the left to right
direction, first notice that it is always possible to convert ¢ to a logically
equivalent formula in the same atoms and in Disjunctive Normal Form
(DNF). Let S be the set of disjuncts in the DNF. Then by the semantics
of Vv it follows that ¢ is satisfiable if and only if there is 4 € S such
that p is satisfiable. Furthermore, for such pu, also the second and third
properties hold. O

Given the above result, in order to check the satisfiability of a
formula ¢, the issue becomes that of efficiently building a set S of
valuations which is propositionally complete for ¢, i.e., such that the
disjunction of the valuations in S is propositionally logically equivalent

O5jar-final.tex; 16/05/2005; 15:17; p.5

6 Armando, Castellini, Giunchiglia, Maratea

to ¢. Given such a set, we can then separately check the satisfiability
of its elements.

3. The SAT-based approach to Separation Logic

Theorem 3 lays the foundation of a simple method for determining the
satisfiability of a formula ¢:

1. generate a set S of valuations which is propositionally complete for
¢, and then

2. test if at least one of the valuations in S is satisfiable: if this is the
case, then ¢ is satisfiable, otherwise ¢ is unsatisfiable.

Further, if one valuation p in S is satisfiable, then the models of i are
also models of ¢. Thus, in the above schema, the problem of finding a
model of an arbitrary formula has been reduced to the problem of
finding a model of a valuation. Notice that the ability to return a
model if the formula is satisfiable is highly desirable in many applica-
tions. For example, if the formula represents an instance of a bounded
model-checking problem, then from any model of the formula it is usu-
ally possible to extract a trace witnessing the violation of the desired
property.

The reason why this method has become quite popular is that
state-of-the-art SAT-solvers can be employed to efficiently generate
valuations on-the-fly. In fact, valuations propositionally entailing the
formula can be generated one by one, and each can then be checked
for satisfiability before generating the next one, until a positive answer
is returned, or there are no more valuations left. This way the need
of generating all (potentially exponentially many) satisfying valuations
beforehand is avoided. This is the foundation of the SAT-based ap-
proach, first envisioned in (Armando and Giunchiglia, 1993) and first
applied to SL in (Armando et al., 1999).

The reasons of its success are at least three:

1. more than 40 years of research on propositional satisfiability have
made SAT solvers reliable, efficient and, in some cases, reusable;

2. the two phases, namely enumeration and satisfiability checking, can
be effectively de-coupled, nevertheless allowing for a great deal of
search guiding information to flow between the modules which take
care of each phase;

3. the range of theories this approach can tackle is quite wide and
interesting.

O5jar-final.tex; 16/05/2005; 15:17; p.6

The SAT-based Approach to Separation Logic 7

In the rest of this section we give a precise characterization of the
SAT-based approach and prove its fundamental properties.

Without loss of generality, in the following we assume that all for-
mulae are in Conjunctive Normal Form (CNF) and do not contain any
constraint of the form z — y = ¢ or £ — y # ¢. Constraints of the form
z—y = cand z—y # c can be always replaced by the logically equivalent
formulae (z—y < ¢)A(xz—y > ¢) and (z—y > ¢)V(z—y < c) respectively.
Further, by using the structure-preserving clause form transformation
described in, e.g., (Tseitin, 1970; Plaisted and Greenbaum, 1986), trans-
lation in CNF can be done efficiently. Given the CNF assumption, a
formula is represented as a conjunctively intended set of clauses, each
clause being a disjunctively intended set of literals.

3.1. BASIC PROCEDURE

function DLL_ENUM(¢,u)
1 if {} € ¢ then return FALSE
if ¢ = () then Print(u); return FALSE
if {I} € ¢ then return DLL_ENUM(Simplify(,¢),u A1)
[:= ChooseLiteral(¢)
return DLL_ENUM (Simplify(1,¢), A I) or
DLL_ENUM (Simplify(1,$),u A1)

U W N

Figure 1. DLL algorithm as enumerator.

A pseudo-code description of a procedure that can be used to carry
out the propositional analysis phase is given in Figure 1. It is essen-
tially the Davis, Logemann and Loveland algorithm (from now on,
DLL) (Davis et al., 1962) for propositional satisfiability extended in
such a way to support the enumeration of all the valuations proposi-
tionally entailing the input formula.

In the procedure:

1. Simplify(l,¢) simplifies the formula ¢ under the assumption that
the literal [is true. This is done by removing from ¢ all clauses
in which [appears and by removing [from all clauses in which [
appears;

2. ChooseLiteral(¢) picks a literal [in ¢ according to some heuristic
function.

Notice that if ¢ = () then the current valuation, yu, is printed and
FALSE is returned so to force backtracking.

O05jar-final.tex; 16/05/2005; 15:17; p.7

8 Armando, Castellini, Giunchiglia, Maratea

There is strong empirical evidence in the literature (see, e.g., (Le Berre
and Simon, 2003)) that DLL is the current best among the complete
algorithms for solving the SAT problem. A number of improvements
to DLL have been proposed, especially on the heuristic function used
in ChooseLiteral(¢), on the data structures employed, on the way unit
propagation and backtracking are performed, but the basic algorithm
still stands unchanged.

LEMMA 4. (DLL as an enumerator) Let ¢ be a propositional formula.
DLL_ENUM/(¢,T) prints a set of valuations which is propositionally
complete for ¢.

Proof. The statement is proved in (Giunchiglia et al., 2002). d

function TSAT(¢,u)
1 if {} € ¢ then return FALSE
if ¢ = () then return SatCheck(u)
if {I} € ¢ then return TSAT(Simplify(l,¢),u A1)
[:= ChooseLiteral(¢)
return TSAT (Simplify(/,¢),u Al) or
TSAT (Simplify(I,4),u A1)

O W N

Figure 2. Basic SAT-based decision procedure based on DLL.

DLL_ENUM(¢,u) can be readily turned into a decision procedure
for SL as show in Figure 2. The modifications are limited to the case in
which ¢ = . Instead of printing y and unconditionally returning FALSE,
we now return the result of invoking SatCheck(u), where SatCheck(u)
is a satisfiability procedure for valuations, i.e., it returns TRUE if u is
satisfiable and FALSE otherwise. This procedure clearly depends on the
decidable theory under consideration. As we will see in Section 5, a
satisfiability procedure for SL valuations can be readily built by using
BF, which runs in polynomial time (see, e.g., (Cormen et al., 2001)).

THEOREM 5. (Soundness and completeness of TSAT) Let ¢ be a
formula. Then TSAT (¢, T) returns TRUE if ¢ is satisfiable, and FALSE
otherwise.

Proof. Tt readily follows from Theorem 3, from the soundness and
completeness of the DLL algorithm and from Lemma 4. O

EXAMPLE 6. Once again, let us consider Example 1. Assume, more-

over, that ChooseLiteral simply returns the first atom in lexicographical
order. Then here is how TSAT (¢g;s,T) works:

05jar-final.tex; 16/05/2005; 15:17; p.8

The SAT-based Approach to Separation Logic 9

1. since there are no unit clauses, p; is chosen and p = {p; };

2. after Simplify(p1,¢ris) is executed, the second clause has become
unit since —p; has been removed from it; therefore VPred = Igp is
detected as appearing in a unit clause and added to y;

3. same as Items 1 and 2, but with ps and VPred < Irr + 1; now
= {p1, VPred = Igg,p2, VPred < Irg + 1};

4. again, there are no unit clauses, therefore ps is chosen and added
to p;

5. after Simplify(p3,fr;r) is executed, no unit clauses are left, so ps is
chosen and added to y;

6. lastly, VenI’+ 2 = Venl is detected in a unit clause and added to p
which is now {p1, VPred = Irg,p2, VPred < Irr +1,ps,ps, Venl’+
2 = Venl};

7. ¢gir has now become empty; SatCheck is called and a model of p,
which also is a model of ¢g;y, is found; for instance, the model in
Example 2.

