
SAT-Based Answer Set Programming∗

Enrico Giunchiglia 1, Yuliya Lierler 2, and Marco Maratea1

1DIST - Universit̀a di Genova, Genova, Italy
2Institut für Informatik, Erlangen-N̈urnberg-Universiẗat, Germany

1{enrico,marco }@mrg.dist.unige.it, 2yuliya.lierler@informatik.uni-erlangen.de

Abstract

The relation between answer set programming (ASP) and
propositional satisfiability (SAT) is at the center of many re-
search papers, partly because of the tremendous performance
boost of SAT solvers during last years. Various translations
from ASP to SAT are known but the resulting SAT formula ei-
ther includes many new variables or may have an unpractical
size. There are also well known results showing a one-to-one
correspondence between the answer sets of a logic program
and the models of its completion. Unfortunately, these results
only work for specific classes of problems.
In this paper we present a SAT-based decision procedure for
answer set programming that(i) deals with any (non disjunc-
tive) logic program,(ii) works on a SAT formula without ad-
ditional variables, and(iii) is guaranteed to work in polyno-
mial space. Further, our procedure can be extended to com-
pute all the answer sets still working in polynomial space.
The experimental results of a prototypical implementation
show that the approach can pay off sometimes by orders of
magnitude.

Introduction
Propositional satisfiability (SAT) is one of the most studied
fields in Artificial Intelligence and Computer Science. Also
motivated by the availability of efficient SAT solvers various
reductions from logic programs to SAT were introduced in
the past.

Fages (1994) showed that if a programΠ is “tight” then
its answer sets (or stable models) are in one-to-one corre-
spondence with the models of its completion (Clark 1978).
If the completion is converted to a set of clausesΓ, state-
of-the-art SAT solvers can be used as answer set generators.
Since the size ofΓ is at most twice the size ofΠ, and has
at mostm new variables (wherem is the number of rules in
the logic program) this is considered a viable and efficient
approach. Fages’ result was then generalised to include pro-
grams with infinitely many rules (Lifschitz 1996), programs

∗We are grateful to Paolo Ferraris and Vladimir Lifschitz for
their comments related to the subject of the paper; to Esra Erdem
and Keijo Heljanko for providing us with the benchmarks; and to
Francesco Calimeri for his support onDLV . This work is partially
supported by ASI, MIUR and Texas Higher Education Coordinat-
ing Board under Grant 003658-0322-2001.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tight “on their completion model” (Babovich, Erdem, & Lif-
schitz 2000), and programs with nested expressions in the
bodies of the rules (Erdem & Lifschitz 2003). Still these re-
sults do not apply to the whole class of logic programs. It is
well known that each answer set corresponds to a model of
its completion, but the viceversa in general is not true.

Ben-Eliyahu and Dechter (1996) gave a translation from
a class of disjunctive logic programs to SAT. However the
translation may needO(n2) new variables andO(n3) new
clauses (wheren is the number of atoms in the logic pro-
gram). Janhunen (2003) presented an optimized encoding
of this translation, which behaves subquadratic in both size
and number of atoms.

A reduction to SAT which does not need extra variables
was proposed by Lin and Zhao (2002). The drawback of this
reduction is that the resulting formula may blow-up in space.
Still system ASSAT based on such reduction outperforms
state-of-the-art ASP systems likeSMODELS(Niemel̈a 1999;
Simons 2000) andDLV (Eiter et al. 1998) on many interest-
ing problems.

In this paper the question that we positively answer is: Is
it possible to build an efficient SAT-based answer set gener-
ator that(i) deals with any (non disjunctive) logic program,
(ii) works on a SAT formula without additional variables
except for those eventually introduced by the clause form
transformation, and(iii) is guaranteed to work in polyno-
mial space? We present a procedure, calledASP-SAT, hav-
ing the above three but also other features. We integrated
ASP-SAT in CMODELS1 and ran a wide comparative analy-
sis with other state-of-the-art systems. The results show that
our procedure has a clear edge over them.