4. Optimizations

The clear separation between the enumeration of valuations proposi-
tionally entailing ¢ and the check of their satisfiability is the key feature
of the SAT-based approach to building decision procedures. However,
the naive application of this idea may suffer from the generation of
exponentially many unsatisfiable valuations. The reason of this inef-
ficiency is that the SAT solver is not aware of the properties of the
background theory, in our case SL. To illustrate this point, let us again
consider the problem of Example 1. If VPred = Irpg is assigned to true,
then it is pointless to assign false to VPred < Irgr+ 1 as this valuation
(or any extension thereof) will be later found to be unsatisfiable and
hence rejected by SatCheck.

As a matter of fact most optimizations to the basic procedure that
have been proposed in the literature aim at preventing the generation of
unsatisfiable (and hence useless) valuations. In this section we describe
four optimizations that—as shown in Section 6—make TSAT++ the
current fastest decision procedure for SL on a wide range of benchmark
problems.

05jar-final.tex; 16/05/2005; 15:17; p.9

10 Armando, Castellini, Giunchiglia, Maratea

4.1. IS,, PRE-PROCESSING

To reduce the enumeration of unfruitful valuations at a reasonable
price, (Armando et al., 1999) introduced the so called I.S,, pre-process-
ing. The name stands for Inconsistent Subsets and the subscript number
represents the size of the subsets sought for. Naively put, if P is the
set of constraint literals occurring positively in the input formula, 1.5,
checks the satisfiability of all the valuations P’ subset of P such that
|P'| < n: for each unsatisfiable subset P’, the clause V;cp/l is added to
the input formula before calling TSAT.

Although IS, can be exponential in general, for each fixed n polyno-
mially many subsets of cardinality n exists, and if satisfiability checking
is done in polynomial time the resulting procedure runs in polynomial
time.

For a given value of n, it also makes sense to generalize the idea in
order to check the satisfiability of sets P, with | P| < n, of literals whose
atom occurs in the input formula. To ease the presentation, we restrict
to the case in which n = 2. The generalization of .52 works as follows:
for each unordered pair {¢;,c;} of distinct SL-constraints appearing in
¢ and involving the same variables, all possible pairs of literals built
out of them are checked for satisfiability.

The resulting optimized version of TSAT is given in Figure 3.

function TSAT _1S55(¢)
1 let QZS() =T
2 foreach unordered pair of SL-constraints {c;,¢;} in ¢
3 involving the same variables,
4 if SatCheck(c; A ¢j)=FALSE then ¢ := ¢o A (—¢; V —¢;)
5 else if SatCheck(—c; A ¢j)=FALSE then ¢y := ¢y A (¢; V —¢;)
6 else if SatCheck(c; A —¢;)=FALSE then ¢y := ¢y A (—¢; V ¢;)
7 else if SatCheck(—c; A —c;)=FALSE then ¢y := ¢o A (c; V ¢j)
8 return TSAT((¢o A ¢),T)

Figure 8. IS pre-processing.

THEOREM 7. (Soundness and completeness of TSAT_1S5) Let ¢ be
a formula. Then TSAT_1S;(¢) returns TRUE if ¢ is satisfiable, and
FALSE otherwise.

Proof. By Theorem 5, since ¢q is logically valid and therefore ¢ and
¢o N ¢ are logically equivalent. O

Objar-final.tex; 16/05/2005; 15:17; p.10

The SAT-based Approach to Separation Logic 11

EXAMPLE 8. Consider Example 1 once more. After the pre-processing
step of TSAT_IS2(¢miy), the clauses

—(VPred = Igrgr) V VPred < Igp + 1

and
—(VenI’= Venl) V =(VenI’+ 2 = Venl)

are added to ¢g;y. These added clauses allow for more pruning while
descending the search tree.

Consider Example 6. In TSAT _I.55(¢g;¢), choosing p; forces VPred =
Irgr by unit propagation; but now, thanks to the clause added by 155,
this also forces VPred < Irr+1, which in turn forces py. TSAT (¢giy,T)
on the other hand, had to branch on ps. *

1S5 is a simple way of guiding the generation phase by taking into
account the structure of the constraints in the input formula. 152 has
been proved to speed-up the search, especially on randomly generated
problems such as the binary Disjunctive Temporal Problems (DTPs),
which are made of binary clauses containing constraints only (see Sec-
tion 6.1). In that case, the effectiveness of the technique is dramatic,
since adding more binary clauses, which is what ISy does, paves the
way to detect and propagate more unit clauses once a literal has been
selected by ChooseLiteral.

4.2. EARLY PRUNING

An alternative approach that aims at limiting the generation of unsat-
isfiable valuations is based on the idea of checking the valuations while
they are generated by TSAT. This technique is called early pruning
(EP) and relies on the fact that no unsatisfiable valuation can be
extended into a satisfiable one by adding more constraints. EP can
be readily incorporated in TSAT as shown in Figure 4.

function TSAT _EP(¢,u)

1 if {} € ¢ then return FALSE
if ¢ =0 then return SatCheck(u)
if {I} € ¢ then return TSAT_EP (Simplify(l,¢),u A 1)
if SatCheck(y)=FALSE then return FALSE
[:= ChooseLiteral(¢)
return TSAT_EP(Simplify(l,4),u A1) or

TSAT_EP (Simplify(I,4),u Al)

SO W N

Figure 4. TSAT with early pruning.

O5jar-final.tex; 16/05/2005; 15:17; p.11

12 Armando, Castellini, Giunchiglia, Maratea

THEOREM 9. (Soundness and completeness of TSAT _EP) Let ¢ be
a formula. TSAT _EP (¢, T) returns TRUE if ¢ is satisfiable, and FALSE
otherwise.

Proof. By Theorem 5 we know that TSAT is sound and complete.
Now, first notice that TSAT _EP only differs from TSAT in that one
more recursion base case, possibly returning FALSE, has been introduced
at line 4. This fact ensures soundness of the function: if TSAT finds
no model of ¢, neither will TSAT_EP.

As far as completeness is concerned, assume by contradiction that
a satisfiable valuation y is found by TSAT, which is not found by
TSAT _EP. By the above consideration, this means that a subset of
i, call it y', must have been reached by TSAT_EP and rejected. This
means that p' is unsatisfiable and p, a superset of it, is satisfiable,
which is contradictory. O

EXAMPLE 10. Consider Example 1, TSAT_EP as in the Figure,
and assume ChooseLiteral return the first literal that appears in the
formula. Then, TSAT_EP(¢g;s,T) picks and adds to p, in turn, py,
VPred = Ipp and —py. The last choice forces —(VPred < Igg + 1) into
1 by unit propagation, but clearly the valuation is now unsatisfiable.
Therefore backtracking happens and both —(VPred < Igrg + 1) and
—pg are removed from p. ChooseLiteral then switches to ps and the
algorithm goes on as in Example 6.

Notice that in this case TSAT, with the same ChooseLiteral, would
have explored a totally useless portion of the search space, namely
checking all models prefixed with the unsatisfiable y detected above by
EP. *

4.3. MODEL REDUCTION

A further optimization, called model reduction, is based on the obser-
vation that a valuation y generated by TSAT can be redundant, i.e.,
there might exist a valuation x4’ C p that propositionally entails the
input formula. When this is the case, we can check the satisfiability of
p' instead of p. This has the following advantages:

1. if p and y' are either both satisfiable or both unsatisfiable, then
the value returned by SatCheck is the same. However, checking the
satisfiability of 4’ can be easier if we use, e.g., BF.

2. if p is unsatisfiable, it may nevertheless be the case that u' is sat-
isfiable: in this case SatCheck(u') returns TRUE, thereby pruning
any further search.

O5jar-final.tex; 16/05/2005; 15:17; p.12

The SAT-based Approach to Separation Logic 13

Model reduction can be easily incorporated in TSAT as shown
in Figure 5. The main difference with respect to TSAT is that the

function TSAT_MR(¢,u)
1 if {} € ¢ then return FALSE
2 if ¢ = 0 then return SatCheck(ReduceModel(1))
3 if {I} € ¢ then return TSAT_MR(Simplify(l,¢),u A1)
4 | := ChooseLiteral(¢)
5 return TSAT_MR(Simplify(l,¢),u Al) or
TSAT_MR(Simplify(1,¢),u A)

Figure 5. TSAT with model reduction.

reduced valuation 4/, rather than pu, is checked for satisfiability. It is as-
sumed that ReduceModel() returns a valuation y' C u propositionally
entailing the initial input fomula.

THEOREM 11. (Soundness and completeness of TSAT_MR) Let ¢
be a formula. TSAT_MR (¢, T) returns TRUE if ¢ is satisfiable, and
FALSE otherwise.

Proof. Tt suffices to note that, since u’ C p, there are three possible
cases: both ' and p are satisfiable, both are unsatisfiable, or ' is satis-
fiable, but u is not. In the first two cases, SatCheck(ReduceModel(y))
coincides with SatCheck(p); in the third case, a satisfiable valuation
propositionally entailing the input formula has been found, and the
algorithm terminates. O

Here again it is important to check that, on average, the time spent
in reducing the valuation does not overwhelm the advantage gained by
reducing it. So far, we have been experimenting with two techniques
for reducing valuations:

Triggering: if ;4 contains a literal [that does not belong to any clause
in the input formula ¢, then u propositionally entails ¢ if and
only if p \ {l} does; therefore | can be safely removed from .
This technique, introduced in (Wolfman and Weld, 1999), is called
triggering. Triggering has a linear cost in |p| if realized, e.g., via a
simple table of the occurrences of literals in ¢.

Minimization: a better idea is to remove as many redundant con-
straint literals as possible. This can be done by recursively elim-
inating from p one constraint literal [at a time such that for
each clause C containing [, there exists another literal I’ in U C.

O5jar-final.tex; 16/05/2005; 15:17; p.13

14 Armando, Castellini, Giunchiglia, Maratea

Minimization can be done in linear time in the size of the input
formula ¢ provided that a data structure associating to each literal
[the clauses of ¢ whom [belongs to is available.

EXAMPLE 12. Consider again ¢g;y; in this case, a possible valuation
found by TSAT_MR is p = {p1, VPred = Irg,p2, VPred < Igp +
1, Venl’ = Venl, ps,p3,ps, Venl’+ 2 = Venl}. A reduced version of
it, according to minimization, is ' = {p1, VPred = Igg,p2, VPred <
Ipr+1,ps, p4, ps, Venl’+ 2 = Venl}, obtained from p by removing the
constraint literal Venl’= Venl. Further, while 4 is unsatisfiable, p' is
not.

Given a valuation g it is important to notice that model reduction,
i.e., ReduceModel(y) in Figure 5, does not consider the set I.S of clauses
possibly added by IS, to the input formula ¢: these clauses are valid
and thus do not need to be taken into account. Considering them would
slow ReduceModel(ys) and, even worse, may partly shadow its effects.
In fact, if p' and p” are the valuations returned by ReduceModel(u)
when considering ¢ and ¢ U IS respectively, we have that u' C u”.
Furthermore, ReduceModel(y) is not performed when the valuation
i does not propositionally entail the input formula ¢, i.e., when we
are checking the satisfiability of a valuation because of early pruning.
Indeed, with early pruning we hope to detect the unsatisfiability of 4 in
order to cut the search. On the other hand, it may be the case that p' =
ReduceModel(y) is satisfiable while p is not: in this case, considering
p' instead of u, would make vain early pruning.

4.4. BEST REASON DETECTION

So far, we have discussed how to extend a SAT solver in order to
obtain a decider for SL, focusing in particular on SAT solvers based on
DLL. Our motivation for this has been that most of the state-of-the-art
complete SAT solvers are based on DLL. However, such solvers extend
the basic DLL procedure in different ways in order to be more effective
on different classes of problems. Broadly speaking, we can divide such
solvers in two categories, following the distinction that is usually made
in the SAT competition (Le Berre and Simon, 2003):

— those designed for real-world problems, e.g., zchaff (Moskewicz
et al., 2001), the winner of the last SAT competition in this cat-
egory. The features of these solvers are that they have a fast-
to-compute heuristics, a simple but efficient pruning mechanism
based on unit-propagation, and a sophisticated backtracking mech-
anism based on back-jumping and learning (see (Moskewicz et al.,
2001)).

O5jar-final.tex; 16/05/2005; 15:17; p.14

The SAT-based Approach to Separation Logic 15

— those designed for solving difficult either randomly generated or
hand-made problems, e.g., kenfs (Dequen and Dubois, 2004) and
March_eq (Heule and Maaren, 2004) the winners of the last SAT
competition in these categories. These solvers have a complex-
to-compute heuristics, sophisticated pruning mechanisms signifi-
cantly extending unit-propagation, and a simple but efficient back-
tracking mechanism without learning.

The modifications needed in order to obtain a SAT-based solver for
SL can be done along the lines so far outlined if we start from a solver
without back-jumping and/or learning. Still, in case we want to use a
backtracking schema based on learning, whenever FALSE is returned,
a “reason” for the failure has to be computed. Intuitively, whenever
we are backtracking from a valuation p, a reason is a subset p’' of
p such that any valuation extending p’ will fail. While backtracking,
these reasons u' are used in order to back-jump over the literals which
are not in y'. Further, if the solver uses learning, the clause Vlelﬂ is
(temporarily) added to the input set of clauses in order to avoid future
explorations of valuations extending p'.

Thus, in order to use SAT solvers with learning, it is not enough
for SatCheck(y) to return FALSE when p is not satisfiable. Indeed,
SatCheck(p) must also compute a reason for such a failure, i.e., an
unsatisfiable subset p' of u. One such set is obviously y itself. However
in order to try to maximize the advantages of learning, it is important
that u' be as “small” as possible with respect to some ordering relation
on valuations. Let u be an unsatisfiable valuation. We found it useful
to consider the following forms of minimality:

Minimal reasons with respect to set inclusion. An unsatisfiable
valuation p' C p is a minimal reason for p with respect to set
inclusion if and only if for all unsatisfiable valuations p” such that
" C p' we have that p” = '

Reasons of minimal cardinality. An unsatisfiable valuation pu' C u
is a reason for u of minimal cardinality if and only if for all
unsatisfiable valuations p” C p, we have that || < |u”|.

Shallowest reasons. Let [1,l2,...,l, (n > 0) be the literals in u,
listed according to the total order with which they have been
assigned. Such a sequence induces a total order on the subsets of y
defined as follows: if y’ and u” are subsets of y, then p' < u” if and
only if for all literals /; € p' \ " there exists a literal I; € p" \ 4/
such that ¢ < j. An unsatisfiable valuation p' C u is the shallowest
reason for p if and only if for all unsatisfiable valuations u” C p,
we have that p' < p”.