The paper is structured as follows. First we introduce
some necessary definitions and terminology. Second we
present the main ideas behind our procedure and some de-
tails for an effective implementation. We end the paper de-
scribing the integration inCMODELS, the experimental re-
sults, and the conclusions.

Formal Background
Let P be a set of atoms. Arule is an expression of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (1)

1http://www.cs.utexas.edu/users/tag/cmodels



whereA0 ∈ P ∪ {⊥} (⊥ is the logical symbol standing for
False), and{A1, . . . , An} ⊆ P (0 ≤ m ≤ n). A0 is the
head of the rule,A1, . . . , Am, not Am+1, . . . , not An is the
body. A (non disjunctive) logic program is a finite set of
rules.

In order to give the definition of an answer set we con-
sider first the special case in which the programΠ does not
contain the negation as failure operatornot (i.e. for each
rule (1) inΠ, n = m). Let Π be such a program and letX
be a set of atoms. We say thatX is closed underΠ if for
every rule (1) inΠ, A0 ∈ X whenever{A1, . . . , Am} ⊆ X.
We say thatX is ananswer set for Π if X is the smallest set
closed underΠ.

Now consider an arbitrary programΠ. Let X be a set of
atoms. Thereduct ΠX of Π relative toX is the set of rules

A0 ← A1, . . . , Am

for all rules (1) inΠ such thatX ∩ {Am+1, . . . , An} = ∅.
ThusΠX is a program without negation as failure. We say
thatX is ananswer set for Π if X is an answer set forΠX .

Our next step is to introduce the relation between the an-
swer sets ofΠ and the models of its completion. In the fol-
lowing we represent an interpretation in the sense of propo-
sitional logic as the set of atomsTrue in it. With this con-
vention a set of atomsX can denote both an answer set and
an interpretation.

If A0 is an atom or the symbol⊥, the completion of Π
relative to A0 is the formula

A0 ≡
∨

(A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

where the disjunction extends over all rules (1) inΠ with
headA0. The completion Comp(Π) of Π consists of the
formulasComp(Π, A0), one for each symbolA0 in P∪{⊥}.

It is well known that ifX is an answer set ofΠ thenX
satisfiesComp(Π) while the converse is not necessarily true.
Lin and Zhao (2002) proved that to have a one-to-one corre-
spondence between the answer sets ofΠ and the models of
its completion we have to consider the loop formulas ofΠ.
To state this formally we need the following definitions.

The dependency graph of a programΠ is the directed
graphG such that the vertexes ofG are the atoms inΠ, and
G has an edge fromA0 to A1, . . . , Am for each rule (1) in
Π with A0 6= ⊥. A loop of Π is a setL of atoms such that
for each pairA,A′ of atoms inL there is a path fromA to
A′ in the dependency graph ofΠ whose intermediate nodes
belong toL.

Given a loopL, we defineR(L) to be the set of formulas

A1 ∧ . . . ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An

for all rules (1) inΠ, with A0 ∈ L and{A1, . . . , Am}∩L =
∅. Theloop formula associated with L is∨

L ⊃
∨

R(L)

where
∨

L denotes the disjunction of the elements inL, and
similarly for

∨
R(L). For instance, the only loop formula of

the program{p← p, p← not q} is p ⊃ ¬q.

Proposition 1 (Lin & Zhao 2002) LetΠ be a program,
Comp(Π) its completion, andLF (Π) be the set of loop
formulas associated with the loops inΠ. For each set of
atomsX, X is an answer set ofΠ iff X is a model of
Comp(Π) ∪ LF (Π).

SAT-Based Answer Set Solvers
Consider a programΠ. Given Proposition 1 it is clear that
if the dependency graph ofΠ has no cycles (in this case we
say thatΠ is tight) then the models ofComp(Π) are also an-
swer sets ofΠ. Thus for tight programs answer set systems
can use SAT solvers as “black-box” search engines.CMOD-
ELS used this approach to compute answer sets for tight pro-
grams.