O5jar-final.tex; 16/05/2005; 15:17; p.15

16 Armando, Castellini, Giunchiglia, Maratea

Intuitively, there is no point in returning a reason which is not minimal
under set inclusion: if we unnecessarily include a literal [in the reason,
this may lead to branch on [, and such branch is bound to fail. Among
the reasons which are minimal under set inclusion, those with minimal
cardinality have the further advantage that, once added to the input
formula because of learning, they prune a larger portion of the search
space. Finally, while backtracking from a valuation y, and even return-
ing a reason y' with minimal cardinality, it may still be the case that
the next branch being explored is deemed to fail. In fact, gy may still
contain a shallowest reason.

EXAMPLE 13. Consider Example 1 once again and assume that
the heuristics is such that it first sets p; (forcing also VPred = Irp
by unit propagation), then —py (forcing —(VPred < Igg + 1)), and
then Venl’ = Venl, p3 and ps (this last one forcing also Venl’+ 2 =
Venl). The corresponding valuation {p;, VPred = Irg, —p2, 7(VPred <
Irr+1), Venl’ = Venl, ps, ps, Venl’+2 = Venl} propositionally entails
¢Eiy but is unsatisfiable. The standard procedure detects that p is
unsatisfiable, but it backtracks only up to the choice of ps, which is
not involved in the unsatisfiability of u; then a whole search branch
is explored, which is totally useless, since the assignment still contains
both VPred = Igp and —(VPred < Irr + 1), which are responsible of
the contradiction. The same, even worse, goes for the choice of ps.

On the other hand, if reason detection is enabled, upon detection
of the unsatisfiability of u, a reason is found, backtracking starts up to
a point where the contradiction corresponding to the reason is solved.
In our example, there are two minimal reasons, namely & = { VPred =
Irr,~(VPred < Igg +1)} and &' = {VenI’ = Venl, Venl’+ 2 = Venl}.
Both ¢ and &' are minimal under set inclusion and of minimal cardi-
nality. However, ¢ is the shallowest. Indeed, if the reason is set to &,
backtracking will stop at the choice point where —py was chosen. Also
notice that, assuming the reason being returned is &', backtracking will
stop at the choice Venl’ = Venl: however, the following search is bound
to fail given that the valuation will still contain &. *

The above example and discussion seems to point out that a reason
of minimal size is better than a reason minimal under set inclusion,
and that the shallowest reason is better than a reason of minimal size.
Indeed, the shallowest reason tries to remove as soon as possible the
unsatisfiability from the valuation built so far. However, despite the
“smartness” of the reason being returned, there is no guarantee what-
soever that the tree being explored with a “smart” reason mechanism
will be smaller than the tree explored with another reason mechanism.
As (Prosser, 1993) pointed out, it may be the case that the a-priori

Objar-final.tex; 16/05/2005; 15:17; p.16

The SAT-based Approach to Separation Logic 17

known fruitless exploration of a branch will lead to a failure and the
discovery of a reason causing a long jump to the top of the search
stack. To this end, a simple implementation of SatCheck(u) returning
14 as reason whenever p is not satisfiable, can turn out to be more
effective than other implementations, at least in some cases. However,
trivially, a solver with back-jumping and/or learning can never explore
more nodes than a solver with backtracking, assuming, e.g., a static
branching heuristics.

The first SAT-based solver for SL using a backtracking schema with
learning has been proposed in (Audemard et al., 2002). However, in
that paper, there is no indication about how the reason is computed
when SatCheck() fails.

5. Satisfiability Checking

It is a well known fact that BF can be used to check the satisfiability
of a finite set @ of constraints of the form z —y < ¢, see, e.g., (Cormen
et al., 2001). This is done by first building a constraint graph for Q,
i.e., a weighted directed graph whose nodes are the variables occurring
in @ and having an edge from y to x of weight ¢ for each constraint
z—1y < c¢in Q. An extra node, the source, is also included and is linked
to all the other nodes with edges of weight 0. BF is then used to solve
the “single source shortest-paths” problem. The set of constraints @ is
satisfiable if and only if the constraint graph for () contains no negative
cycles, i.e., cycles with cumulative negative weight.

Here we show that satisfiability checking of a generic valuation y
can be done efficiently with BF. As a preliminary step, we turn g into
an equi-satisfiable set ;4='< whose literals are of the form z —y < c or
z — 1y < c¢. This can be done by deleting all the literals of the form p
and —p where p is a propositional letter and by replacing constraint
literals

— y—z > —c¢,~(y—z < —c),~(z—y > c) with the logically equivalent
constraint z — y < ¢, and

— y—xz > —c¢,~(y—z < —c),~(r—y > c) with the logically equivalent
constraint z — y < c.

A further step is needed to transform the valuation << into an equi-
satisfiable set of constraints of the form z — y < ¢ whose satisfiability
can be checked with BF. If the domain of interpretation is Z, this can
be done by replacing in p<< every constraint of the form z —y < ¢
with z — y < ¢’ where ¢’ is the maximum integer strictly smaller than

O5jar-final.tex; 16/05/2005; 15:17; p.17

18 Armando, Castellini, Giunchiglia, Maratea

c. It is easy to see that the resulting set of constraint is satisfiable if
and only if 4=< is. If the domain of interpretation is R, then we rely
on the following result.

LEMMA 14. Let Q and Q' be two finite sets of constraints of the form
z—y < candx—1y < c respectively. Let n be the number of variables
in Q'. Let p be the mazimum number of digits appearing to the right of
the decimal point in any numeric constant in QUQ'. If C isx —y < c,
let C< bex —y <c— m. Finally, let Q< = {C<: C € Q'}.

QU Q' is satisfiable in R if and only if QU Q' is satisfiable in R.

Proof. The right to left direction is trivial and therefore here we
focus on the left to right direction. In the following, if Q" C Q U Q'
is a set of constraints, by @ we mean the set obtained from Q" by
replacing each constraint C of the form z — y < ¢ with C<. Further, ¢
is m.

We proceed by contradiction and assume that Q U Q' is satisfiable
while Q U Q. is not. In this case, there exists a subset Q" of Q U Q'
such that

Q" is satisfiable and Q7 is not,

/i
— QS has the form {z; —z3 < c1—e1,20—23 < ca—e2,...,Tm—1T1 <
Cm — €m}, where each e; is either 0 or €, and

— in QZ, there are at least one and at most n constraints for which
ei=¢ie,1<|Q"NQ'N| < n.

Q" is satisfiable and @’ unsatisfiable imply > 7", ¢; > 0 and Y1 (¢; —
e;) < 0 respectively (notice that it cannot be the case that Y i, ¢; =0
because Q" N Q' # () and Q" has to be satisfiable by hypothesis). Since
Yiric > 0, then Y% ¢ > ﬁ. But then we have a contradiction,

because
Yii(ei — ei)

m m
Zi:1 C; — Zi:l e >
Yo, ¢ — me =
m 1 n
i=1Ci ~ TP g1 2
1 1 n >0

107~ 10P n+1
O

Notice that the application of the above result requires, if the domain
of interpretation is R, to determine the values of n and p which in turn
depend on pu. The next result shows that the values for n and p can be
computed beforehand and once and for all, on the basis of the input
formula ¢.

O5jar-final.tex; 16/05/2005; 15:17; p.18

The SAT-based Approach to Separation Logic 19

THEOREM 15. Let ¢ be a formula with n variables. Let p be the mawi-
mum number of digits appearing to the right of the decimal point in any
numeric constant in ¢. Let u be a valuation whose atoms occur in ¢.
The valuation u is satisfiable in R if and only if the valuation obtained
from u=< by replacing each constraint z—y < c with t—y < c—
is satisfiable in R.

1
10P(n+1)

Proof. Clearly, p is satisfiable in R if and only if p=< is satisfiable
in R. The thesis trivially follows from Lemma 14 once we observe that,
given that the atoms in g occur in ¢,

— the number of variables in =< is less than or equal to n and

— the maximum number of digits appearing to the right of the deci-
mal point in any of the numeric constants in x=< is less than or
equal to the maximum number of digits appearing to the right of
the decimal point in any of the numeric constants in ¢.

O

The above results allow us to use BF in order to check the satisfia-
bility of any valuation. Given a valuation p with n variables, BF runs
in time O(n % |p|), and is the current best known method for this task
(see (Cormen et al., 2001)). Further BF has the following advantages,
in the case the valuation y is unsatisfiable:

— each negative cycle in the constraint graph G corresponds to a
minimal (with respect to set inclusion) unsatisfiable subset of y,
and

— assuming there are more than one negative cycles in G, and that
R is the corresponding set of reasons, it is easy to modify BF
so to make it return a reason which is of minimal cardinality or
the shallowest among those in R without modifying its overall
complexity O(n x |pu).

6. Implementation and Experimental Analysis

We have implemented the techniques described in Sections 3, 4 and 5
in a system called TSAT++. The system is based on a C++ implemen-
tation of an iterative version of the algorithm of Figure 2 featuring all
optimizations presented in Section 4.

Objar-final.tex; 16/05/2005; 15:17; p.19

20 Armando, Castellini, Giunchiglia, Maratea

TSAT++ uses two distinct modules for the enumeration of valua-
tions p propositionally entailing the input formula ¢ and for check-
ing the satisfiability of p. A detailed analysis of the architecture of
TSAT++ is beyond the scope of this paper and the interested reader
may refer to (Armando et al., 2004a).

In the current version, enumeration is done by a modified version of
SIMO (Giunchiglia et al., 2003). SIMO features a number of SAT op-
timization techniques inspired by Chaff, among which 1-UIP learning,
VSIDS heuristics, and two-literal watching (Moskewicz et al., 2001).

In order to assess the effectiveness of the optimizations described in
Section 4 we have carried out a thorough experimental analysis using
TSAT++ and TSAT++plain, on a wide variety of publicly available
random, hand-made, and real-world SL-formulae.? TSAT++plain is the
same as TSAT++ except that IS5, early pruning, and model reduction
are disabled while best reason detection is set so to return a reason
minimal with respect to set inclusion. Further, in order to evaluate
the effectiveness of our system, we have compared TSAT++ with a
number of rival, publicly available, and state-of-the-art systems specif-
ically designed for (a significant fragment of) SL or with a specialized
satisfiability procedure for SL valuations.?> We have thus considered the
system presented in (Stergiou and Koubarakis, 1998), that we will call
SK; Tsat (Armando et al., 1999), the predecessor of TSAT++; CSPi
(Oddi and Cesta, 2000); and Epilitis (Tsamardinos and Pollack, 2003).
All these systems are restricted to DTPs (see Section 6.1). Moreover, we
have considered SEP (Strichman et al., 2002) and MathSAT (Audemard
et al., 2002). TSAT++ is as expressive as SEP and not comparable
to MathSAT: while MathSAT allows for arbitrary linear constraints as
atoms, it does not allow to consider the integers as domain of inter-
pretation. After a first run, we have discarded SK, because it is clearly
non competitive with respect to the others.

Each solver has been run on all the benchmarks it can deal with, not
only on the benchmarks the solver was analyzed on by the authors. In
particular, Epilitis can only handle DTPs with integer valued variables;
CSPi and Tsat can only handle DTPs with real valued variables; Math-
SAT can handle arbitrary SL-formulae with real valued variables; SEP
and TSAT++ can handle arbitrary SL-formulae with real or integer

2 The classification of the benchmarks in “random”, “handmade”, and “real-
world” problems is borrowed from the SAT competition (Le Berre and Simon, 2003).

3 Notice that there exist other systems capable of handling SL, e.g.,
ICS (de Moura et al., 2004), CVC (Stump et al., 2002), CVC-Lite (Barrett and
Berezin, 2004), Verifun (Flanagan et al., 2003). We did not include these solvers in
our analysis since they are not tailored for SL. MathSAT has been included since it
has a specialized satisfiability checker for SL based on BF.

O5jar-final.tex; 16/05/2005; 15:17; p.20

The SAT-based Approach to Separation Logic 21

DTP: 35 variables on re DTP: 35 variables on integer domain

10° 7 —

]
/
/
/
/
/
7/
[/
!/ o
[/
[/
[/
[/

al domain
\\\s\\
. \A*:i%,

~—.

—— TSAT++
—# TSAT++ plain
107, e ~&— MathSAT E 107,
/ - - CsPi
/| —— Tsat
SEP

—— TSAT++
—+— TSAT++ plain
= Epilitis

—+— SEP

Figure 6. Performance on (a) randomly generated DTPs with 35 real valued vari-
ables and on (b) randomly generated DTPs with 35 integer valued variables. The
dotted plot indicates satisfiability percentage both in (a) and in (b).

valued variables. Each solver has been run using the settings or the
version of the solver suggested by the authors for the specific class of
problems. All the experiments have been run on a Linux box equipped
with a Pentium IV 2.4GHz processor and 1GB of RAM. CPU time is
measured in seconds; timeout has been set to 1,000 seconds.

6.1. DISJUNCTIVE TEMPORAL PROBLEMS

We start our analysis considering randomly generated DTPs as in-
troduced in (Stergiou and Koubarakis, 1998) and since then used as a
benchmark in (Armando et al., 1999; Oddi and Cesta, 2000; Audemard
et al., 2002; Tsamardinos and Pollack, 2003). DTPs are randomly gen-
erated by fixing the number k& of disjuncts per clause, the number n
of arithmetic variables, a positive integer L such that all the constants
are taken in [— L, L]. Then, (i) the number of clauses m is increased in
order to range from satisfiable to unsatisfiable instances, (iz) for each
tuple of values of the parameters, 100 instances are generated and then
fed to the solvers, and (i%i) the median of the CPU time is plotted
against the m/n ratio. The results for £ = 2, L = 100, and n = 35 are
given in Figure 6: plots (a) and (b) show the performance when the
variables are real and integer valued respectively.

When m/n > 6, TSAT++ clearly outperforms the other systems,
including TSAT++plain: in the peak region, the solver that is closer to
TSAT++ in this domain, namely Epilitis, is a factor of 6 slower on 35
variables (cf. plot (b)). This is a very positive result, taking into account
that Epilitis only works on DTP with k£ = 2, and it has been thoroughly

Objar-final.tex; 16/05/2005; 15:17; p.21

22 Armando, Castellini, Giunchiglia, Maratea

real-life benchmarks
10 T T T

—— TSAT++
—— TSAT++ plain
—o— MathSAT
10°F |+ SEP E

cpu time

10° |

L L L L L
25 30 35 40 45 50
benchmarks

10" H———-L

Figure 7. Performance on real-world problems.

tested and optimized on this type of problems (see (Tsamardinos and
Pollack, 2003)). All the other systems are about 2 orders of magnitude
slower than TSAT++ in the peak region. Even more important is the
fact that the gap in performance between TSAT+4 and the other
systems increases with the number of variables (we have experimented
with problems up to 50 variables). For this class of problems TSAT++
has been run with early pruning and pre-processing enabled, with the
best reason detection optimization set to return shortest reason, and
with model reduction disabled. The role of the optimizations is funda-
mental for the performance on this test set: TSAT++ is more than one
order of magnitude faster than TSAT++plain in the peak region.

6.2. REAL-WORLD PROBLEMS
We have also carried out experiments on

1. the 40 post-office benchmarks introduced in (Audemard et al.,
2002), coming in 4 series (consisting of 7, 9, 11, and 13 instances
respectively) of increasing difficulty. In these problems the domain
of the interpretation is the set of real numbers.