If Π is non tight, Lin and Zhao (2002) presented the fol-
lowing procedureLZ(Π) which still uses SAT solver as
black-boxes:

1. ComputeComp(Π) and convert it to a set of clausesΓ.

2. Find a modelX of Γ by using a SAT solver. Exit with
failure if no such model exists.

3. Compute the set of atomsX− = X −Cons(ΠX), where
Cons(ΠX) is the set of atoms derivable from the reduct
of Π relative toX.

4. If X− = ∅, then returnX.

5. Otherwise, add the clauses corresponding to the loop for-
mulas of all the maximal (under subset inclusion) loops in
X− to Γ, and go to step 2.

LZ(Π) either returns an answer set forΠ, or failure if Π
does not have answer sets. In their article Lin and Zhao
showed thatASSAT, a system implementing the above pro-
cedure, can outperform rival systems often by orders of mag-
nitude. Still,LZ(Π) has the following two drawbacks:

1. It is not guaranteed to work in polynomial space. In fact,
Π can have exponentially many loops: If we assume that
each loop formula is not redundant (i.e., that it is not en-
tailed by the rest of the formula under consideration), then

• If Π has an answer set thenLZ(Π) blows up in space
in the worst case, while
• If Π has no answer set thenLZ(Π) is bound to blow up

in space: InLZ(Π) adding and keeping loop formulas
is essential to guarantee that the SAT solver does not
return previously computed models, and ultimately to
guaranteeASSAT termination.

2. Considering two successive calls of the SAT solver, the
computation done for finding the first model is completely
discarded. Thus some branches of the search tree may get
computed many times.

These drawbacks can be eliminated if we do not use a
SAT solver as a black-box. Instead we can take advantage
that state-of-the-art complete SAT solvers are based on the
Davis-Logemann-Loveland procedure (DLL ) (1962). The
basic observation is thatDLL can easily work as a SAT enu-
merator. We can thus computeComp(Π) and then

• generatemodels ofComp(Π), and



DLL(Γ, S)
if Γ = ∅ then return True;
if ∅ ∈ Γ then return False;
if {l} ∈ Γ then return DLL(assign(l, Γ), S ∪ {l});
A := an atom occurring inΓ;
return DLL(assign(A,Γ), S ∪ {A}) or

DLL(assign(¬A,Γ), S ∪ {¬A}).

Figure 1: The DPLL procedure

• testwhether the generated models are answer sets ofΠ.

ConsiderDLL as in Figure 1, wherel denotes a literal;
Γ a set of clauses;S an assignment, i.e. a consistent set
of literals. Given an atomA, assign(A,Γ) is the set of
clauses obtained fromΓ by removing the clauses to which
A belongs, and by removing¬A from the other clauses in
Γ. assign(¬A,Γ) is defined similarly. In the initial call to
DLL Γ is the set of clauses of which we compute a model
andS is the empty set.DLL (Γ, ∅) returnsTruewheneverΓ
is satisfiable, andFalseotherwise.

GivenDLL , we can obtain a SAT-based answer set gener-
ator forΠ by

1. Modifying the first line ofDLL in the figure by substitut-
ing “return True” with “ return test(S, Π)”, a new func-
tion which

• prints the setatoms(S) = S ∩ P and returnsTrue, if
atoms(S) is an answer set ofΠ, and
• returnsFalse, otherwise.

2. Defining a functionASP-SAT(Π), that calls DLL (Γ, ∅)
whereΓ is a set of clauses corresponding toComp(Π).
Γ can be computed in many ways. Here, our only as-
sumptions are that(i) Γ signature extendsP , and(ii) for
each setX of atoms inΓ signature,X satisfiesΓ iff X∩P
satisfiesComp(Π). Standard conversion methods satisfies
such conditions.

Notice that the setS in test(S, Π) may be non maximal
wrt P , i.e., for some atomA in P , bothA and¬A may not
belong toS. Thus,S ∪ {A} entailsComp(Π) and in princi-
ple we also need to check ifatoms(S ∪ {A}) is an answer
set ofΠ. However, this additional check is not needed, as
established by the following proposition.

Proposition 2 Let Π be a program,X, X ′ be two sets of
atoms satisfying Comp(Π). If X ⊂ X ′ thenX ′ is not an
answer set.

From the above proposition, and the fact that each answer
set is also a model ofComp(Π) it follows the correctness
and completeness ofASP-SAT(Π).

Proposition 3 Given a programΠ, ASP-SAT(Π) returns
True if and only ifΠ has an answer set.

Moreover ASP-SAT(Π) (i) performs the search on
Comp(Π) and thus does not introduce any extra variables
except for those eventually needed by the clause form trans-
formation; (ii) is guaranteed to work in polynomial space;
(iii) can deal with both tight and non tight programs. Fur-
ther,

• In the case of tight problems each generated model
of Comp(Π) corresponds to an answer set and thus
ASP-SAT(Π) behaves as a standard SAT solver run on
Comp(Π).

• ASP-SAT(Π) can be easily modified for printing all the
answer sets ofΠ: It is enough to modifytest(S, Π) in
order to returnFalse also whenatoms(S) is an answer
set.

Compared toASSAT, ASP-SAT is guaranteed to work in
polynomial space and no computation is ever repeated, also
when computing all answer sets. Compared to other answer
set solvers likeSMODELSandDLV , ASP-SAT has the advan-
tage of being SAT-based and thus it can leverage on the great
amount of knowledge available in SAT.

Still, most of the state-of-the-art SAT solvers based on
DLL , e.g. MCHAFF (Moskewiczet al. 2001), use learning
when backtracking. With learning, wheneverFalse is re-
turned, a “reason” for the failure has to be computed. Intu-
itively, a reason is a subsetS′ of the assignmentS such that
any assignment extendingS′ will fail. In order to use SAT
solvers with learning, it is thus not enough fortest(S, Π) to
returnFalsewhenS is not an answer set. Indeed, it has also
to compute a reason for such failure, i.e., a subsetS′ of S
such that for any maximal assignmentS′′ (i) extendingS′

and(ii) entailingComp(Π), atoms(S′′) is not an answer set
of Π. One such set isS itself. However in order to try to
maximize the advantages of learning, it is important thatS′

be as small as possible. Thus, for computing suchS′, the
test(S, Π) procedure

1. computes the loop formulas associated with the loops in
atoms(S)− Cons(Πatoms(S)),

2. determines a subset ofS which falsifies one of the loop
formulas computed in the previous step.

In our experiments, with such a simple procedure, we are
able to compute reasons which are often less than 1% of
the size ofS. Of course, the above method for computing
reasons, cannot be applied when returningFalsebecause the
goal is to determine all the answer sets andatoms(S) is an
answer set. In this case, by Proposition 2, the setatoms(S)
can work as reason.

In the SAT literature, it is well known that learning can
produce exponential speed-ups. We now show thatASP-SAT
with learning and the method for computing reasons based
on loop formulas, can invoketest(S, Π) exponentially many
less times thanASP-SAT without learning.

Assume the programΠ consists of the two rules2

Ai ← Ai+1 Ai+1 ← Ai

for eachi ∈ {0, 2, . . . , 2k}. ThenComp(Π) includesAi ≡
Ai+1 (i ∈ {0, 2, . . . , 2k}) and we can assume that its clausi-
ficationΓ consists of the two clauses(¬Ai ∨ Ai+1),(Ai ∨
¬Ai+1), for eachi ∈ {0, 2, . . . , 2k}. Γ has2k models while
the only answer set ofΠ is the empty set:

2In this paragraph for simplicity we assume that the clauses
corresponding to the reasons returned bytest(S, Π) are stored and
never deleted.