2. the 16 hardware verification problems from (Strichman et al., 2002),
9 (resp. 7) of which are with real (resp. integer) valued variables.

O5jar-final.tex; 16/05/2005; 15:17; p.22

The SAT-based Approach to Separation Logic 23

The post-office benchmarks are bounded model checking problems
for timed automata; the hardware verification suite includes scheduling,
cache coherence protocol, load-store unit and out-of-order execution
problems. Considering the results of MathSAT, SEP, and TSAT++
on the post-office problems, our first observation is that SEP is not
competitive on these problems: on 13 of the hardest instances, SEP had
a segmentation fault in 11 cases, and on the other 2 hardest instances
SEP is outperformed by different orders of magnitude by TSAT++
and MathSAT. Our second observation is that TSAT++ (with IS, pre-
processing, model reduction, and shortest reason detection) performs
better than MathSAT up to a factor of 6 on each single instance: this
is particularly remarkable given that the authors have customized a
version of MathSAT explicitly for this kind of problems.* Considering
the hardware verification problems, all of them are easy to solve (i.e.,
in less than 3s each) for all the three solvers, except for SEP that
timeouts on one instance. Of the 9 (resp. 16) runs of MathSAT (resp.
SEP and TSAT++), only 3 take more than 0.1s. These observations
are confirmed by Figure 7, which gives the overall picture of the re-
sults for MathSAT, SEP, and TSAT++ on the 49 instances with real
valued variables: the z-axis is the number of instances solved by each
solver within the CPU time specified on the y-axis. The plot also shows
that TSAT++plain can be faster than TSAT++ on the easy instances,
i.e., those requiring less than 1s to be solved. For such problems, the
overhead of the optimizations (and in particular of the pre-processing)
outweighs the benefits.

6.3. HAND-MADE PROBLEMS

Finally, we have considered the “hand-made” diamond problems from
(Strichman et al., 2002). A diamond problem is a formula ¢ that de-
pends on a parameter K > 0 and such that there exists a number of
unsatisfiable valuations propositionally entailing ¢ which is exponential
in K. Moreover, hard instances having a single satisfiable valuation
propositionally entailing them can be generated. A second parameter
T is also used and it affects the number of variables and the size of the
problem. Variables range over the reals.

Table I shows comparative results on the diamond problems for
various settings of K and T'. In particular, we considered all the settings
corresponding to non trivially solvable instances reported in (Strichman
et al., 2002). The third column denotes whether the problem has a
unique valuation propositionally entailing it; the remaining columns

4 As indicated by the authors, we have used this customized version of MathSAT
on this class of problems.

O5jar-final.tex; 16/05/2005; 15:17; p.23

24 Armando, Castellini, Giunchiglia, Maratea

Table I. Diamond problems: “TIME” indicates that the solver does not
solve the instance withing the time limit. “-” indicates that the solver
exits abnormally.

K T unique TSAT++4+ TSAT++plain MathSAT SEP

50 4 NO 0.00 0.02 0.05 0.12

50 4 YES 0.01 0.14 TIME 0.07
100 5 NO 0.01 0.11 0.61 1.18
100 5 YES 0.04 7.57 TIME 0.17
250 5 NO 0.08 0.76 5.40 52.20
250 5 YES 0.21 194.99 TIME 0.77
500 5 NO 0.29 4.46 21.22 742.99
500 5 YES 1.05 TIME TIME 4.85
1000 5 NO 1.07 22.3 - TIME
1000 5 YES 6.45 TIME - 22.53
2000 5 NO 3.76 94.23 - -
2000 5 YES 29.90 TIME - -

show CPU times for TSAT++, TSAT++plain, MathSAT, and SEP. For
this class of problems TSAT++ has been run with best reason detection
set to shortest reason, and with model reduction. The experimental
results clearly show that TSAT++ performs best, often by orders of
magnitude. Instances with a unique solution are more difficult than
non-unique ones, as expected, except for SEP.?

For this test set, it is of fundamental importance the model reduction
optimization: without it, TSAT++ performance is significantly worse,
up to the point that problems which are solved in 1 second by TSAT++,
are not solved without model reduction within the time limit.

7. Related work

Several systems tailored for SL, employing different approaches and
techniques, have been built and tested along the years. We now give
an overview of them, highlighting the pros and cons of each one and
chronologically reviewing the techniques introduced by each one.

5 Following a suggestion by Ofer Strichman we have also tried SEP with an option
that disables the use of a specialized data structure called “conjunction matrix”
(Strichman et al., 2002). This can have a dramatic impact on SEP: some problems
that are solved with conjunction matrix within the time limit are not solved without,
and vice versa.

Objar-final.tex; 16/05/2005; 15:17; p.24

The SAT-based Approach to Separation Logic 25

SK (Stergiou and Koubarakis, 1998; Stergiou and Koubarakis, 2000).
The procedure SK has been the first dealing with a significant fragment
of SL. Its main features are the combined usage of forward-checking,
back-jumping and Minimum Remaining Value heuristics (MRV). For-
ward-checking works by checking whether the valuation built so far
entails either a literal or its negation, for each literal not yet in the valu-
ation. This actually reduces the search space, at the price of performing
a potentially large number of useless satisfiability checks, namely those
for which the check detects satisfiability. SK is also able to detect
conflict sets and to improve on backtracking via a technique similar
to back-jumping. MRV is used to choose literals which appear in dis-
junctions with the smallest number of unassigned disjuncts: if there
is a unit clause, the literal in it will be selected by MRV and then
propagated, thus mimicking unit propagation.

The main difference between SK and SAT-based procedures lies
in the way valuations propositionally entailing the input formula are
searched. In fact, SK is based on syntactic branching: given a disjunc-
tion [VI, first [is added to the current valuation, and, upon failure, I’
is considered. As explained below, this type of search may lead to the
exploration of search space already explored.

Tsat (Armando et al., 1999). Tsat was the first application of the SAT-
based approach to SL. The system employs a branching schema now
known as semantic branching. Unlike syntactic branching, semantic
branching selects a not yet assigned literal /, and considers in turn
the case in which [is true and the case in which [is false. Notice that
in the second case, the conjunction of I with (IVI') forces the assignment
of I' by unit propagation: as already observed in (D’Agostino, 1992),
syntactic branching may lead to redundant exploration of parts of the
search space, which semantic branching avoids. The following example,
adapted from (Armando et al., 1999), clearly illustrates this issue.

EXAMPLE 16. Let ¢ be a formula including the following clauses:

$1—$2S3VIE7—3)8§20
T —23<4V x4 —x23< -2
To—24 <2V x3—29<1

Let ¢(i,7) denote the j-th disjunct of the i-th disjunction displayed in
¢; for example, ¢(1,2) is z7 — zg < 20. Assume that the dots stand
for further (possibly many) unspecified clauses such that no satisfiable
extension of the valuation {¢(1,1), $(2,1)} exists.

O5jar-final.tex; 16/05/2005; 15:17; p.25

26 Armando, Castellini, Giunchiglia, Maratea

Consider the behavior of syntactic versus semantic branching when
{#(1,1),#(2,1)} is the valuation built so far. Since no satisfiable exten-
sion of it exists, after some search, failure is necessarily detected; both
procedures backtrack and remove ¢(2,1) from the current valuation.

Now syntactic branching goes on with the valuation {¢(1, 1), ¢(2,2)},
whereas semantic branching proceeds with {¢(1,1),-¢(2,1)} which
leads immediately, via unit propagation, to {¢(1,1),~¢(2,1), ¢(2,2)}.

Working with the latter valuation rather than with the former may
lead to considerable savings: assume that both procedures extend the
valuation with ¢(3,1); since {¢(1,1),-¢4(2,1),¢(2,2),¢(3,1)} is un-
satisfiable, semantic branching immediately backtracks and considers
#(3,2), whereas syntactic branching may waste a big amount of re-
sources in the vain attempt of finding a satisfiable extension of {¢(1, 1),
5(2,2), 6(3,1)}.

*

Semantic branching was shown in (Armando et al., 1999) to dra-
matically improve the performance with respect to SK, up to one order
of magnitude on randomly generated binary DTPs.

In Tsat, also 1S, was introduced, gaining to the system another
order of magnitude in performance. This despite the fact that, to enu-
merate valuations, Tsat adapted a rather simple SAT solver, due to
B6éhm (B6éhm and Speckenmeyer, 1996), which did not employ any
modern optimization such as back-jumping and learning. Satisfiability
checking used Ip_solve v2.2 (Berkelaar, 1997), which provided a free
implementation of the Simplex method.

CSPi (Oddi and Cesta, 2000). CSPi features an essentially CSP-based
solution schema, implementing an efficient incremental procedure for
forward-checking. Semantic branching is used, showing results that are
better than Tsat on small instances, and comparable on bigger ones.
Notice that performance, up to (Oddi and Cesta, 2000), was measured
in terms of how many calls to the satisfiability check function were
done, rather than CPU time.

MathSAT (Audemard et al., 2002). MathSAT uses SIM (Giunchiglia
et al., 2001) as enumerator and a hierarchical satisfiability checker
employing—in this order—equality reasoning, BF for SL-constraints,
the Simplex method for full linear arithmetic, and inequalities reason-
ing. The simplest solver is chosen on-the-fly, thereby obtaining both
expressivity and efficiency at the same time. MathSAT also introduces
a number of optimizations, among which preprocessing based upon syn-
tactic equivalence, enhanced early pruning, that is, early pruning con-
ditioned upon a heuristic function, and back-jumping/learning based

O5jar-final.tex; 16/05/2005; 15:17; p.26

The SAT-based Approach to Separation Logic 27

upon reason detection. Also, a form of model reduction is used, based
upon triggering. On randomly generated binary DTPs, MathSAT im-
proves the performance over Tsat in terms of CPU time. However,
the gap between the two solvers decreases as the number of variables
increases.

Epilitis (Tsamardinos and Pollack, 2003). Epilitis is, so far, the last
CSP-based system. Epilitis is restricted to binary DTPs. It uses se-
mantic branching, incremental forward checking, a MRV heuristics and
size-bounded learning of size n (Bayardo, Jr., Roberto J. and Miranker,
1996). This means that conflict clauses are retrieved and stored only if
they contain less than n literals (in practice, n = 10 is used). Once
stored, a clause is never forgotten. On randomly generated binary
DTPs, Epilitis shows significantly better performance than Tsat in terms
of CPU time, of up to one order of magnitude.

SEP (Strichman et al., 2002). SEP is a back-end to the UCLID verifi-
cation tool (Lahiri et al., 2002), employing the so-called eager variant of
the SAT-based approach. Given a formula ¢, rather than enumerating
valuations and checking them for satisfiability, SEP builds a proposi-
tional formula ¢’ whose satisfying valuations are ensured to correspond
to satisfiable valuations of ¢. The current version of SEP uses Chaff to
find valuations satisfying ¢'. To the best of our knowledge, SEP is so far
the only solver using the eager SAT-based approach to SL. SEP suffers
from the fact that the size of ¢’ can be exponential in the size of ¢. On
the other hand, as reported in (Strichman et al., 2002), if SEP can get
past the encoding phase, the problem is easy to solve for Chaff.

8. Conclusions

In this paper we have focused on the problem of building efficient
SAT-based decision procedures for SL. We have presented the basic
procedure from (Armando et al., 1999) along with some key optimiza-
tions. We have also shown how it is possible to check the satisfiability
of valuations involving constraints of the form z — y < ¢ using BF.
An extensive comparative experimental analysis shows that our solver
TSAT++, built along the lines described in this paper, is currently
the state-of-the-art on various classes of problems, including randomly
generated, hand-made, and real-world instances. We believe that the
techniques described in this paper can be fruitfully extended to other
(more expressive) logics than SL.

Objar-final.tex; 16/05/2005; 15:17; p.27

28 Armando, Castellini, Giunchiglia, Maratea

The benchmark problems used for the experiments presented in this
paper and the executable of TSAT++ are publicly available at the URL
http://www.ai.dist.unige.it/Tsat.

Acknowledgements

We wish to acknowledge Massimo Idini’s work on the satisfiability
checking module. Mauro Di Manzo is thanked for the many fruitful
discussions on the subject of this paper. Moreover, the authors of the
solvers we have compared with have helped us a lot: Gilles Audemard,
Angelo Oddi, Ofer Strichman, Ioannis Tsamardinos. Sergey Berezin
and Leonardo De Moura are thanked for discussions related to the
topic of this paper. Sanjit Seshia and the UCLID group provided us
with a lot of interesting problems. The authors are partially supported
by MIUR.

References

Armando, A.; C. Castellini, and E. Giunchiglia: 1999, ‘SAT-Based Procedures for
Temporal Reasoning’. In: S. Biundo and M. Fox (eds.): Proceedings of the 5th
European Conference on Planning (Durham, UK), Vol. 1809 of Lecture Notes in
Computer Science. pp. 97-108, Springer.

Armando, A., C. Castellini, E. Giunchiglia, F. Giunchiglia, and A. Tacchella: 2005,
‘SAT-based Decision Procedures for Automated Reasoning: a Unifying Perspec-
tive’. In: Mechanizing Mathematical Reasoning: Essays in Honor of Jrg H.
Siekmann on the Occasion of His 60th Birthday, Vol. 2605 of Lecture Notes
in Computer Science. Springer Verlag.

Armando, A., C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea: 2004a,
‘TSAT++: an Open Platform for Satisfiability Modulo Theories’. In: Proceedings
of PDPAR, Pragmatics of Decision Procedures in Automated Reasoning, Cork
(Ireland). Elsevier. To appear in the ENTCS series.

Armando, A., C. Castellini, E. Giunchiglia, and M. Maratea: 2004b, ‘A SAT-based
Decision Procedure for the Boolean Combination of Difference Constraints’. In:
Proceedings of SAT, International Conference on Theory and Applications of
Satisfiability Testing, Vancouver (Canada). Springer. To appear in the LNCS
series.

Armando, A. and E. Giunchiglia: 1993, ‘Embedding Complex Decision Procedures
inside an Interactive Theorem Prover’. Annals of Mathematics and Artificial
Intelligence 8(3-4), 475-502.

Audemard, G., P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani: 2002, ‘A
SAT Based Approach for Solving Formulas over Boolean and Linear Mathemati-
cal Propositions’. In: A. Voronkov (ed.): Automated Deduction — CADE-18, Vol.
2392 of Lecture Notes in Computer Science. pp. 195-210, Springer-Verlag.

Barrett, C. W. and S. Berezin: 2004, ‘CVC Lite: A New Implementation of the
Cooperating Validity Checker Category B’. In: 16th International Conference on
Computer Aided Verification (CAV’04), Vol. 3114. pp. 515-518, Springer-Verlag.

O5jar-final.tex; 16/05/2005; 15:17; p.28

The SAT-based Approach to Separation Logic 29

Bayardo, Jr., Roberto J. and D. P. Miranker: 1996, ‘A Complexity Analysis of Space-
Bounded Learning Algorithms for the Constraint Satisfaction Problem’. In:
Proceedings of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Conference. Menlo
Park, pp. 298-304, AAAI Press / MIT Press.