• ASP-SAT without learning or with learning but in which
test(S, Π) computesatoms(S) as reason whenS is not
an answer set, may generate2k assignments entailing
Comp(Π).

• ASP-SAT with learning and in whichtest(S, Π) computes
as reason the subset ofS falsifying one of the loop for-
mulas inatoms(S)− Cons(Πatoms(S)), may generate at
mostk assignments entailingComp(Π).

Still, for such a simple program, the generation and testing
of k assignments seems an overkill. Indeed, for programsΠ
without negation as failure, we know that there exists exactly
one answer set,Cons(Π). For such programs,ASP-SAT can
be easily tuned to directly compute such answer set by first
assigning the atoms inP to Falsewhile branching. It can
be proved that with this modification and for programsΠ
without negation as failure, the first invocation totest(S, Π)
hasS = Cons(Π).

Integration in CMODELS

ASP-SAT was implemented on top of theSIMO sys-
tem (Giunchiglia, Maratea, & Tacchella 2003) and inte-
grated inCMODELS(Lierler & Maratea 2004) by the last two
authors.SIMO is a MCHAFF-like SAT solver (Moskewiczet
al. 2001), and features two-literal watching data structure,
1-UIP learning, and VSIDS heuristics. However, it does not
feature the low level optimizations ofMCHAFF and thus it is
within a factor of 3 slower thanMCHAFF. Our implementa-
tion of ASP-SAT incorporates all the techniques presented in
previous section, including the idea to assign atoms first to
Falsewhile branching.

Still, the integration ofASP-SAT in CMODELSposed some
challenges related toCMODELS expressivity. CMODELS
usesLPARSE as frontend and thus its input may contain
cardinality expressions (also called “constraint literals” in
LPARSE manual3) and choice rules, two constructs widely
used in answer set programming.4 OperationallyCMODELS
performs the following steps:

1. Simplifies the givenLPARSEprogram performing prepro-
cessing similar to those involved inSMODELS.

2. Eliminates cardinality expressions by introducing auxi-
lary atoms and rules. Eliminates choice rules in favor
of nested expressions in the sense of (Lifschitz, Tang, &
Turner 1999). This is done using a procedure defined in
(Ferraris & Lifschitz 2003).

3. Verifies that the resulting program with nested expres-
sions is tight: the definition of tightness is generalized to
such programs in (Erdem & Lifschitz 2003).

4. Forms the program’s completion (see (Lloyd & Topor
1984) for the definition of completion of a program with
nested expressions) and calls a SAT solver.

For CMODELS the integration implied callingASP-SAT in-
stead of the SAT solver. As forASP-SAT we had to take into

3http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
4The input can also contain general weight expressions

(“weight literals”) However, optimize statements (seeLPARSE
manual) are not allowed.

account that programs with nested expressions do not satisfy
Proposition 2. For instance, the program

A← not not A (2)

(corresponding to the translation of the choice rule
“{A} ←”) has two answer sets:∅, {A}. The violation of
Proposition 2 implied two modifications in our procedure.
Consider a program with nested expressionsΠ. When we
are interested in computing all solutions, we have to guar-
antee that each setS of literals in test(S, Π) is maximal.
Assuming that the input set of clauses is satisfiable,SIMO
always returns maximal assignments but in the signature of
the set of clauses resulting afterSIMO preprocessing. How-
ever SIMO removes tautological clauses in the preprocess-
ing. Tautological clauses can naturally arise during the com-
pletion process and removing them may cause the gener-
ation of non maximal (wrt the signature of the input pro-
gram) assignments. By Proposition 2, this is not a problem
if Π does not have nested expressions; it may be a problem
otherwise. For instance, the completion of the program (2)
is A ≡ ¬¬A. (A ∨ ¬A) is the tautological clause corre-
sponding to this completion. After the preprocessing, the
set of clauses corresponding to the program is empty, and
ASP-SAT would not find the answer set{A}. Therefore, we
modifiedASP-SAT preprocessing in order to keep tautologi-
cal clauses. The second modification involved the function
test(S, Π). It considers loop formulas as defined in (Lee &
Lifschitz 2003) for nested programs. In the caseatoms(S)
is an answer set and we are interested in finding all answer
sets ofΠ, test(S, Π) returns the entire setS as a reason since
any superset or subset of the atoms inS may be an answer
set ofΠ.

Experimental Results
CMODELS2 was comparatively tested against other state-of-
the-art systems on a variety of benchmarks. Some of the
benchmarks we considered include cardinality constraints
and choice rules, and will be called “extended”. The sys-
tems we considered areSMODELSversion 2.27,ASSAT ver-
sion 1.52 runningMCHAFF as SAT solver,DLV release of
2003-05-16. It worths remarking that whileSMODELS, AS-
SAT andCMODELS2 useLPARSE as preprocessor, and thus
can be run on the same problems,DLV does not. This ex-
plains whyDLV appears only in few tables. Further,ASSAT
cannot deal with extended programs. Finally, forDLV we
have to mention that it is a system specifically designed for
disjunctive logic programs, and that very different results
can be obtained depending on the specific encoding being
used.

All the tests were run on a Pentium IV PC, with 1.8GHz
processor, 512MB RAM DDR 266MHz, running Linux.
For SMODELS, ASSAT and CMODELS2, the time taken by
LPARSE is not counted.5 Further, each system was stopped
after 3600 seconds of CPU time on an instance, or when it
exceeded all the available memory: In the tables, these cases

5Adding the times ofLPARSE will not change the picture for
DLV when compared toCMODELS2.



Standard programs Extended programs
#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2
8 i-1 12.32 0.80 1.19 0.81 0.47
11 i-1 71.78 2.97 4.19 2.97 1.01
8 i 40.87 0.89 2.18 1.56 1.40
11 i 71.42 3.17 4.52 3.41 1.16
8 i+1 23.35 0.96 0.97 4.99 0.31
11 i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.

are denoted with “TIME” and “MEM” respectively. Other-
wise, the tables report the CPU times in seconds needed by
each solver to solve the problem, or a “−” to denote an ab-
normal exit of the program.

We start our analysis considering blocks world planning
problems, encoded as both standard and extended logic pro-
grams, the latter formulation due to Erdem (2002). The re-
sults are represented in Table 1. In the table,(i) the column
“#b” represents the number of blocks;(ii) an “i” in the “#s”
(standing for “number of steps”) column means that the in-
stance corresponds to the problem of finding a plan in “i”
steps, where “i” is the minimum integer for which a plan ex-
ists. Thus, the instances with “i” and “i+1” in the “#s” col-
umn admit at least one answer set, while those with “i− 1”
do not have answer sets. These blocks world problems are
tight on their completion models (Babovich, Erdem, & Lif-
schitz 2000), and thus every model of the completion cor-
responds to an answer set. As it could be expected, SAT-
based systems likeASSAT andCMODELS2 perform (some-
times significantly) better thanSMODELS, both on standard
and extended programs. On standard programsASSAT per-
forms slightly better thanCMODELS2, and this corresponds
to the fact that, on average,MCHAFF is better thanSIMO.

We also considered Hamiltonian circuit problems on
complete graphs, using both the standard encoding of
Niemela (1999), and the extended encoding in the “bench-
mark problems for answer set programming systems”6.
These problems are particularly interesting because they are
non tight and have exponentially many loops. Thus, one
would expect these problems to be difficult forASSAT, but
also forCMODELS2 in the case it will generate and then re-
ject (exponentially) many candidate answer sets. The results
are in Table 2. As can be observed, on this test setCMOD-
ELS2 performs best, being faster (sometimes by orders of
magnitude) than all the other solvers both on standard and
extended programs.