Berkelaar, M.: 1997, ‘The Ip_solve Solver for Mixed Integer-Linear Programming’.
Version 2.2. Available at http://www.cs.sunysb.edu/~algorith/implement/
lpsolve/implement.shtml.

Boéhm, M. and E. Speckenmeyer: 1996, ‘A fast parallel SAT-solver — efficient
workload balancing’. Annals of Mathematics and Artificial Intelligence 17,
381-400.

Bryant, R. E., S. K. Lahiri, and S. A. Seshia: 2002, ‘Deciding CLU Logic Formulas
via Boolean and Pseudo-Boolean Encodings’. In: Proceedings of International
Workshop on Constraints in Formal Verification. Associated with International
Conference on Principles and Practice of Constraint Programming, Ithaca, NY
(USA).

Castellini, C.,; E. Giunchiglia, and A. Tacchella: 2003, ‘SAT-Based planning in
complex domains: Concurrency, Constraints and Nondeterminism’. Artificial
Intelligence 147, 85-117.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein: 2001, Introduction to
Algorithms. MIT Press.

Cotton, S., E. Asarin, O. Maler, and P. Niebert: 2004, ‘Some Progress in Satisfiability
Checking for Difference Logic.’. In: Joint International Conferences on Formal
Modelling and Analysis of Timed Systems (FORMATS) and Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT), Vol. 3253 of Lecture Notes
in Computer Science. pp. 263-276, Springer Verlag.

D’Agostino, M.: 1992, ‘Are Tableaux an Improvement on Truth-Tables?’. Journal
of Logic, Language and Information 1, 235-252.

Davis, M., G. Logemann, and D. Loveland: 1962, ‘A machine program for theorem
proving’. Journal of the ACM 5(7).

de Moura, L., H. Ruess, N. Shankar, and J. Rushby: 2004, ‘The ICS decision proce-
dures for embedded deduction’. In: Proceedings of IJCAR, International Joint
Conference on Automated Reasoning, Cork, Ireland.

Dechter, R., I. Meiri, and J. Pearl: 1989, ‘Temporal Constraint Networks’. In: H. J.
L. R. J. Brachman and R. Reiter (eds.): Proceedings of the 1st International
Conference on Principles of Knowledge Representation and Reasoning. Toronto,
Canada, pp. 83-93, Morgan Kaufmann.

Dequen, G. and O. Dubois: 2004, ‘kenfs: An Efficient Solver for Random K-Sat For-
mulae’. In: E. Giunchiglia and A. Tacchella (eds.): 6th International Conference
on Theory an Applications of Satisfiability Testing. Selected Revised Papers., Vol.
2919 of Lecture Notes in Computer Science. pp. 486-501, Springer-Verlag.

Flanagan, C., R. Joshi, X. Ou, and J. B. Saxe: 2003, ‘Theorem Proving using
Lazy Proof Explication’. In: 15th International Conference on Computer Aided
Verification (CAV’03), Vol. 2725. pp. 355-367, Springer-Verlag.

Gent, I, H. V. Maaren, and T. Walsh (eds.): 2000, SAT2000. Highlights of
Satisfiability Research in the Year 2000. I0S Press.

Giunchiglia, E., F. Giunchiglia, and A. Tacchella: 2002, ‘SAT-Based Decision Proce-
dures for Classical Modal Logics’. Journal of Automated Reasoning 28, 143-171.
Reprinted in (Gent et al., 2000).

Giunchiglia, E., M. Maratea, and A. Tacchella: 2003, ‘(In)Effectiveness of Look-
Ahead Techniques in a Modern SAT Solver.’. In: Principles and Practice of

Objar-final.tex; 16/05/2005; 15:17; p.29

30 Armando, Castellini, Giunchiglia, Maratea

Constraint Programming (CP), Vol. 2833 of Lecture Notes in Computer Science.
pp. 842-846, Springer Verlag.

Giunchiglia, E., M. Maratea, A. Tacchella, and D. Zambonin: 2001, ‘Evaluating
Search Heuristics and Optimization Techniques in Propositional Satisfiability.’.
In: Automated Reasoning, First International Joint Conference (IJCAR), Vol.
2083 of Lecture Notes in Computer Science. pp. 347-363, Springer Verlag.

Giunchiglia, F. and R. Sebastiani: 1996, ‘Building decision procedures for modal
logics from propositional decision procedures - the case study of modal K’. In:
Proc. CADE-96. New Brunswick, NJ, USA, Springer Verlag.

Heule, M. and H. V. Maaren: 2004, ‘March_eq: Implementing Additional Reasoning
into an Efficient Look-Ahead SAT Solver’. In: 8th International Conference
on Theory an Applications of Satisfiability Testing. Selected Revised Papers.,
Lecture Notes in Computer Science. Springer Verlag. To appear.

Lahiri, S. K., S. A. Seshia, and B. Bryant: 2002, ‘Modeling and Verification of Out-
of-Order Microprocessors in UCLID’. Lecture Notes in Computer Science 2517,
142-155.

Le Berre, D. and L. Simon: 2003, ‘The essentials of the SAT’03 Competition’. In:
Proc. of the 6th International Conference on the Theory and Applications of
Satisfiability Testing (SAT’03). Selected revised papers, Vol. 2919 of LNCS.

Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik: 2001,
‘Chaff: Engineering an Efficient SAT Solver’. In: Proceedings of the 38th Design
Automation Conference (DAC’01).

Oddi, A. and A. Cesta: 2000, ‘Incremental Forward Checking for the Disjunc-
tive Temporal Problem’. In: Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI-2000). Berlin, pp. 108-112.

Plaisted, D. and S. Greenbaum: 1986, ‘A Structure-preserving Clause Form
Translation’. Journal of Symbolic Computation 2, 293-304.

Pratt, V. R.: 1977, ‘Two Easy Theories Whose Combination is Hard’. Technical
report, Massachusetts Institute of Technology.

Prosser, P.: 1993, ‘Domain filtering can degrade intelligent backjumping search’. In:
Proc. IJCAL pp. 262-267.

Siekmann, J. and G. Wrightson (eds.): 1983, Automation of Reasoning: Classical
Papers in Computational Logic 1967-1970, Vol. 1-2. Springer-Verlag.

Stergiou, K. and M. Koubarakis: 1998, ‘Backtracking Algorithms for Disjunctions
of Temporal Constraints’. In: Proceedings of AAAI/TAAI, Madison, WI (USA).
pp. 248-253.

Stergiou, K. and M. Koubarakis: 2000, ‘Backtracking Algorithms for Disjunctions
of Temporal Constraints’. Artificial Intelligence 120(1), 81-117.

Strichman, O., S. A. Seshia, and R. E. Bryant: 2002, ‘Deciding Separation Formulas
with SAT’. Lecture Notes in Computer Science 2404, 209-222.

Stump, A., C. W. Barrett, and D. L. Dill: 2002, ‘CVC: a cooperating validity
checker’. In: J. C. Godskesen (ed.): Proceedings of the International Conference
on Computer-Aided Verification.

Tsamardinos, I. and M. Pollack: 2003, ‘Efficient Solution Techniques for Disjunctive
Temporal Reasoning Problems’. Artificial Intelligence 151, 43-89.

Tseitin, G.: 1970, ‘On the Complexity of Proofs in Propositional Logics’. Seminars
in Mathematics 8. Reprinted in (Siekmann and Wrightson, 1983).

Wolfman, S. and D. Weld: 1999, ‘The LPSAT-Engine & its application to resource
planning’. In: Proc. IJCAI-99.

Objar-final.tex; 16/05/2005; 15:17; p.30