The problems in Table 3 are real-world non tight problem
related to checking requirements in a deterministic automa-
ton, and are described in (Ştefănescu, Esparza, & Muscholl
2003).7 Two types of problems are considered and encoded
in logic programs. The first type is called IDFD and the re-
sults on such problems are reported in the first two rows of
the table. The second type of problem is called “Morin”, and
the results are shown on the last three rows. As can be seen,

6http://www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm
7These benchmarks are available at http://www.fmi.uni-

stuttgart.de/szs/research/projects/synthesis/benchmarks030923.html

Standard programs Extended programs
SMODELS ASSAT DLV CMOD2 SMODELS CMOD2

np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 14.51 314.46 3.37 8.39 1.79
np60c 594.46 48.80 770.07 5.81 20.47 3.41
np70c 1323.61 291.601679.12 8.22 39.41 5.87
np80c 2354.28 32.51 3407.35 14.20 75.36 9.18
np90c TIME 779.06 TIME 22.23 122.53 14.19
np100c TIME − TIME 28.63 185.52 20.76
np120c TIME − TIME 53.33 418.15 41.84

Table 2: Complete graphs. npXc corresponds to a graph
with “X” nodes. CMOD2 is CMODELS2

SMODELS ASSAT DLV CMODELS2
mutex4 33.92 (0)0.62 840.60 (0)0.68

phi4 0.24 (168)2.98 1.44 TIME
mutex2 0.09 (88)1.78 (0)0.12
mutex3 229.57 MEM (0)24.16

phi3 2.87 (704)236.91 (57)3.91

Table 3: Checking requirements in a deterministic automa-
ton. DLV was not run on the last 3 instances.

CMODELS2 times out on one instance that is easily solved by
all the other solvers. This is due to the dimension of the re-
lated propositional formula. On the other hand, for any other
solver, there are one/two instances on whichCMODELS is at
least 1 order of magnitude faster. Interestingly,ASSAT blows
up in memory on one instance (and also on other instances,
on which the other systems time out).

Non tight, extended real-world problems corresponding
to the bounded model checking (BMC) of asynchronous
concurrent systems (see (Heljanko & Niemelä 2003))8 are
shown in Table 4. As for the blocks world, these problems
are about proving a certain property in a given number of
steps, represented as the last number in the instance name.
The problems in the first five rows do not have answer sets,
while the remaining (obtained by incrementing the number
of steps) do. Here the results are mixed, and sometimes
CMODELS2 performs much worse thanSMODELS. On these
problems, our standard heuristic is not suited. Given a pro-
gramΠ, by changing the heuristic in order to

• first assign the atoms occurring within the negation as fail-
ure operator, the order and sign of such atoms determined
as inSIMO, and

• then assign the remaining atoms first toFalse, the order
determined as inSIMO,

we get the better figures represented in the last column, un-
der the labelCMODELS’. The idea behind this heuristic is
that we should first get to a set of clauses corresponding to a
programΠ without negation as failure, and then we should
try to satisfy the remaining set of clauses by assigning the
fewest possible atoms to true.

Summing up, the 4 tables show the performances on 45
problems. If for the Table 4 we consider the results in the

8http://www.tcs.hut.fi/̃ kepa/experiments/boundsmodels/



BMC SMODELS CMODELS2 CMODELS2’
dp-10.i-02-b11 382.72 1476.72 442.14
dp-10.s-02-b8 15.24 8.20 14.22
dp-12.s-O2-b9 336.03 65.41 137.34
dp-8.i-O2-b9 8.08 12.62 10.69
dp-8.s-O2-b7 1.19 1.02 2.28

dp-10.i-O2-b12 445.47 3295.72 163.15
dp-10.s-O2-b9 28.87 16.07 15.08
dp-12.s-O2-b10 971.50 209.29 46.51
dp-8.i-O2-b10 5.05 40.01 6.44
dp-8.s-O2-b8 1.76 1.99 2.03

Table 4: Bounded Model Checking Problems.

last column,CMODELS2

• times out on 1 problem, while the other systems do not
conclude on at least 3 problems;

• performs better than all the three solvers on 30 problems,
and on 26 it has at least a factor of 2; and,

• except for the problem on which it times out,CMODELS2
is either the top performer or within a factor of 2 from it.

We also considered the problem of generating all the an-
swer sets. Here the results are less in favor toCMODELS2
when compared toSMODELS, especially on extended pro-
grams. We believe this is because of the very naive way in
which reasons are computed bytest(S, Π), especially when
atoms(S) is an answer set.

Conclusions
We have presented a SAT-based procedure that(i) can deal
with any logic program(ii) works on a SAT formula with-
out additional variables,(iii) is guaranteed to work in poly-
nomial space. Further, we have evidenced thatASP-SAT
can be easily modified in order to generate all the answer
sets. We have shown how to implementASP-SAT on top of a
MCHAFF-like solver, and discussed the modifications needed
in the case of extended programs. The experimental evalua-
tion shows thatCMODELS2, can have a significant edge over
other state-of-the-art systems. Still, we believe that there is
a lot of space for improvements, especially in the heuristics,
and in the way reasons are computed.

Finally, we believe thatASP-SAT helps in closing the al-
gorithmic gap between answer set and SAT solvers, with
beneficial results especially for the former, given the very
advanced state of development of the latter.

References
Babovich, Y.; Erdem, E.; and Lifschitz, V. 2000. Fages’
theorem and answer set programming. InProc. NMR.

Ben-Eliyahu, R., and Dechter, R. 1996. Propositional se-
mantics for disjunctive logic programs.Annals of Mathe-
matics and Artificial Intelligence12:53–87.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. NY: Plenum Press.
293–322.

Ştef̆anescu, A.; Esparza, J.; and Muscholl, A. 2003. Syn-
thesis of distributed algorithms using asynchronous au-
tomata. InProc. of CONCUR, LNCS 2761.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving.JACM5(7).
Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR system dlv: Progress report, comparisons
and benchmarks. InProc. KR.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs.
Theory and Practice of Logic Programming, 3:499–518.
Erdem, E. 2002.Theory and applications of answer set
programming. Ph.D. Dissertation, UT at Austin.
Fages, F. 1994. Consistency of Clark’s completion and
existence of stable models.Journal of Methods of Logic in
Computer Science1:51–60.
Ferraris, P., and Lifschitz, V. 2003. Weight constraints
as nested expressions.Theory and Practice of Logic Pro-
gramming. To appear.
Giunchiglia, E.; Maratea, M.; and Tacchella, A. 2003.
(In)Effectiveness of look-ahead techniques in a modern
SAT solver. InProc. CP, LNCS 2833.
Heljanko, K., and Niemelä, I. 2003. Bounded LTL model
checking with stable models.Theory and Practice of Logic
Programming3(4&5):519–550.
Lee, J., and Lifschitz, V.. 2003. Loop formulas for disjunc-
tive logic programs. InProc. ICLP.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-Based
Answer Set Solver Enhanced to Non-tight Programs. In
Proc. LPNMR, 346–350.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs.Annals of Mathematics and
Artificial Intelligence25:369–389.
Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed.,Principles of Knowledge Representation.
CSLI Publications. 69–128.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. InProc. AAAI.
Lloyd, J., and Topor, R. 1984. Making Prolog more ex-
pressive.Journal of Logic Programming3:225–240.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. InProc. DAC.
Niemel̈a, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm.Annals of
Mathematics and Artificial Intelligence25:241–273.
Janhunen, T. 2003 A counter-based approach to translating
normal logic programs into sets of clauses.Proc. ASP’03
Workshop, pp. 166–180.
Simons, P. 2000. Extending and implementing the stable
model semantics. InDoctoral dissertation, 305–316.


